Network Working Group	Jim Hansen
Request for Comment \#401	Center for Advanced
NIC \#11923	Computation
Category: D.6	University of Illinois
Updates: RFC \#387	October 23,1972
Obsoletes: None	

```
Conversion of NGP-O Coordinates to Device
    Specific Coordinates
```

Conversion of NGP-0 coordinates to floating point PDP-10 coordinates was discussed in RFC \#387. In general, however, it is undesirable to convert NGP coordinates to floating point coordinates because real devices require integer addressing. To this end, a means is described to convert NGP coordi- nates to integer coordinates in the range zero to M, where M is the maximum address of the device screen on a machine using 2's complement arithmetic. It would not, however, be difficult to modify this algorithm to operate on machines using one's complement or sign-magnitude arithmetic.

First consider the NGP coordinate format:

```
\(\left\lvert\, \begin{gathered}+--+----------+ \\ +--+-----------+ \\ n\end{gathered}\right.\)
    \(s\) ^ FRACTION
i
9
n
```

Where the sign occupies the most significant bit of the coordinate followed by bits of numerical information (initial implementation of NGP requires $N=15$). Negative numbers are represented by 2's complement. Conversion to device coordinates is accomplished by:

$$
D=S * f+S
$$

Where D =>integer device coordinate
S =>scaling factor (typically M/2)
f =>NGP fractional coordinate

Let us rewrite this as:

$$
D=S *\left(2^{n} * f\right) / 2^{n}+S
$$

Now factor S into two terms:

> I
$S=Q * 2$
Where Q is an odd integer and I is an integer.

When:

D	$=Q * 2^{\mathrm{I}} \mathrm{Q}^{\mathrm{n}}\left(2^{\star} \mathrm{f}\right) / 2^{\mathrm{n}}+\mathrm{S}$
	$=Q * 2^{\mathrm{I}-\mathrm{n}} \star\left(2^{\mathrm{n}} \star \mathrm{f}\right)+\mathrm{S}$

n
The factor (2 *f) is represented in 2^{\prime} s complement form simply by extending the sign bit of f into the upper portion of the computer word, If $Q=1$ (as it would be with many devices), it can be ignored. If $Q><1$, we may console ourselves that an integer multiply is faster on most machines than a floating point multiply. In fact, on a PDP-10, this multiply can usually be performed with no access to memory since Q is usually small.

$$
I-n
$$

We are now left with the 2 factor. This can be accomplished with an arithmetic shift left by (I-n) or an arithmetic shift right by (n-I) as is appropriate. The offset factor, S, may now be added using an integer add.

The procedure for converting NGP coordinates to integer device coordinates is then:

```
    1. move coordinate to a register and extend sign
    2. integer multiply by Q (if necessary)
    3. arithmetic shift left by (I-n)
    4. integer add S
```

This procedure would generally be much faster than:

```
    1. move coordinate to register and extend sign
    2. float fractional coordinate
    3. floating point multiply
    4. floating point add
    5. conversion to fixed point
    [ This RFC was put into machine readable form for entry ]
    [ into the online RFC archives by BBN Corp. under the ]
    [ direction of Alex McKenzie.
    1/97 ]
```

