
Network Working Group Richard Schantz
RFC # 671 BBN-TENEX
NIC # 31439 December 6, 1974

 A Note on Reconnection Protocol

INTRODUCTION

 This note documents the experience we have had in implementing a
 modified, experimental version of the Telnet reconnection protocol
 option within the context of the Resource Sharing Executive (RSEXEC).
 The reconnection protocol specifies a procedure for transforming a
 configuration from one in which the initiating process has
 connections to two correspondent processes, to one in which there is
 a direct connection between the correspondents. When the procedure is
 successfully completed, the initiating process is no longer in the
 communication path between the correspondents.

 Resource sharing computer networks and distributed computing will
 increasingly give rise to specialization by task among the computer
 installations. In such an environment, a "job" is the dynamically
 varying interconnection of a subset of these specialized modules.
 Connections are the "glue" in "bonding" the job together.
 Reconnection provides for a dynamically changing "bonding" structure.
 (For a more complete discussion of the utility of reconnection, see
 RFC 426).

 This document deals with reconnection in terms of its current ARPANET
 definition as a Telnet protocol option. The first section defines a
 modified reconnection protocol. The second section discusses general
 network implementation details, while the final section describes
 aspects of the TENEX/RSEXEC implementation.

 Familiarity with the new ARPANET Telnet protocol (RFC 495) is
 assumed.

I. PROTOCOL for RECONNECTING TELNET COMMUNICATION PATHS

 A process initiates the reconnection of two of its Telnet connections
 by sending (or requesting its "system" to send) the
 <IAC><DO><RECONNECT> Telnet command sequence over each of the two
 send connections. The process initiating the reconnection is
 attempting to cause the direct connection of the objects of the two
 Telnet connections. In this manner, the initiating process can remove
 itself from the communication path between Telnet objects.

Schantz [Page 1]

RFC 671 A Note on Reconnection Protocol December 1974

 The initiating process awaits positive responses to both reconnection
 requests before proceeding further with the reconnection. A
 reconnection request may be accepted by replying with the Telnet
 sequence <IAC><WILL><RECONNECT>. It may be rejected by sending the
 Telnet sequence <IAC><WONT><RECONNECT>. Rejection of both requests
 means normal communication may resume at once. Rejection of one
 request (but not the other) requires that the process agreeing to the
 reconnection be notified by sending it the Telnet sequence
 <IAC><DONT><RECONNECT> in response to its acceptance reply.

 After receiving positive responses to both requests, the initiating
 agent next selects the object of one of the Telnet connections for a
 passive role in the subsequent connection attempt. The other is
 designated as the active participant. The passive participant is to
 listen on a set of sockets, and the active participant is to send
 Request for Connections (RFCs) for those sockets. By designating
 roles, we are trying to reduce the probability of synchronization
 problems.

 The initiating process next enters into subnegotiation with the
 process designated as being passive. This subnegotiation involves
 sending the Telnet sequence <IAC> <SB> <RECONNECT> <PASSIVE>
 <NEWHOST> <NEWSOCKET1> <NEWSOCKET2> <NEWSOCKET3> <NEWSOCKET4> <IAC>
 <SE>. The <PASSIVE> parameter indicates that the recipient is to
 listen for RFCs from the socket pair denoted by <NEWHOST>
 <NEWSOCKET1-4>. The "NEWHOST" is one 8-bit byte designating the
 address of the host on which the active process (i.e., the one to
 reconnect to) resides. NEWSOCKET1-4 are four 8-bit bytes indicating
 the 32-bit send socket number of the Telnet pair from the active
 process. The <IAC><SE> fields terminate the subnegotiation
 parameters. The initiating agent awaits a response from the passive
 process before proceeding. The legal responses are:

 1) Telnet sequence <IAC><WONT>(RECONNECT>
 Meaning: The passive process has decided not to complete the
 reconnection, after having initially indicated willingness. This
 may be due to unexpected parameters during the subnegotiation
 (e.g., it refuses to connect to NEWHOST), or perhaps some error
 condition at the passive host.

 2) Telnet sequence <IAC><SE>
 Meaning: Positive acknowledgement of the subnegotiation
 sequence. The passive process has accepted the reconnection
 parameters and will proceed with reconnection.

Schantz [Page 2]

RFC 671 A Note on Reconnection Protocol December 1974

 If the reply was <WONT><RECONNECT>, the initiator is obliged to send
 the Telnet <IAC><DONT><RECONNECT> to the active participant, to
 cancel the outstanding reconnection request. A confirming
 <IAC><WONT><RECONNECT> should follow.

 The <IAC><SE> reply means that the passive participant has begun its
 connection shutdown, and will listen on the appropriate sockets. The
 initiator may now close its connections to the passive participant
 and supply the parameters to the active participant. This can be
 done with the assurance that it (the initiator) has done all it can
 to ensure that the passive process listens before the active process
 sends its RFCs. Failure to coordinate these actions may result in the
 failure of the reconnection, if, for example, the passive host does
 not queue unmatched RFCs. Persistence on the part of the active
 participant should be an integral part of the protocol, due to
 uncertainties of synchronization.

 The parameter list sent to the active participant is the Telnet
 sequence <IAC> <SB> <RECONNECT> <ACTIVE> <NEWHOST> <NEWSOCKET1>
 <NEWSOCKET2> <NEWSOCKET3> <NEWSOCKET4> <IAC> <SE>. The <ACTIVE>
 parameter indicates to the recipient that it is to send RFCs to the
 socket pair denoted by <NEWHOST><NEWSOCKET1-4>. The initiator again
 waits for a reply. The legal replies are:

 1) Telnet sequence <IAC><WONT><RECONNECT>
 Meaning: Process will not complete the reconnection (e.g., it
 couldn’t parse the parameter string).
 Possible action of initiator: Attempt to re-establish
 communication with the passive participant by sending RFCs for
 the sockets on which the passive participant is listening. This
 will succeed if the listener is willing to accept connections
 from either the host/socket specified by the reconnect
 parameters or the host/socket of the former connection. If it is
 successful in reestablishing the connection, the initiator could
 send the Telnet sequence <IAC><DONT><RECONNECT> to confirm that
 reconnection has been aborted.

 2) Telnet sequence <IAC><SE>
 Meaning: Positive confirmation of the reconnection
 subnegotiation. The active participant indicates with this reply
 that it will close the connections to the initiator and send the
 necessary RFCs to connect to the passive participant. The
 initiator may close the connections to the active participant,
 thereby removing itself from the communication path between the
 objects of the reconnection.

Schantz [Page 3]

RFC 671 A Note on Reconnection Protocol December 1974

DEFAULT CONDITIONS and RACES

 The default for this option is as for most other Telnet options: DONT
 and WONT. An initiator uses the <DONT><RECONNECT> Telnet sequence to
 return to the default state, while a participant uses
 <WONT><RECONNECT> to maintain or return to the default state. The
 reconnection state is only a transient one. When accepted by all
 parties, the reconnection state lasts only until the reconnection is
 completed. Upon completion, and without further interaction among the
 parties, the state of the new connection is the default state, with
 the negotiated reconnection forgotten.

 Since reconnection is an option concerning the entire Telnet
 connection, the asynchronous nature of the option processing
 mechanism exemplified by many other Telnet options (e.g., echo), is
 not applicable. That is, a race condition occurs when two
 <IAC><DO><RECONNECT> requests cross each other in the network. A
 solution to this problem was presented in RFC 426; the following is a
 modified version of that protocol extension. The modification is
 concerned mainly with preserving the right of a process to deny a
 reconnection attempt by another process, while having its own
 reconnection request pending.

 The race condition is detected when a process receives a
 <DO><RECONNECT> while awaiting a reply to a <DO><RECONNECT> it has
 previously issued on the same Telnet connection. (This condition is
 detected at both ends of the connection). The strategy to resolve the
 race utilizes a function, evaluated at both ends of the connection,
 to determine which reconnection request shall take precedence. The
 evaluation involves comparing the numbers obtained by concatenating
 the host address (which becomes the high order 8 bits) and the
 receive socket number (becomes the low order 32 bits) for the two
 ends of the Telnet connection. The process owning the receive socket
 with the larger of the two concatenated numbers will have its
 reconnection attempt precede that of the other process. Thus, if
 there is a Telnet connection between host A local sockets X,X+1 and
 host B local sockets Y,Y+1, and if <A><X> is greater than <Y>,
 then the reconnect request from <A><X> must he completed (or aborted)
 before the reconnection request from <Y> can be considered. This
 is achieved by requiring that the process with the higher
 <host><socket> number reply to the reconnect request of the other
 process with an <IAC><WONT><RECONNECT>, thereby canceling
 (temporarily) the reconnection attempted from the lower numbered
 <host><socket>. Since the request emanating from the higher
 <host><socket> process is given precedence, the process with the
 lower <host><socket> can reply to the reconnection request as if it
 had not issued a reconnection request of its own. That is, it may
 reply <IAC><WILL><RECONNECT> to accept the reconnection attempt or

Schantz [Page 4]

RFC 671 A Note on Reconnection Protocol December 1974

 <IAC><WONT><RECONNECT> to refuse the attempt. This process should
 note, however, that the rejection it receives to its reconnect
 request is due to protocol requirement, and may not reflect the
 actual desire of the corresponding process. It should also note that
 its reconnection request may be re-issued after the first
 reconnection activity is complete. This is an example of a situation
 where an option change request can be re-issued after a denial,
 without a corresponding change in state.

 ASIDE:

 The usefulness of reconnection is severely limited by its
 specification as an option for Telnet (i.e., terminal like)
 connections, rather than as part of a host-host protocol, which would
 allow it to be applied to general connections. First, it is
 questionable whether most systems will allow a user task to maintain
 more than one Telnet connection. If not, a process on such a system
 can not readily initiate a reconnection request.

 Second, there are certain indirect benefits that would result from
 including reconnection in a host-host protocol. Placing it at that
 level could simplify some of the timing problems in establishing the
 new connection. For example, an NCP would be aware when a
 reconnection was in progress, and therefore would not need to act as
 hastily with an RFC for a socket currently in use (i.e., connection
 still open) but involved in the reconnection. Since it is dealing
 with another NCP directly, it can expect to receive the "reconnect go
 ahead" reasonably soon, barring system crash. Also, the information
 necessary to complete the reconnection subnegotiation is available at
 the NCP level, whereas it must be duplicately maintained by the
 Telnet service routine when the potential for reconnection exists.

 Finally, the entire notion of reconnection is framed in terms of the
 entities of host-host protocol. By placing it at a higher level
 without adequate provision at the host-host level, an artificial and
 rigid constraint is placed on the type of communication path, which
 may be part of a reconnection. Since host-host protocol is the basis
 for function oriented levels, the notion of redirecting communication
 paths certainly is more suited to the semantically uninterrupted
 realm of OPENing and CLOSEing connections, rather than the realm of
 "open an 8 bit ASCII path with the conventions that ..."

II. IMPLEMENTATION DETAILS

 1. A process initiating a reconnection designates one of the object
 processes as passive (i.e., to listen for RFCs), and the other as
 active (i.e., to send RFCs). The reconnection protocol does not
 specify the assignment of the active/passive roles, so the process

Schantz [Page 5]

RFC 671 A Note on Reconnection Protocol December 1974

 is free in its selection. However, information regarding the types
 of participants in the reconnection attempt may dictate a role
 selection which will contribute to the eventual successful
 completion of the reconnection. Ignoring such information could
 conceivably force cancellation of the attempt. Certain types of
 hosts (e.g., space limited TIPs) may be better suited for active
 participation, since it need not go through the procedure of
 verifying the identity of the sender. The passive process should
 go through such verification. Other types of hosts (e.g., one
 whose NCP will not let an arbitrary process listen on a socket)
 may be better suited for the active role. As more systems
 implement the reconnection option, the preferences of various
 types of systems will become known, and more definitive rules may
 emerge.

 2. To avoid possible deadlock, the active (passive) process must
 simultaneously send (listen for) RFCs for both send and receive
 connections, which will form the new Telnet connection. Since the
 reconnection protocol does not specify an ordering for
 establishing the connections, it is important that passive
 processes listen in parallel on both the potential send and
 receive sockets, and that active processes send RFCs in parallel
 for both the potential send and receive sockets.

 3. There are two levels of error recovery involved in reconnection.
 One level is required to handle the conditions where network and
 system delays cause the attempt to establish the new connection to
 get out of synchrony (e.g., the RFC arrives at the passive host
 before the passive process listens), or cause system timeouts.
 When these conditions occur the sockets/connections should be
 returned to a state in which the faulting operation can be
 automatically retried. The second level of recovery involves the
 failure of all such attempts to establish communication with the
 active (passive) process, the duration of these attempts may be
 influenced by such factors as the recovery procedures available,
 and whether or not a human user is awaiting the outcome. Recovery
 at this point is difficult since the connections with the
 initiating process have already been broken. Attempts to connect
 to some reasonable alternative (perhaps local, perhaps attempting
 to connect back to the original source of the reconnection) should
 be initiated if second level error recovery is necessary,
 indicating complete reconnection failure.

 4. A useful addition to the reconnection mechanism would be the
 definition of a standard way to reestablish contact with the
 reconnection initiator on task termination (including can’t
 complete reconnection).

Schantz [Page 6]

RFC 671 A Note on Reconnection Protocol December 1974

III. TENEX RELATED DETAILS

 The context for our experiments was that of a TIP user using a
 TIPSER/RSEXEC. The TIPSER/RSEXEC would first authenticate the TIP
 user and then serve as a command interpreter. Among the available
 commands was one called TELCONN (TELnet CONNect) for connecting to
 other sites for service. A TELCONN command would trigger an attempt
 by the TIPSER/RSEXEC to reconnect the "TIP" directly to the host,
 which was the target of the TELCONN request (normally this would
 usually be a logger process at the host). When the reconnection is
 completed, the TIP is directly connected to the new job, and the
 TIPSER/RSEXEC is completely eliminated from the communication path.
 To avoid programming the TIP, a TENEX process was used to simulate
 the TIP.

 Certain features of TENEX caused problems in creating the desired
 interaction between the TENEX jobs involved in the reconnection
 experiment. They are presented here because there may be similar
 problems in other systems.

 1. Along with the features supplied by the TENEX Telnet interface via
 the ATPTY system call (which transforms a pair of unused network
 connections into a Telnet connection pair), comes a loss of
 certain control functions. A program loses the ability to control
 when data is sent (i.e., loss of the use of the MTOPR system call
 to force transmission of buffered data), and can no longer
 determine the remote host/socket for the network connection (i.e.,
 GDSTS system call). In a highly interactive mode, such as option
 negotiation, short messages remaining in system buffers can result
 in a deadlock. A process must be able to override the buffering
 strategy at the conclusion of a logical message. Failure to have
 access to such a mechanism (e.g., MTOPR) requires that the
 connection be opened in a non-buffered mode, which is wasteful
 most of the time. Similarly, the inability to obtain the remote
 host/socket names of the connection requires that this information
 be remembered by the program for the duration of the connection in
 case it is needed. (This is the case despite the fact that the
 operating system maintains the information in any event. The need
 to access this information arises when we wish to reconnect the
 Telnet connection which linked the "TIP" to the TIPSER/RSEXEC.)

 2. There is no facility in TENEX for handling (initiating or
 responding to) Telnet options not recognized by the Telnet server.
 An interface between a user program and the option negotiation
 mechanism would be useful for testing new options and for
 implementing privates ones. Lack of this interface can be
 circumvented by switching the connection to binary mode
 transmission and reception. This works only if option negotiation

Schantz [Page 7]

RFC 671 A Note on Reconnection Protocol December 1974

 is between two user processes (both aware of the binary
 transmission), since if a user process tried to negotiate with a
 system Telnet server obeying the binary transmission option, the
 required doubling of IACs for binary output would cause the
 request to be misinterpreted at the system Telnet.

 3. The switch to binary transmission requires two option
 negotiations. During this period data transfer is possible.
 However, the actual data transferred is dependent on the state of
 the negotiation at that point (e.g., depending upon the state, the
 IAC character may or may not be doubled). There does not seem to
 be a facility for alerting the process that the option has been
 accepted (rejected) and that all further transmissions will be in
 the new mode (binary). Perhaps suspending the process for the
 duration of the (timed out) option negotiation would eliminate
 this period of uncertainty in the mode switch. In TENEX, this
 could be coupled with pseudo-interrupts to note option negotiation
 failure for certain critical user initiated options.

 4. During peak load conditions, RFCs sent by the operating system
 (NCP) in response to program requests (OPENF system calls) were
 frequently timed out by the system. The passive process listening
 for the RFCs did not get rescheduled quickly enough to reply to
 the RFCs (acceptance or rejection) before they were timed out by
 the system. A confusing situation arose because of the difference
 in initiating the two connections (send and receive) that were to
 form the full-duplex path between the processes. One OPENF
 specified immediate return, while the other waited for completion
 of the RFC. If both requests timed out, the states of the
 corresponding connections were different, and therefore the retry
 mechanism had to handle each differently (i.e., the "immediate
 return" connection had to he closed via CLOSF, whereas the other
 did not). This seems to be an unnecessary complication. Also, the
 frequency of timeout during heavy load conditions may indicate
 that the RFC timeout interval is too short.

 5. In the TENEX user interface to the network there is no concept of
 logical messages when more than one process (fork) shares a
 network connection. Telnet option negotiation sequences are
 examples of strings, which must be sent in proper order, without
 interceding characters of any nature in order to have correct
 meaning. Even when a TENEX "string out" (SOUT) operation is
 executed by a process, which is indicative of some logical
 relationship between the characters of the string, the
 transmission is not guaranteed to be free from interference from
 other processes sending data over the same connection. (Multi-
 process organization for managing network connections is very
 common. One process is typically used to handle user output to the

Schantz [Page 8]

RFC 671 A Note on Reconnection Protocol December 1974

 network, while another process reads data from the network and
 replies as required by protocol to certain network input). These
 processes must synchronize on every output (and input) to assure
 the logical integrity of their messages. This synchronization
 would seem to be more suitably handled by the system routines,
 which manage network connections and handle string I/O.

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Alex McKenzie with]
 [support from BBN Corp. and its successors. 7/2000]

Schantz [Page 9]

