
Network Working Group A. Bhushan
Request for Comments: 310 MIT-MAC
NIC: 9261 April 3, 1972

 Another Look At Data And File Transfer Protocols

 Our experience with ad hoc techniques of data and file transfer over
 the ARPANET together with a better knowledge of terminal IMP (TIP)
 capabilities and Datacomputer requirements has indicated to us that
 the Data Transfer Protocol (DTP) (see ref 1) and the File Transfer
 Protocol (FTP) (see ref 2) could undergo revision. Our effort in
 implementing DTP and FTP has revealed areas in which the protocols
 could be simplified without degrading their usefulness.

 This paper suggests some specific changes in DTP and FTP that should
 make them more useful and/or simplify implementation. The attempt
 here is to stimulate thinking so that we may come up with a better
 protocol at the forthcoming Data and File Transfer Workshop (see ref
 3).

Experience to Date

 A number of ad hoc techniques of transmitting data and files across
 the ARPANET already exist. Perhaps, the most versatile of these
 existing methods is the TENEX "CPYNET" system. The "CPYNET" system
 uses an ad hoc or interim file transfer protocol developed by Ray
 Tomlinson and others at BBN to transmit files among the TENEX systems
 on the ARPANET. [Private Communication with Bill Crowther, BBN.]

 In CPYNET, the using process goes through the Initial Connection
 Protocol (ICP) to server socket 7, establishing a full-duplex
 connection with an 8-bit byte size. Control information, including
 user name, password, command (read, write, or append), file name, and
 byte size for the data connection is transmitted from the using
 process to the serving process. The original full-duplex connection
 is then closed, and a new full-duplex connection is established using
 the original socket numbers but with possibly a different byte size.
 The file is now transmitted on this newly established connection.
 The end-of-file is indicated by closing the connection (the mode of
 transfer is thus similar to DTP "indefinite bit-stream").

 CPYNET has been used quite extensively for transfer of TENEX system
 files. Because data is not reformatted, and because the optimum
 connection byte size may be used for data transfer, CPYNET is quite
 efficient. The PDP-10 (and there are quite a lot in the ARPANET)
 works more efficiently with a 36 bit byte size which minimizes
 packing and unpacking of data, and increases effective I/O speed

Bhushan [Page 1]

RFC 310 Another Look At Data And FTP April 1972

 (bit rate is 36 times the I/O word transfer rate instead of 8 times).
 The closing and reopening of connections does increase overhead but
 this is small in TENEX when compared with inefficiency introduced in
 data transfer using an inappropriate byte size.

 Data and file transfer has been achieved at other sites by a simple
 modification of the user TELNET to enable the transfer of ASCII files
 as terminal I/O data streams within the constraints of the TELNET
 protocol. An example of this approach is the use of the "send.file"
 and "script" features within the MIT-DMCG user-TELNET. Send.file
 enables the PDP-10 (DMCG) user to transmit his local ASCII files to a
 receiving process such as an editor at the remote host via a TELNET
 connection. The program allows for a variable buffer size for
 transmission, and measures the transfer rate of information bits.
 Script enables a user to receive an ASCII file from a remote host by
 essentially printing it out (the terminal output stream is directed
 to a local file).

 Our initial experience with the use of send.file program has affirmed
 the almost linear relationship between buffer size and transmission
 rate (inverse relationship to processing cost) until the limits
 imposed by allocates, NCP sending buffers, the IMP message size, or
 the receiving process speed, are reached. Our experiments have
 indicated that TELNET processes in which the receiving process
 "looks" at each character are slow and expensive. The transfer rate
 to most TELNET receiving processes ranges between 200 and 2,000 bits
 per second. The NCP-to-NCP transmission rate however is an order-
 of-magnitude higher (2,000 to 20,000 bits per second).

 A variation of the above method which avoids the character-by-
 character processing of TELNET, is transmitting files via auxiliary
 connections (other than the TELNET connections) with or without the
 use of DTP. We are collecting data on response times, connect times
 and transfer speeds employing different transfer and buffering
 strategies.

TIP Capabilities and TIP Users

 It appears now that TIPs will not support DTP in its present form.
 The more elaborate TIPs with magnetic tape units will however,
 support the DTP block mode (descriptor and counts) [Private
 Communication with Bill Crowther, BBN.] It is inconvenient, at the
 very least, for a TIP user to use services based on DTP (such as
 remote job service, file transfer, mail, and Datacomputer). The TIP
 philosophy is that "the computational load and storage should be in
 the hosts or in the terminals and not in the terminal processor."
 (See ref 4.) To be consistent with this philosophy the protocols
 should be simple and convenient to use from the user viewpoint.

Bhushan [Page 2]

RFC 310 Another Look At Data And FTP April 1972

 Ideally, TIP users would like to connect (using the initial
 connection protocol) to the advertised service socket (including
 logger socket1) in the remote host and type their commands in a
 uniform, easy to use, format. Allowing the use of ASCII within DTP
 would facilitate this. (An alternate approach is extending TELNET to
 include DTP modes, particularly the indefinite bit-stream mode.)
 Another step would be to use printable ASCII strings instead of
 numeric codes for commands and arguments in user-level protocols.
 Use of standard file system commands (with uniform interpretation and
 format) will lead towards the existence of a Network Virtual File
 System, much in the same line as Network Virtual Terminal defined in
 TELNET protocol.

 The transparent mode in DTP was specifically included to allow
 convenient use by TIPs. Since the TIPs will not support transparent
 mode, it makes sense to do away with it. This change would lead to a
 simplier DTP which allows transfer in Block mode, and the indefinite
 bit-stream mode. (The suggested default which would be acceptable to
 all including the TIPs, as it involves no overhead.). We can then
 make optional or do away with the now mandatory modes available
 handshake. The using process can indicate if it also accepts the
 block mode for transfer. (Either by modes available transaction, or
 by an argument in the command string). The server should accept
 input in DTP mode as well as ASCII. These fundamental changes in DTP
 will make communication with TIPs a lot easier.

 TIP users who do not have a mediating user-FTP process and a file
 system in their TIP, would probably want to transfer files from input
 devices or to output devices such as line printer, card reader or
 punch, or magnetic tape. These devices "listen" on specific "ports"
 or sockets on a TIP. It would be desirable to modify FTP to allow
 sending data to a specified socket in a specified mode and type. TIP
 users would then find it convenient to obtain listing of their files
 on a high-speed line printer, input their files from a card reader,
 and keep back-up on cards or magnetic tapes.

Datacomputer Requirements

 We have been having a continuing dialogue with CCA personnel (Dick
 Winter in particular), regarding CCA’s plans for data and file
 transfer on the Datacomputer, and their specific requirements. Dick

Bhushan [Page 3]

RFC 310 Another Look At Data And FTP April 1972

 Winter will be speaking on this subject at the Data and File Transfer
 Workshop. This is an attempt to summarize the main points of our
 discussion, and their implication for data and file transfer.

 First, CCA appears quite flexible at this stage regarding the manner
 in which Datacomputer is to be used. Even the Datalanguage (see ref
 5) is flexible and can undergo change. However, CCA would like some
 changes in the current file transfer protocol and its envisioned use.

 Ideally, CCA would like to see a single full-duplex connection for
 transfer of all control information which is in Datalanguage. This
 information is generated by a process, which may be a user at a
 console, or a user program. Ability to inter-mix data and control
 information would be definite advantage. The Datacomputer would
 probably support DTP and allow use of TELNET-ASCII.

 Data may alternatively be sent to or received from a separate user
 defined port (which may be a socket). It would be advantageous if a
 user could instruct the Datacomputer to transfer data to or from a
 file in remote system via FTP (assuming a server-FTP in remote
 system). CCA is currently not committed to this idea, but is
 considering it.

 In the CCA view, the Datacomputer represents a data management
 facility with Datalanguage as its command language. From the
 viewpoint of Datacomputer as an FTP server, FTP commands be a subset
 of the Datalanguage. It is therefore desirable that FTP commands be
 printable ASCII strings instead of numeric codes.

Remote Job Service Requirements

 Initially two separate protocols were proposed for Remote Job Service
 (RJS). One was the NETRJS protocol (see ref 6) for remote job
 service from large Hosts and the other was the NETRJT Protocol (see
 ref 7) for remote job service from TIPs (and other mini-Hosts). The
 current thinking however, is to move towards a single RJS with "as
 much overlap as possible between the methods of dealing with these
 two user populations." (See ref 8.) Perhaps inclusion of ASCII
 within DTP would make this feasible.

 The existing proposals for DTP and FTP have been considered somewhat
 less than optimal for RJS needs. Specific drawbacks of DTP and FTP
 have been pointed out in the handling of data structures and data
 types. Most of these problems seem relatively easy to resolve. It
 would involve making Network ASCII the default data type (acceptable
 to all hosts) and providing a way in FTP for proposing and rejecting
 alternative data types and data structures.

Bhushan [Page 4]

RFC 310 Another Look At Data And FTP April 1972

 Another inadequacy of FTP (which pertains to other applications as
 well) is in the area of error recovery. Currently there is no way to
 "restart" transmission if an element in the transmission path fails.
 One solution suggested has involved the use of sequence number (see
 ref 9). A number of other solutions exist to the problem. These are
 discussed later in the section ’FTP Reconsidered’.

DTP Reconsidered

 The aspiration for DTP was that it would provide a uniform mechanism
 for separating information into its logical structure (records,
 files, and control), and rudimentary error control. The evaluation
 of DTP and its modes should be on the basis of speed (real-time),
 efficiency (processing cost), reliability (error control and
 recovery), and the ease of its use.

 It is now clear that unless DTP was significantly revised, the TIP
 and other mini-Host user would find it difficult to use services
 based on use of DTP. Allowing the use of ASCII within DTP, and using
 defaults instead of the "modes available" handshake, would alleviate
 this problem, but compromise the DTP error control function. Whether
 error control belongs at the DTP level or at a higher level needs
 further discussion.

 DTP, in its present form, does not provide sufficient error control
 and recovery procedures. To make DTP more useful, either it should
 be simplified (at least from a user viewpoint), or it should be
 extended to include better error control with built in error
 recovery, and possible handling of data types and data structures.

 In the simplified version, DTP would only be a format procedure in
 which data could be transmitted as ASCII (no format) with escape to
 an 8-bit transparent (indefinite bit-stream) mode or in data blocks
 (descriptor and count mode). The choice of which mode to use, and
 all error control, error recovery, and aborts would be handled by the
 higher-level protocol.

 The utility of the block mode in data transfer has been questioned by
 many who suggest that it puts a large overhead for providing the
 simple function of indicating end-of-file, and separating data and
 control information. The alternative data transfer strategy is to
 use separate connections for control and data information and/or
 close and reopen connections. This causes an overhead of a different
 sort, but has the advantage that the byte size for connection may be
 chosen to optimize data transfer.

Bhushan [Page 5]

RFC 310 Another Look At Data And FTP April 1972

 A drawback of present DTP is that it is geared to transfer of 8-bit
 bytes. Perhaps a good strategy for data transfer would be to allow
 sending data in an agreed upon transfer mode. The transfer mode
 chosen should determine the byte size for connection, the data type
 chosen, and any data structure information. This mode may be chosen
 at the DTP level, or at the using protocol level.

FTP Reconsidered

 The aspiration for FTP was that it would facilitate file management
 and file transfer in the ARPANET Virtual File System. FTP success
 should be evaluated by the extent of its use, convenience and
 efficiency in its use, and its suitability for other applications
 such as Datacomputer, RJS, and Mail.

 Wide use of FTP would be possible if a user could use an FTP-server
 directly without the help of a mediating DTP/FTP-User process. This
 would require that commands be ASCII strings instead of numeric
 codes, and that ASCII characters be an acceptable input. Such a
 change in FTP would greatly increase its acceptance at the cost of
 making the server-implementation more complex. Combined
 implementation, however, would be simplified as the mediating FTP-
 user process (if used at all) would be simplified.

 Efficiency of transfer is an important factor affecting the
 usefulness of FTP. File transfer may be very expensive (in terms of
 CPU time) and slow (in real-time) if an inappropriate transfer
 strategy is used (e.g., inappropriate byte size). Every attempt
 should be made to optimize transfer of data. A good strategy may be
 to allow transfer of files over a separate connection or close and
 reopen connections (using perhaps a different byte size). A problem
 with indicating end-of-file by closing connection is that is
 uncertain if the connection was closed because end-of-file was
 reached, or because of a failure or error condition. Perhaps "NCP
 interrupts" could be used in addition to a "close" to indicate
 definite end-of-file condition.

 A drawback in the present FTP strategy is that it has no restart
 procedure. One proposal for restart has involved the use of the
 sequence numbers used in DTP block mode. Our feeling is that perhaps
 restart may best be accomplished by incorporating a command in FTP
 that allows a user to specify the place in file where to begin
 retransmission. A possible solution is to use the "SPF" command
 implemented in the UCSB Simple-Minded File System (see ref 10).
 Another solution may be to have optional arguments for retrieve and
 store commands that allow selective retrieval and replacement
 (specified by bits, character, words, lines, pages or segments).

Bhushan [Page 6]

RFC 310 Another Look At Data And FTP April 1972

 Another useful addition to FTP would be a protocol procedure between
 user and server to agree to data type, data structure, and mode for
 file transfer. This would enable the user and server to reach the
 optimum file transfer strategy acceptable to both.

Concluding Remarks

 We have discussed in this paper what we see as the major problem
 areas in the present DTP and FTP specifications. We hope this
 discussion will stimulate thinking, so that we can arrive at revised
 specifications for DTP and FTP that satisfy all the diverse needs in
 an elegant manner.

REFERENCES

 1. The Data Transfer Protocol, Bhushan, et al, NWG/RFC #264, NIC
 #7212.

 2. The File Transfer Protocol, Bhushan, et al, NWG/RFC #265, NIC
 #7213.

 3. Data and File Transfer Workshop Announcement, A. Bhushan,
 NWG/RFC #309, NIC #9260.

 4. The Terminal IMP for the ARPA Compuer Network, Ornstein, et al,
 SJCC, 1972, NIC #8218.

 5. Datalanguage, Computer Operation of America, Datacomputer
 Project, Working Paper No.3, October 29, 1971, NIC #8208.

 6. Interim NETRJS Specifications, R. T. Braden, NWG/RFC #189, NIC
 #7133.

 7. NETRJT - - Remote Job Service Protocol for TIPs, R. T. Braden,
 NWG/RFC #283, NIC #8165.

 8. RJS Protocol Meeting Notes, 25 February 1972, A. McKenzie
 (limited distribution).

 9. A Suggested Addition to File Transfer Protocol, A. McKenzie,
 NWG/RFC #281, NIC #8163.

 10. Network Specifications for UCSB’s Simple-Minded Files System,
 James E. White, NWG/RFC #122, NIC #5834

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Hélène Morin, Viagénie 10/99]

Bhushan [Page 7]

