
Network Working Group R. Braden
Request for Comment: 468 UCLA/CCN
NIC: 14742 March 8, 1973

 FTP DATA COMPRESSION

I. INTRODUCTION

APOLOGIA

 Major design objectives of the proposed File Transfer Protocol (FTP)
 are reliability and efficiency for transmission of large files.
 Efficiency has two faces: efficiency of the host CPU’s, and efficient
 use of the Network bandwidth. Block mode is intended to minimize CPU
 overhead for bandwidth efficiency, there is a mode called "HASP" in
 RFC 454. The "HASP" mode of FTP is really transmission with data
 compression, i.e., an encoding scheme to reduce the information
 redundancy in the messages.

 RFC 454 contains no explicit definition of the "HASP" or compressed
 mode, but instead notes that a future RFC by yours truly will define
 the mode. Students of FTP may find this scarcely credible, but you
 are now reading the promised RFC. It turned out to be much farther
 in the future than any of us expected. Mea Culpa.

GENERAL CONSIDERATIONS

 In the early years of the Network, its major uses have been remote
 terminal interactions and the small-to-medium-sized file transmission
 typical of remote job entry. As facilities such as the Illiac IV and
 the Data Machine become operational on the Network, and the Network
 community begins to include users with heavy data transmission
 requirements, large file transmission will become a major mode of
 Network use. For example, one user of CCN expects to send 2 x 10**8
 bits of data _each_ _day_ over the Network.

 Local byte compression of the type proposed here is particular
 effective for reducing the size of "printer" files such as those
 transmitted under the Network RJE protocol. Experience with CCN’s
 RJS service has shown a typical compression of print files by a
 factor of between two and three. Since FTP was intended to contain
 the data transfer part of Network RJE protocol as a subset, it is
 appropriate to include a print file compression mechanism in FTP.
 These considerations led the FTP committee to include a compressed
 mode within FTP.

Braden [Page 1]

RFC 468 FTP Data Compression March 1973

 The two main arguments for data compression are economics and
 convenience (usability). Consider first economics, which is
 essentially a trade-off between CPU time and transmission costs. Of
 course, as long as Network use is a free commodity, the economics of
 data compression are all bad. That happy state won’t last forever.
 What does data compression cost?

 Let us consider only simple linear compression schemes, such as the
 one proposed here. By linear, I mean that the CPU time to examine a
 source record is proportional to number of bytes in the record. A
 simple linear scheme could detect repeated single characters, for
 example. One could imagine quadratic schemes, which detected
 repeated substrings; but except for possible special circumstance
 where the source stings have some structure known to the compression
 algorithm, the CPU economics don’t favor quadratic compression.

 Assuming a reasonable figure for large-scale CPU costs in the
 generation of CCN’s 360/91, we concluded that an upper bound on CPU
 costs for total compression and decompression would be 5 cents per
 megabit; this is based on very loose coding of a simple linear
 algorithm. This may be compared with the projected Network
 transmission costs of over 30 cents per megabit (possibly a lot
 over).

 Thus, the CPU time to conserve bandwidth costs significantly less
 than the bandwidth saved. Both CPU costs and bandwidth costs are
 trending downward, but it seems exceedingly unlikely that the ratio
 of CPU cost to bandwidth cost for linear compression will reverse in
 the next few years. On the other hand, this calculation clearly
 discourages one from using quadratic compression.

WHY HASP

 CCN’s batch remote job entry protocol NETRJS (see RFC #189, July 15,
 1971) was designed to include two data transfer modes, truncated and
 compressed. The NETRJS truncated mode is essentially identical to
 current FTP block mode record structure (except for minor bit format
 differences). The compressed mode of NETRJS uses an adaptation of
 the particular compression scheme which is incorporated in the
 "Multileaving protocol" of the binary synchronous rje support in
 IBM’s HASP system.

 Although it isn’t really necessary for the purpose of defining a
 compression scheme in FTP, I have included an appendix summarizing
 very briefly the nature of HASP and its rje package. That appendix
 may be considered cultural enrichment for those in the Network
 Community who have been denied the privilege of being an IBM
 customer. After all, I know a lot of HASP experts who never heard of

Braden [Page 2]

RFC 468 FTP Data Compression March 1973

 TENEX! More seriously, because HASP is widely used on IBM machines,
 the HASP compression scheme is also widely used. In designing
 NETRJS, we chose the HASP scheme of compression because of its
 ubiquity and plausibility.

 However, certain details of the HASP bit formats are inappropriate or
 sub-optimal for FTP. Therefore, our proposal for compressed mode of
 FTP is only an adaptation of the HASP compression scheme.

 It should be clear from Appendix A that the compression scheme of
 HASP, even if used literally, is a very minor and incidental part of
 that system. Although we ought to properly credit the intellectual
 origin of FTP’s compressed mode, it seems a little strange to call
 the compressed mode in FTP the "HASP mode". I trust this will be
 rectified by the forthcoming FTP meeting.

II. PROPOSED FTP COMPRESSED DATA MODE

 Byte size is B bits. Figures above boxes are field lengths in bits.

 n bytes of data
 /--------/\--------\
 1 B-1 / B B \
 +---+------+ +--------+ +--------+
Byte String: | 0 | n | | d |. . .| d |
 | | | | 1 | | n |
 +---+------+ +--------+ +--------+
 String of n data bytes d(1),...,d(n)
 Count n must be positive

 2 B-2 B
 +----+------+ +---------+
Replicated Byte: | 1 0| n | | d |
 +----+------+ +---------+
 String consisting of n replications of the data byte d

 2 B-2
 +----+------+
Filler String: | 1 1| n |
 +----+------+
 String of n filler bytes. The filler byte is a "space"
 character for ASCII or EBCDIC type, or a binary zero
 byte for Image or Local Byte Type.

 B B
 +----------+ +----------+
Control Escape Sequence: | 0......0 | | C | (see below)
 +----------+ +----------+

Braden [Page 3]

RFC 468 FTP Data Compression March 1973

 The control byte "C" which is the second byte of a control escape
 sequence is to have the same coding as the descriptor byte in Block
 Mode. This includes end-of-file and end-of-record indications. I
 will not specify this further because there is some question at
 present about the exact coding of the Block Mode descriptor byte.

 Following the example of APL*, we have let the meaning of the filler
 (blank or 0) be determined by the type: character (ASCII|EBCDIC) vs.
 binary (Image|Local Byte). If byte size is equal to the word size of
 the transmitting host, the compressed mode allows one to send sparse
 notices with reasonable efficiency.

 * Compare 1 (take) 0 1\‘A’ with 1 (take) 0 1\2

Braden [Page 4]

RFC 468 FTP Data Compression March 1973

APPENDIX A: HASP MULTILEAVING

 HASP (Houston Automatic Spooling Program) is a subsystem which
 essentially runs within OS/360 as a job but takes over the batch
 processing management functions from the operating system. That is,
 HASP handles spooling of card input and printer and punch output,
 queueing and scheduling of job execution, and the operator control
 interface. It is a tightly-written and efficient system for running
 a large and varied job load through a large-scale machine. The name
 results from the historical fact that HASP was originally by a local
 IBM group for one particular customer, NASA Houston.

 HASP has always been an anomaly in the IBM scheme of things. The
 system was written around 1965 by two programmers; the HASP group has
 probably averaged three programmers during most of its life. The
 leader of the group has been "Mr. HASP", Tom Simpson. The HASP
 system spread rapidly through (more or less) underground channels to
 many of the medium and large scale 360’s. At least once, only
 intense customer pressure prevented IBM from killing the HASP effort.
 HASP generated an astonishing emotional mystique among its users.
 The HASP sessions at SHARE Meetings were reminiscent of revival
 meetings. For years every SHARE Meeting has included HASP song
 sessions around the piano during the nightly open bar. HASP forms a
 fascinating chapter in the history of IBM’s large machine business.

 The core concepts in HASP are pseudo-devices, and the general
 technique of intercepting supervisor calls to augment operating
 system functions without changing the operating system itself. A
 generation of OS/360 system programmers learned these techniques from
 HASP. (These important techniques are hardly ever described in the
 literature, and "practical" programmers don’t read the literature
 anyway).

 When HASP starts up (in supervisor state), it overlays an instruction
 in the I/O Supervisor with a branch to its own code. A user program
 is written as if it were doing real I/O to card readers and printers.
 HASP intercepts and interprets these I/O operations to handle job I/O
 in a manner transparent to OS/360. It similarly intercepts and
 interprets operator console I/O.

 HASP includes batch remote job entry using binary synchronous
 communication. The HASP communication protocol and message formats
 use a scheme developed by Simpson’s group called "Multileaving
 Protocol". The HASP rje system, by far the best rje package IBM has
 produced, finally replaced two competitive IBM packages and has
 effectively become the IBM standard for rje. CCN’s RJS system not
 only adopted the Multileaving Protocol but essentially copied its
 binary synchronous communication line handler directly form HASP.

Braden [Page 5]

RFC 468 FTP Data Compression March 1973

 The Multileaving Protocol is described in the HASP manual(1) as the
 "fully synchronized, pseudo-simultaneous, bidirectional transmission
 of a variable number of data streams between two or more computers
 using binary synchronous communications facilities". It allows a
 remote batch terminal to operate a variable number of card readers
 and printers simultaneously at different speeds over one
 communication line. It is not surprising that HASP Multileaving
 contains in miniature many of the features of IMP-IMP Protocol and a
 little host-host protocol. Specifically, Multileaving includes the
 following general features:

 (1) "Conversational" transmission line protocol using transparency
 (DLE STX, etc.).

 (2) "Strong" error control and retransmission using a 16-bit CRC
 and a modulo-16 block sequence number.

 (3) Flow control for multiple streams in both directions. This
 includes the interchanging of matching control records
 ("RFC’s") to open a stream, and a set of flow control bits in
 each block. Each flow control bit is logically equivalent to
 an ALLOcate command for one "message" (buffer) for a
 particular stream.

 (4) Optional Special Control Information for remote devices. This
 includes printer carriage control, switching card reader
 hoppers, etc.

 (5) Multiplexing ("multileaving") multiple streams into a single
 block for transmission.

 (6) Marking end of file and ends of records within each stream.

 (7) Compressing transmitted text by encoding repeated blanks and
 repeated single characters.

Braden [Page 6]

RFC 468 FTP Data Compression March 1973

 Finally, we have reached the (only) aspect of HASP relevant to FTP:
 its compression scheme. HASP uses the following encoding:

 8
 +---------+
 End of Record: | 0 ... 0 |
 +---------+
 2 6 8 8
 +---+---------+ +-------+ +--------+
 Data String: |1 1| N | | d | ... | d |
 | | | | 1 | | N |
 +---+---------+ +-------+ +--------+
 3 5
 +---+--------+
 N Duplicate Blanks |100| N |
 +---+--------+
 3 5 8
 +---+---------+ +---------+
 N Replicated Characters D |101| N | | D |
 +---+---------+ +---------+

 HASP is concerned only with 8-bit bytes. However, there is a
 provision (which was never implemented) in the Multileaving Protocol
 to set the unit of the counts N as 1 byte, 2 bytes, or 4 bytes.

 Reference:

 (1) HASP II System Manual, IBM Corporation (February 26, 1971)

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Via Genie 4/00]

Braden [Page 7]

