Net wor k Wor ki ng Group J. Newkirk
Request for Comments: 55 M Kral ey
Har vard

J. Postel

S. Crocker

UCLA

19 June 1970

A Prototypical Inplenmentation of the NCP

Wiile involved in attenpting to specify the formal protocol, we al so
attenpted to forrmulate a prototypical NCP in an Al gol-like | anguage.
After sone weeks of concentrated effort, the project was abandoned as
we realized that the code was becom ng unreadable. W still,

however, felt the need to denobnstrate our conception of how an NCP

m ght be inplenented; we felt that this would hel p suggest sol utions
for problems that mght arise in trying to nold the forna
specifications into an existing system This docunent is that
attenpt to specify in a prose format what an NCP coul d | ook Iike.

There are obvious limtations on a project of this nature. W do
not, and cannot, know all of the quirks of the various systens that
nmust wite an NCP. W are forced to nmake sone assunptions about the
environnent, systemcalls, and the like. W have tried to be as
general as possible, but no doubt many sites will have conpletely

di fferent ways of conceptualizing the NCP. There is great difficulty
i nvol ved in conveying our concepts and the nmechani snms that deal with
these concepts to peopl e who have wholly different ways of | ooking at
things. W have, however, benefited greatly by trying to actually
code this programfor our fictitious machine. Many unforeseen

probl ems surfaced during the coding, and we hope that by issuing this
docunent we can help to alleviate sinmlar problenms which may arise in
i ndi vi dual cases.

There is, of course, absolutely no requirenent to inplenment anything
which is contained in this document. The only rigid rules which an
NCP _nust_ conformto are stated in NG RFC#54. This description is
i ntended only as an exanple, _not_ as a nodel

In the discussion which follows we first describe the environnent to
be assuned and postul ate a set of systemcalls. W discuss the
overall architecture of the NCP and the tables that will be used to
hold relevant information. Narratives of network operations follow.
A state diagramis then presented as a convenient nethod for
conceptual i zi ng the cause-effect sequencing of events. The detailed
processi ng of each type of network event (systemcalls or incom ng
net wor k nessages) is then di scussed.

Newkirk, et al. [Page 1]

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

I1. Environnent

We assune that the host will have a time-sharing operating systemin
which the CPU is shared by processes.

We envi sion that each process is tagged with a user nunber. There
may be nore than one process with the sanme user nunber; if so, they
shoul d all be cooperating with respect to using the network.

We envi sion that each process contains a set of ports which are
uni que to the process. These ports are used for input to or output
fromthe process, fromor to files, devices, or other processes.

We al so envision that a process is not put to sleep (i.e., blocked or
di sm ssed) when it attenpts to LI STEN or CONNECT. Instead it is
i nfornmed when some action is conplete. O course, a process may
dismss itself so that it wakes up only on sonme external event.

To engage in network activity, a process attaches a | ocal socket to
one of its ports. Sockets are identified by user nunber, host and
AEN; a socket is local to a process if the user nunbers of the two
match and they are in the same host. Thus, a process need only
specify an AEN when it is referring to a | ocal socket.

Each port has a status which is nodified by systemcalls and
concurrent events outside the process (e.g., a 'close connection
conmand froma foreign host). The process may | ook at a port’s
status as any time (via the STATUS systemcall).
We assume a one-to-one correspondence between ports and sockets.
[11. SystemCalls
These are typical systemcalls which a user process m ght execute.
W use the notation
SYSCALL (ARGL, ARG2....)
wher e
SYSCALL is the nane of the system cal

and
ARCK, etc. are the paraneters of the system call

Newkirk, et al. [Page 2]

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

CONNECT (P, AEN, FS, CR)

P specifies a port of the process

AEN specifies a | ocal socket; the user number and host are
implicit

FS specifies a socket with any user nunber in any hose,
and with any AEN

CR the condition code returned

CONNECT attenpts to attach the | ocal socket specified by AEN to
the port P and to initiate a connection with a specific foreign
socket, FS. Possible values of CR are:

CR=CK The CONNECT was | egal and the socket FS is being
contacted. When the connection is established
or refused the status will be updated.

CR = BUSY The | ocal socket is in use (illegal comrand
sequence) .

CR = BADSKT The socket specification was illegal

CR = NOROOM Local host’s resources are exhausted.

CR = HOMOSEX I ncorrect send/receive pair

CR = 1MP DEAD CQur inp has died

CR = LINK DEAD The link to the foreign host is dead because:

1. the foreign Inp is dead,
2. the foreign host is dead, or
3. the foreign NCP does not respond.

LI STEN (P, AEN, CR)

P specifies a port of the process
AEN specifies a | ocal socket
CR the condition code returned

The | ocal socket specified by AENis attached to port P. |If there

is a pending call, it is processed; otherwi se, no action is taken
When a call comes in, the user will be notified. After exam ning
the call, he may either accept or refuse it. Possible values of
CR are:

CR = X Connecti on begun, |istening

CR = BUSY

Newkirk, et al. [Page 3]

RFC 55

Prot ot ypi cal |nplenentation of NCP June 1970
CR = NORCOM
CR = | MP DEAD

CR = LI NK DEAD

ACCEPT (P, CR

P specifies a port of the process
CR the condition code returned

Accept inplies that the user process has inspected the foreign
socket to determine who is calling and will accept the call

(Note: an interesting alternative defines ACCEPT as the inplicit
default condition. Thus any inconm ng RFC autonmatically satisfies
a LI STEN.) Possible values of CR are:

CR = BADSKT

CR = NOROOM

CR = | MP DEAD

CR = LI NK DEAD

CR = BADCOW |1l egal command sequence. (E.g., Accept issued
before a LI STEN

CR = PREMCLS Foreign user aborted connection after RFC was

| ocal ly received but before Accept was execut ed.

TRANSM T (P, BUFF, BI TSRQST, BI TSACC, CR)

Newki r

P specifies a port of the process

BUFF specifies the text buffer for transm ssion

Bl TSRQST specifies the length to be transmitted in bits
Bl TSACC returns the nunber of bits actually transmtted

CR the condition code returned
Transm ssion takes pl ace. Possi bl e values for CR are:
CR = K

CR = | MP DEAD

CR = LI NK DEAD

k, et al. [Page 4]

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

CR = NOT OPEN Connection is not open (illegal comrand

sequence).
CR = BAD BOUND BI TSRQST out of bounds (e.g., for a receive
socket BUFF was shorter than Bl TSRQST
i ndi cated).
INT (P, CR
P specifies the | ocal socket of this process
CR the condition code returned

The process on the other (foreign) side of this port is to be
interrupted. Possible values of CR are:

CR = X

CR = BADSKT

CR = BADCOW
CR = | MP DEAD
CR = LI NK DEAD

STATUS (P, RTAB, CR)

P specifies a port of this process
RTAB the returned rendezvous table entry
CR the condition code returned

The rel evant fields of the rendezvous table entry associated with
this port are returned in RTAB. This is the nechanisma user
process enploys for nmonitoring the state of a connection

Possi bl e val ues of CR are:

CR =X

CR = BADSKT

Newkirk, et al. [Page 5]

RFC 55

CLCSE (P, CR)

Prot ot ypi cal |nplenentation of NCP June 1970
P specifies a port of this process
CR the condition code returned

Activity on the connection attached to this port stops, the
connection is broken and the port becones free for other use.
Possi bl e val ues of CR are:

CR = X

CR = BADSKT

CR = BADCOW
CR = | MP DEAD
CR = LI NK DEAD

IV. The NCP - Gross Structure

We view the NCP as having five conponent prograns, severa
associ ative tables, and sone queues and buffers.

The Conponent Programs (see Fig. 4.1)

1

Newki r k,

The | nput Handl er

This is an interrupt-driven routine. It initiates |np-to-Host
transm ssion into a resident buffer and wakes up the input
interpreter when transmi ssion is conplete.

The Qut put Handl er

This is an interrupt-driven output routine. It initiates Host-
to-lnp transm ssion out of a resident buffer and wakes up the
out put schedul er when transm ssion is conplete.

The I nput Interpreter

Thi s program deci des whether the input is a regular nessage

i ntended for a user, a network control nessage, an |np-to Host

nmessage, or an error. For each class of nessage this program
i nvokes a subroutine to take the appropriate action

et al. [Page 6]

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

4. The Qut put Schedul er
Three cl asses of nessages are sent to the Inp

(a) Host-to-Inmp nessages
(b) Control nessages
(c) Regul ar nessages

We believe that a priority should be inposed anpong these
classes. The priority we suggest is the ordering above. The
out put schedul er selects the highest priority nessage and
passes it to the output handl er

Host-to-1nmp nessages are processed first come first served.
Control messages are processed individually by host, each host
being taken in turn. A control message queue for each foreign
host is provided. Wen any particular host is schedul ed for
out put, as many control commands for that host as will fit are
concatenated into a single nessage. Regular nessages are
processed in groups by host and |ink, each uni que conbi nation
being taken in turn

5. The System Call Interpreter

This programinterprets requests fromthe user. Each system
call has a correspondi ng routi ne which takes the appropriate
action.

The two interesting conponents are the input interpreter and the
systemcall interpreter. These are simlar in that the input
interpreter services foreign requests and the system cal
interpreter services |local requests.

The diagramin Figure 4.1 is our conception of the Network
Control Program Squi shy anpeba-|ike objects represent conmponent
prograns, cylinders represent queues, and the arrows represent
data paths. In this sinplified diagramtables are not shown.
["Aroeba-1i ke" objects in original hand drawing are now firm
rectangul ar boxes: Ed.]

The abbreviated labels in the figure have the foll owi ng neani ngs:

H Q - Host-to-1np Queue

oCcCQ - Qut put Control Conmmand Queue
DQ - Data Queue

| HBUF - | nput Handl er Buffer

OHBUF - Qut put Handl er Buffer

Newkirk, et al. [Page 7]

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

| USER | STRUCTURE OF THE NETWORK CONTROL PROGRAM
I I

" | Fig. 4.1

| \Y,

System

Interpreter

I
I
Cal | |
I
I

T |
I B Er T | input |
| | Hoo- - | Interpreter |
|| || | | |
| V vV V A

| ::::::l | —===—=—=—=== :::::::l | A

| DQ | | ©OCCQ| | HI Q] | |

::::::l	:::::::::l	:::::::l	
~			
A JEEEEEEEEEE IR R +			
Fomm - - + | F--- - - - + |

~_V_V_V |
Qut put	
Scheduler	
\Y	
:::::::::::) (:::::::::::)	
(OHBUF) (1 HBUF)	
(:::::::::::) (:::::::::::)	
N	
\Y	
Qut put	
Handl er	
e ee oo ;\
oo + oo +	
\Y	
I MP	

Newkirk, et al. [Page 8]

RFC 55

Prot ot ypi cal |nplenentation of NCP June 1970

V. Tables in the NCP

We envision that the bulk of the NCP's data base is in associative
tables. By "associative" we nean that there is sone | ookup routine
which is presented with a key and either returns successfully with a
pointer to the corresponding entry, or fails if no entry corresponds
to the key. The nmmjor tables are as foll ows:

1

Newki r k,

The Rendezvous Tabl e

This table holds the attributes of a connection. The table is
accessed by the local socket, but other tables nmay have
pointers to existing entries.

The conponents of an entry are:

(a) Local Socket

(b) Foreign Socket

(c) Link

(d) Connection State

(e) Flow State

(f) Data Queue

(g) Call Queue

h) Port Pointer

i) Their Buffer Size (only needed on the send side)
j) Error State

—~N
— N —

An entry is created when either a CONNECT or a LI STEN system
call is executed or when a request for connection is received.
Various fields remain unused until after the connection is

est abl i shed.

The | nput Link Table

The input interpreter uses the concatenation of the foreign
host and link as a key into the input table. The table is used
in processing a user-destined nmessage on an incoming |ink by
providing a pointer into the rendezvous table.

The Qutput Link Table
The input interpreter uses the output link table to access the
flow state as RFNMs return fromtransnitted nessages. The

output link table is keyed by host and |ink and provides a
pointer into the rendezvous table.

et al. [Page 9]

RFC 55

Newki r k,

Prot ot ypi cal |nplenentation of NCP June 1970

The Port Tabl e

The systemcall interpreter uses the concatenation of the
process identification and the port identification as a key to
obtain a pointer into the rendezvous table.

The Qutput Control Command Tabl e

The systemcall interpreter and the input interpreter use this
table to make entries in the appropriate output control conmmand
gueues. Commands are queued in separate table entries
corresponding to foreign hosts. Before output the contents of
the queue are concatenated into a |arge control nmessage. The
conponents of an entry are:

(a) Host
(b) Qutput Control Command Queue

The Qut put Request Queue

Thi s queue contains an entry for each connection which has data
requiring transmssion to the net. There is only one entry per
connection, which is deleted when the | ast packet of data is
transmtted and is entered whenever a user nmkes a system
request for data transni ssion

The entry is re-inserted if transmission is not conpleted
(message too long) or is prevented by the flow contro
mechani sm The only conponent of an entry is a |ocal socket.

The Host Live Table

This is a sinple table listing the hosts which are alive. This
table is checked before establishing a connection and before
sendi ng any data to ensure that the destination host actually
exists. At present the protocol does not define the procedure
to be foll owed for the Host up/Host down conditions. See

NWGE RFCH#57.

The Link Assignhment Tabl e

Li nk nunbers are assigned by the receiver. This table records
which Iinks are free and can, therefore, be assigned.

et al. [Page 10]

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

VI .

I nformal Description of Network Operations

We present here narratives describing the operation conducted during
the three maj or phases of network usage: opening, flow control, and
cl osi ng.

A. Opening

In order to establish a connection for data transm ssion, a pair
of RFC s nust be exchanged. An RTS nust go fromthe receive-side
to the send-side, and an STR nust be issued by the send-side to
the receive-side. |n addition, the receive-side, in its RTS, mnust
specify a link nunber. These RFC's (RFC is a generic term
enconpassi ng RTS and STR) nmay be issued in any tinme sequence. A
provi sion nust al so be nade for queuing pending calls (i.e., RFC s
whi ch have not been dealt with by the user programj. Thus, when a
user is finished with a connection, he may choose to exam ne the
next pending call from another process and decide to either accept
or refuse the request for connection. A problem devel ops because
the user may not choose to exam ne his pending calls; thus they
will nmerely serve to occupy queue space in the NCP. Severa
alternative solutions to this problemw ||l be nentioned |ater.

Uilizing the framework of the prototype systemcalls described
above, we envision at |east four tenporal sequences for obtaining
a successfully opened connection

1. The user may issue a LISTEN, indicating he is willing to
consi der connecting to anyone who sends himan RFC. When an
RFC comes in the user is notified. The user then decides
whet her he wi shes to connect to this socket and issues an
ACCEPT or a CLOSE on the basis of that decision. A CLOSE
refuses’ the connection, as discussed under "Closing." An
ACCEPT indicates he is willing to connect; an RFC is issued,
and the connection becomes fully opened.

2. Upon processing a user request for a LISTEN, the NCP
di scovers that a pending call exists for that |ocal socket.
The user is imediately notified, and he may ACCEPT or
CLOSE, as above.

3. The user issues a CONNECT, specifying a particular foreign
socket that he would like to connect to. An RFCis issued.
If the foreign process accepts the request, it answers by
returning an RFC. Wen this acknow edgi ng RFC i s received,
the connection is opened.

Newkirk, et al. [Page 11]

RFC 55

4.

In all

Prot ot ypi cal |nplenentation of NCP June 1970

When presented with a CONNECT, the NCP may di scover that a
pending call exists fromthe specified foreign socket to the
| ocal socket in question. An acknow edging RFC is issued
and the connection is opened.

of the above cases the user is notified when the connection

i s opened, but data flow cannot begin until buffer space is
al l ocated and an ALL conmand is transmitted.

Any of these connection scenarios will be interrupted if a CLS
cones in, as discussed under "d osing."

1

Pendi ng Call Queues

It is essential that some form of queuing for pending RFC s
be inmplenmented. A sinple way to see this is to examne a
typical LI STEN- CONNECT sequence. One side issues a LISTEN
the other a CONNECT. |If the LISTEN is issued before the RFC
conming fromthe renmbte CONNECT arrives, all is fine

However, due to the asynchronous nature of the net, we can
never guarantee that this sequence of events will occur. |If
calls are not queued, and the RFC cones in before the LI STEN
is issued, it will be refused; if it arrives later, it wll
be accepted. Thus we have an extrenely anbi guous situation

Unl ess one has infinite queue space, it is desirable that
some mechani sm for purging the queues of old RFC s which the
user never bothered to exam ne. An obvious but informa
method is to note the time when each RFC is entered into the
gueue, and then periodically refuse all RFC s which have
exceeded sone arbitrary tinme limt. Another thought, which
probably should be included within the context of any
scheme, is for the NCP to send a CLS on all outstanding
connections or pending calls when a user |ogs out or blows

up.

The schenme which is utilized in this description may seem at
first blush to be non-intuitive; but we feel it is nore
realistic than other proposals. Basically, when a CONNECT
is issued, the NCP assunes that this socket wi shes to talk
to the specified foreign socket and to that socket only. It
therefore purges fromthe pending call queue all non-

mat ching RFC s by sending back CLS's. Simlarly, when the
connection is in the RFC-SEND state (a CONNECT has been

i ssued), all non-matching RFC s are refused. |If a LISTEN
ACCEPT or LISTEN- CLOSE sequence is executed, the renai nder

Newkirk, et al. [Page 12]

RFC 55

B

Newki r

Prot ot ypi cal |nplenentation of NCP June 1970

of the pending calls are not renpoved fromthe queue, in the
expectation that the user may wi sh to accept these requests
in the future

Al t hough the latter method may seemto be arbitrary and/or
unnecessarily restrictive, we have not yet concocted a
scenari o which woul d be prohibited by this nethod, assum ng
that we are dealing with a conpetent programmer (i.e., one
who is wary of race conditions and the asynchronous nature
of the net). O course whatever scheme or schemes a
particul ar site chooses is highly inplenentati on dependent;
we suggest that sone provision for the queuing of RFC s be
provided for a period of tinme at |east of the order of

magni tude that they are retained in the CONNECT-cl ear schene
menti oned above.

Fl ow Contro

Meani ngf ul data can only flow on a connection when it is fully
opened (i.e., two RFC s have been exchanged and cl osi ng has not
begun). W assunme that the NCP's have a buffer for receiving

i ncoming data and that there is sone neani ngful quantity which
they can advertise (on a per connection basis) indicating the size
nessage they can handle. W further assune that the sending side
regul ates its transm ssion according to the advertisenents of that
si ze.

VWhen a connection is opened, a cell (called 'Their Size') is set
to zero. The receive-side will decide how much space it can

al l ocate and send an ALL nessage specifying that space. The
send-side will increment 'Their Size' by the allocated space and
will then be able to send nessages of length I ess than or equal to
"Their Size' \Wen nessages are transmtted, the length of the
nmessage i s subtracted from’' Their Size'. Wen the receive-side

al l ocates nore buffer space (e.g. when a nessage is taken by the
user, thus freeing sone system buffer space), the nunber of bits
rel eased is sent to the send-side via an ALL nessage.

Thus, 'Their Size' is never allowed to becone negative and no
transm ssion can take place if 'Their Size' equals zero.

Notice that the | engths specified in ALL nessages are increnents
not the absolute size of the receiving buffer. This is
necessitated by the full duplex nature of the flow contro
protocol. The length field of the ALL nessage can be 32 bits |ong
(note: this is an unsigned integer), thus providing the facility

for essentially an infinite "bit sink", if that may ever be
desi red.
k, et al. [Page 13]

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

C. dosing

Just as two RFC' s are required to open a connection, two CLS s are
required to close a connection. C osing occurs under various

ci rcunst ances and serves several purposes. To sinplify the

anal ysis of race conditions, we distinguish four cases: aborting,
refusing, ternmination by receiver, termnation by sender

A user "aborts" a connection when he issues a CONNECT and then a
CLOSE before the CONNECT is acknowl edged. Typically a user wll
abort follow ng an extended wait for the acknow edgnent; his
system may al so abort for himif he bl ows up.

A user "refuses" a connection when he issues a LISTEN and, after
being notified of a prospective caller, issues a CLOSE. Any
requests for connection to a socket which is expecting a call from
a particul ar socket are al so refused.

After a connection is established, either side nay termnate. The
requi red sequence of events suggests that attenpts to CLOSE by the
recei ve-si de should be viewed as "requests" which are al ways
honored as soon as possible by the send-side. Any data which has
not yet been passed to the user, or which continues over the
network, is discarded. Requests to CLOSE by the send-side are
honored as soon as all data transm ssion is conplete.

1. Aborting
We may distinguish three cases:

a) In the sinplest case, we send an RFC followed | ater by a
CLS. The other side responds with a CLS and the attenpt
to connect ends.

b) The foreign process nmay accept the connection
concurrently with the local process aborting it. 1In this
case, the foreign process will believe the |ocal process
is term nating an open connection

c) The foreign process may refuse the connection
concurrently with the local process aborting it. In this
case, the foreign process will believe the |ocal process
is acknow edging its refusal

Newkirk, et al. [Page 14]

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

2. Refusing

After an RFC is received, the local host may respond with an
RFC or a CLS, or it may fail to respond. (The |ocal host
may have already sent its owmn RFC, etc.) If the |ocal host
sends a CLS, the local host is said to be "refusing" the
request for connection

We require that CLS commands be exchanged to cl ose a
connection, so it is necessary for the local host to

mai ntain the rendezvous table entry until an acknow edgi ng
CLS is returned.

3. Term nating by the Sender

VWhen the user on the send side issues a CLOSE system cal |
his NCP nmust accept it imrediately, but may not send out a
CLS command until all the data in the local buffers has been
passed to the foreign host. It is thus necessary to test
for both 'buffer-enpty’ and

" RFNMt r ecei ved’ before sending the CLS command. As usual
the CLS nust be acknow edged before the entry may be
del et ed.

4. Term nating by the Receiver

When the user on the receive side issues a CLOSE system
call, his NCP accepts and sends the CLS comand i mredi ately.
Data may still arrive, however, and this data should be

di scarded. The send side, upon receiving the CLS, should

i Mmediately term nate the data fl ow

VIl. Connection Status

An excel | ent nechani sm for describing the sequence of events required
to establish and termnate a connection involves a state diagram W
may assune that each socket can be associated with a state nmachi ne,
and that this state nachine nay, at any tinme, be in one of ten

possi bl e states. In any state, certain network events cause the
connection status to enter another state; other events are ignored;
still others are error. A transition may also involve the | ocal NCP

perform ng sone action. Figure 7.1 depicts the state machi ne.
Crcles [now boxes: Ed] represent states (described below); arrows
show | egal transitions between states. The |abels on the arrows
identify the event which caused them (note that CLOSE is a system
call, CLSis a control conmmand). Phrases after slashes denote the
action which should be perforned while traveling over that arrow.
The arrow | abeled '[EJRFC (found between states 0 and 1) represents

Newkirk, et al. [Page 15]

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

the condition that whenever a connection enters the CLOSED state, the
pendi ng call queue for that connection is checked [Oiginal was
backwards "E': Ed.]

If any pending calls exist in the queue, the connection noves to the
PENDI NG state. If an RFC is received for a socket in the CLOSED
state, it is also noved along this path to the PENDI NG state. Events
and the actions they cause are described in sections VIII and I X

bel ow. Descriptions of the ten states foll ow

(0) CLOSED

The | ocal socket is not attached to any port and no user has
requested a connection with it. (The table entry is non-
exi stent).

(1) PENDI NG CALL

The socket is not attached to any port but one or nore
requests for connection have been received. A LISTEN system
call will be satisfied imMmediately by the first entry in the
pendi ng call queue for a matching request; all other pending
calls are del eted.

(2) LI STENI NG

The socket is attached to a port. W are waiting for a user
to request connection with this socket.

(3) RFC-RCVD

We are listening and an RFC was received. The |ocal user has
been i nforned of the pending call. He nust respond with
either a CLOSE or an ACCEPT.

(4) ABORT

We have notified the user that his LISTEN has been satisfied
but he has not yet responded; if during this tine the foreign
user aborts the connection by sending a CLS, we send a CLS to
acknow edge the abort and mark the fact with this state. When
the user accepts or refuses the call, we can informhimthe
connection has been prematurely term nated.

Newkirk, et al. [Page 16]

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

(5) RFC- SENT
This state i s entered when:

a) The local user has attached this socket to a port by
i ssuing a CONNECT.

b) An RFC has been sent, and

c) No reply has been received.

VWhen the user issues a CONNECT the pending call queue is
sear ched.

If a matching RFC is not found, the queue is deleted and this
state is entered. As new RFC s arrive they are conpared with

our user’s request. |If they do not match, the RFCis
i medi ately refused. |If the RFC matches, it conpletes the
initialization process and the connection enters the OPEN
state.

(6) OPEN

RFC s have been exchanged and the connection is securely
established. Transm ssion may begin follow ng receipt of an
ALL command fromthe receive side, and will then proceed
subject to flow control

(7) CLS-WAIT

After the local user has executed a CLOSE, and we have issued
a CLS, we nust wait for an acknow edging CLS before the
connection can be conpletely cl osed. If the appropriate CLS
has not already been received, this state is entered.

(8) DATA-WAIT

If we are on the send side and the | ocal user executes a CLOSE
systemcall, a CLS cannot be issued if our data buffer is not
enpty or if a RFNMfor the |ast data nmessage i s outstanding.
The connection enters this state to wait for these conditions
to be fulfilled. Upon conpletion and acknow edgenent of
output a CLS may be issued and the connection enters the CLS-
WAIT state, waiting for the acknow edgi ng CLS. If a CLS
arrives while in the DATA-WAIT state we clear our buffer (the
CLS canme froma receive socket, indicating it is no |onger
interested in our data) and enter the RFNMWAIT state to wait
for the network to clear.

Newkirk, et al. [Page 17]

RFC 55

(9)

Newki r k,

Prot ot ypi cal |nplenentation of NCP June 1970

RFNM VWAL T

If we are on the send side and a CLS conmand arrives, we
cannot issue an acknow edging CLS if we have not received the
RFNM for our |ast data nessage. W enter this state to await
the RFNM and cease all further data transm ssion. Wen the
RFNM cones in, a CLS may then be issued, and the connection
will be closed.

et al. [Page 18]

June 1970

| mpl ement ati on of NCP

Pr ot ot ypi ca

RFC 55

m w i ————————————— > WMW ||||| +
' n— '
+ - - q_ —_———— < L,
Z
| a8 | p2 - g
> m 39! g ———— =
v I <% o N
Lo 5T] a 3 — m"
Lo Wh - P . > !
L ——> o2 \ . < _ .
W@ L & LT T T _ ww ———t
m"y" s 4||_ o J A — > m" !
P 3 z! 5T m"m" m" 7|||| .o
- R 212 md" £5. |
v 3 o mm" VP am" vV
L, B G | —— ey T
AS_
o m +f__> — A
85 ol s am— > BT |2 g8 e =S
o~ > g~ 4 M%) o} 2
o 5 t——> 233 o
r ___ 125 ; 0o S N
||||| .E_ 1 — ' _——— 3 c n A N N
! Yoo 53 ! 0! m% mie k¥ Lo
! o tm < 23 85! Lo
! cE. B ! ol de ! Lo
I T 1 &d_ [1 1
o °5! ———— mm" o Lo
& go ® 3 _ 19
> - > ! w ||||||| e o !
mm" mm+|lv B H Do |
o < oL |—Tm—————————— 0.
o > B 5%

[Page 19]

Figure 7.1
Connection State Di agram

et al.

Newki r k,

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

VIII. Agorithms for the Input Interpreter

The following is a concise description of the NCP's responses to

i ncom ng network commands. CS always indicates Connection State.
Note, CLOSE is a systemcall executed by the |ocal user process, and
CLS is a network conmmand.

NOP
Di scard.
RFC (RTS or STR)

If no entry exists, create one with status = PENDI NG CALL, and
gueue the nessage.

If CS = LISTENING, then queue the entry, enter the RFC-RCVD state,
and informthe user of the request.

If CS = RFC-SENT but the new RFC does not nmatch the request,
refuse the RFC.

In all other cases, check the RFC for a match. |f none exists,
gqueue the RFC. |If the RFC matches, then if:

CS = RFC-SENT, we enter the OPEN state.
CS = CLCSE-WAIT, the RFC is ignored.
otherwi se, the request is illegal in all states which indicate

it has already been received (these states are 1,3,4,6,8,9).

In any case, if processing the RFC causes an overfl ow condition
(resources are exhausted), refuse the connection (send a CLS).

CLS
The pending call queue is searched. |If the CLS doesn’t match the
current request, but does match some other request, then delete
that request and issue a CLS. |If there is no match, the CLS is
i gnor ed.

If the CLS natches the current request, and CS =

PENDI NG, then delete the current request. |f the request queue
is enmpty, delete the entry; otherw se, |eave the entry
al one.

Newkirk, et al. [Page 20]

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

RFC-RCVD, |Issue a CLS and enter the ABORT state.
ABCRT, ignore.

RFC- SENT, issue a CLS. |If the pending call queue is enpty
delete the entry, else enter the PENDI NG state.

OPEN, If we are on the receive side, response is identical to
the response for RFC-SENT. |If we are on the send side,
clear the data queue, and if a RFNMis still pending enter
the RFNMWAIT state. O herwi se response is identical to the
response for RFC- SENT.

CLS-WAIT, Issue a CLS and if the pending call queue is enmpty,
del ete the entry, otherwi se CS = PENDI NG

DATA-WAI T, clear the data queue and enter the RFNMWAIT state.
A mat ching CLS cannot occur in the CLOSED or LI STENI NG
states.

ERR

Errors are queued for later attention by system progranmers, and
are considered to be a systemerror in the host that originated
the exchange. (Not associated with any state).

ECO

The op code is changed to ERP and retransmitted (Not associ ated
with any state).

ERP

Upon recei pt of an ERP, the system passes the text of the command
back to the process which issued the ECO

INR, INS

These conmmands are enabled only in the OPEN state. Upon receiving
an | NTERRUPT, the system causes an event to be sent to the

associ ated process. An INTERRUPT is ignored in the CLS-WAIT,
DATA-WAI T, and RFNMVWAI T states. 1In any other state it is an
error.

Newkirk, et al. [Page 21]

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

ALL

ALLOCATE is valid only in the OPEN state, and rmay be sent only to
a send socket. The NCP increments the 'Their Size field in the
associ ated rendezvous table entry by the size specified in the
ALLCCATE conmand.

In the CLS-WAIT and DATA-WAI T states this comuand is ignored; in
any other state it is an error.

Dat a- RFNM

If in the OPEN state, mark the Flow Control Status field in the
appropriate rendezvous table entry as RFNM RECVD, and send nore
data if required.

If in the DATA-WAIT state, maintenance the Flow Control Status.
If the data queue is enpty issue a CLS and enter the CLS-WAIT
state; otherwi se, transmt the next nessage.

If in the RFNMWAIT state, maintenance the Fl ow Control Status and
issue a CLS. If the Pending Call queue is enpty delete the
rendezvous table entry, otherwi se CS = PENDI NG

A Data-RFNMis an error in all other states.

IX. Algorithns for the System Call Interpreter

Each System Call is discussed, giving the state changes it may
effect:

CONNECT

If there is no entry, create one, issue an RFC, and enter the
RFC- SENT st at e.

If CS = PENDI NG, search the queue and reject all non-natching
requests. If no match is found i ssue an RFC and enter the
RFC- SENT state. |If a match is found, issue an RFC and enter

the OPEN state. Transni ssion can comrence as soon as buffer
space has been all ocated.

In any other state this comand is illegal.

LI STEN

If an entry doesn't exist, create one, and enter the LI STENI NG
state.

Newkirk, et al. [Page 22]

RFC 55 Prot ot ypi cal |nplenentation of NCP June 1970

If CS = PENDING informthe user and enter the RFC-RCVD state.
In any other state this command is illegal.

ACCEPT

If CS = RFC-RCVD, then issue an RFC and enter the OPEN state.
Data transm ssi on can occur as soon as buffer space is
al | ocat ed.

If CS = ABORT, informthe user of the premature term nation of the
connection. If the pending call queue is enpty, delete the
entry; otherw se, enter the PENDI NG state.

Thi s command cannot be legally executed in any other state.

CLOSE
If CS =

LI STENING, then delete the entry.

RFC- RCVD, then issue a CLS and enter the CLS-WAIT state.

ABORT, informthe user of the premature termination of the
connection. |If the pending call queue is enpty, delete the
entry; otherw se, enter the PENDI NG state.

RFC- SENT, then issue a CLS and enter the CLS-WAIT state.

OPEN, if we are on the send side, and the data queue is not enpty,
or if a Data-RFNMis still outstanding, enter the DATA-WAI T
state; otherwi se, issue a CLS and enter the CLS-WAIT state.

CLS-WAIT, issuing a CLOSE in this state is a USER ERROR

DATA-WAIT, issuing a CLOSE in this state is also an illegal
sequence.

RFNM WAI T, ignore the CLOSE

A valid CLOSE cannot be issued if an entry does not exist, or if a
socket is in the PENDI NG state.

[This RFC was put into machine readable formfor entry]
[into the online RFC archives by Anthony Anderberg 5/00]

Newkirk, et al. [Page 23]

