
Network Working Group James E. White
Request for Comments: 708 Augmentation Research Center

 Elements of a Distributed Programming System

 January 5, 1976

 James E. White
 Augmentation Research Center

 Stanford Research Institute
 Menlo Park, California 94025

 (415) 326-6200 X2960

This paper suggests some extensions to the simple Procedure Call Protocol
described in a previous paper (27197). By expanding the procedure call
model and standardizing other common forms of inter-process interaction,
such extensions would provide the applications programmer with an even
more powerful distributed programming system.

The work reported here was supported by the Advanced Research Projects
Agency of the Department of Defense, and by the Rome Air Development
Center of the Air Force.

This paper will be submitted to publication in the Journal of Computer
Languages.

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System

 INTRODUCTION

In a companion paper [i], the author proposes a simple protocol and
software framework that would facilitate the construction of distributed
systems within a resource-sharing computer network by enabling distant
processes to communicate with one another at the procedure call level.
Although of great utility even in its present form, this rudimentary
"distributed programming system (DPS)" supports only the most fundamental
aspects of remote procedure calling. In particular, it permits the
caller to identify the remote procedure to be called, supply the
necessary arguments, determine the outcome of the procedure, and recover
its results. The present paper extends this simple procedure call model
and standardizes other common forms of process interaction to provide
a more powerful and comprehensive distributed programming system. The
particular extensions proposed in this paper serve hopefully to reveal the
DPS concept’s potential, and are offered not as dogma but rather as
stimulus for further research.

The first section of this paper summarizes the basic distributed
programming system derived in [1]. The second section describes the
general strategy to be followed in extending it. The third and longest
section identifies and explores some of the aspects of process interaction
that are sufficiently common to warrant standardization, and suggests
methods for incorporating them in the DPS model.

 REVIEWING THE BASIC SYSTEM

The distributed programming system derived in [1] assumes the existence
of and is built upon a network-wide "inter-process communication (IPC)"
facility. As depicted in Figure 1, DPS consists of a high-level model of
computer processes and a simple, application-independent "procedure
call protocol (PCP)" that implements the model by regulating the dialog
between two processes interconnected by means of an IPC communication
"channel." DPS is implemented by an installation-provided "run-time
environment (RTE)," which is link loaded with (or otherwise made
available to) each applications program.

 -1-

Network Working Group James E. White
Requests for Comments: 708 Elements of a Distributed Programming System
 Reviewing the Basic System

The Model

The procedure call model (hereafter termed the Model) views a process as a
collection of remotely callable subroutines or "procedures." Each procedure
is invoked by name, can be supplied a list of arguments, and returns to its
caller both a boolean outcome, indicating whether it succeeded or failed,
and a list of results. The Model permits the process at either end of the
IPC channel to invoke procedures in its neighbor, and further permits a
process to accept two or more procedure calls for concurrent execution.

The arguments and results of procedures are modeled from a small set of
primitive "data types," listed below:

 LIST: A list is an ordered sequence of N data objects called
 "elements" (here and throughout these descriptions, N is
 confined to the range [0, 2**15-1]). A LIST may contain
 other LISTs as elements, and can therefore be employed to
 construct arbitrarily complex, composite arguments or results.

 CHARSTR: A character string is an ordered sequence of N ASCII
 characters, and conveniently models a variety of textual
 entities, from short user names to whole paragraphs of text.

 BITSTR: A bit string is an ordered sequence of N bits and,
 therefore, provides a means for representing arbitrary
 binary data (for example, the contents of a word of memory).

 INTEGER: An integer is a fixed-point number in the range
 [-2**31, 2**31-1], and conveniently models various kinds of
 numerical data, including time intervals, distances, and so on.

 INDEX: An index is an integer in the range [1, 2**15-1]. As
 its name and value range suggest, an INDEX can be used to
 address a particular bit of character within a string, or
 element within a list. Furthermore, many of the protocol
 extensions to be proposed in this paper will employ INDEXES as
 handles for objects within the DPS environment (for example,
 processes and channels).

 BOOLEAN: A boolean represents a single bit of information
 and has either the value true or false.

 EMPTY: An empty is a valueless place holder within a LIST of
 parameter list.

 -2-

Network Working Group James E. White
Requests for Comments: 708 Elements of a Distributed Programming System
 Reviewing the Basic System

The Protocol

The procedure call protocol (hereafter terms the Protocol), which
implements the Model, defines a "transmission format" (like those suggested
in Appendix A) for each of the seven data types listed above, and
requires that parameters be encoded in that format whenever they are
transported between processes.

The Protocol also specified the inter-process messages by which remote
procedures are invoked. These messages can be described symbolically as
follows:

 message-type=CALL [tid] procedure-name arguments
 message-type=RETURN tid outcome results

The first message invokes the procedure whose NAME is specified using the
ARGUMENTS provided. The second is returned in eventual response to the
first and reports the OUTCOME and RESULTS of the completed procedure.
Whenever OUTCOME indicates that a procedure has failed, the procedure’s
RESULTS are required to be an error number and diagnostic message, the
former to help the invoking program determine what to do next, the
latter for possible presentation to the user. The presence of an
optional "transaction identifier (TID)" in the CALL message constitutes
a request by the caller for an acknowledging RETURN message echoing the
identifier.

Although data types and their transmission formats serve primarily as
vehicles for representing the arguments and results of remote procedures,
they can just as readily and effectively be employed to represent the
messages by which those parameters are transmitted. The Protocol,
therefore, represents each of the two messages described above as a PCP
data object, namely, a LIST whose first element is an INDEX message
type. The following concise statement of the Protocol results:

 LIST (CALL, tid, procedure, arguments)
 INDEX=1 [INDEX] CHARSTR LIST
 LIST (RETURN, tid, outcome, results)
 INDEX=2 INDEX BOOLEAN LIST

Here and in subsequent protocol descriptions, elements enclosed in square
brackets are optional (that is, may be EMPTY). The RESULTS of an
unsuccessful procedure would be represented as follows:

 LIST (error, diagnostic)
 INDEX CHARSTR

 -3-

Network Working Group James E. White
Requests for Comments: 708 Elements of a Distributed Programming System
 Reviewing the Basic System

The Run-Time Environment

The run-time environment (hereafter termed the environment) interfaces the
applications program to a remote process via an IPC channel. In doing so,
it provides the applications program with a collection of "primitives,"
implemented either as subroutines or system calls, that the applications
program can employ to manipulate the remote process to which the channel
connects it. The environment implements these primitives by sending
and receiving various protocol messages via the channel.

In its present rudimentary form, the Protocol enables the environment to
make a single, remote procedure calling primitive like the following
available to the applications program:

 CALLPROCEDURE (procedure, arguments -> outcome, results)
 CHARSTR LIST BOOLEAN LIST

This primitive invokes the indicated remote PROCEDURE using the ARGUMENTS
provided and returns its OUTCOME and RESULTS. While this primitive
blocks the invoking applications program until the remote procedure
returns, a variant that simply initiates the call and allows the
applications program to collect the outcome and results in a second
operation can also be provided.

Since the interface between the environment and the applications program
is machine- and possibly even language-dependent, environment-provided
primitives can only be described in this paper symbolically. Although
PCP data types provide a convenient vehicle for describing their
arguments and results are therefore used for that purpose above and
throughout the paper, such parameters will normally be transmitted
between the environment and the applications program in some internal
format.

 BOOTSTRAPPING THE NEW PROTOCOL FUNCTIONS

Since the Protocol already provides a mechanism for invoking arbitrary
remote procedures, the Model extensions to be proposed in this paper
will be implemented whenever possible as procedures, rather than as
additional messages. Unlike applications procedures, these special
"system procedures" will be called and implemented by run-time environments,
rather than by the applications programs they serve. Although inaccessible
to the remote applications program via the normal environment-provided
remote procedure calling primitive, system procedures will enable the
environment to implement and offer new primitives to its applications
program.
 -4-

Network Working Group James E. White
Requests for Comments: 708 Elements of a Distributed Programming System
 Bootstrapping the New Protocol Functions

The calling sequences of many of these new primitives will closely
correspond to those of the remote system procedures by which they are
implemented. Other primitives will be more complex and require for their
implementation calls to several system procedures, possibly in different
processes. Besides describing the Protocol additions required by various
Model extensions proposed, the author will, throughout this paper, suggest
calling sequences for the new primitives that become available to the
applications program.

 -5-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model

 SOME POSSIBLE EXTENSIONS TO THE MODEL

1. Creating Remote Processes

Before a program in one machine can use resources in another, it must either
create a new process in the remote machine, or gain access to an existing
one. In either case, the local process must establish an IPC channel to a
resident dispatching process within the remote system, specify the program
to be started or contacted. and identify itself so that its access to the
program can be established and billing carried out. After these preliminary
steps have been accomplished, the requested process assumes responsibility
for the IPC channel and substantive communication begins.

The manner in which the environment carries out the above scenario is
largely dictated by the IPC facility upon which the distributed system is
based. If the IPC facility itself provides single primitive that
accomplishes the entire task, then the environment need only invoke that
primitive. If, on the other hand, it only provides a mechanism by which
the environment can establish a channel to the remote dispatcher, as is
the case within the ARPA computer Network (the ARPANET), then the Protocol
itself must contain provisions for naming the program to be run and
presenting the required credential.

Adding to the Protocol the following system procedure enables the local
environment to provide the remote dispatcher with the necessary information
in this latter case:

 INIPROCESS (program, credential)
 CHARSTR LIST (user, password, account)
 CHARSTR CHARSTR CHARSTR

Its arguments include the name of the applications PROGRAM to be run; and
the USER name, PASSWORD, and ACCOUNT of the local user to whom its use is
to be billed.

This new procedure effectively adds to the Model the notion of "creation," and enables th
e environment to offer the following primitives
to its applications program:

 CRTPROCESS (computer, program, credential -> ph)
 CHARSTR CHARSTR (as above) INDEX
 DELPROCESS (ph)
 INDEX

 -6-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model
 Creating Remote Processes

The first primitive creates a new process or establishes contact with an
existing one by first creating a channel to the dispatcher within the
indicated COMPUTER and then invoking the remote system procedure INIPROCESS
with the specified PROGRAM name and CREDENTIALS as arguments. The primitive
returns a "process handle PH" by which the applications program can refer to
the newly created process in subsequent dialog with the local environment
by the IPC facility, an index into a table within the environment, or anything
else the environment’s implementor may find convenient.

The second primitive "deletes" the previously created process whose handle
PH is specified by simply deleting the IPC channel to the remote process and
reclaiming any internal table space that may have been allocated to the
process.

2. Introducing Processes to One Another

The simplest distributed systems begin with a single process that creates,
via the CRTPROCESS primitive described above, one or more "inferior"
processes whose resources it requires. Some or all of these inferiors may
in turn require other remote resources and so create interiors of their
own. This creative activity can proceed, in principle, to arbitrary depth.
The distributed system is thus a tree structure whose nodes are processes
and whose branches are IPC channels.

Although a distributed system can include an arbitrarily large number of
processes, each process is cognizant of only the process that created it
and those it itself creates, that is, its parent and sons. The radius
within which a process can access the resources of the tree is thus
artificially small. This limited sharing range, which prevents the
convenient implementation of many distributed systems, can be overcome
by extending the Model to permit an arbitrarily complex network of
communication paths to be superimposed upon the process tree.

One of the many ways by which the Protocol can provide for such communication
paths is to permit one process to "introduce" and thereby make known to one
another any two processes it itself knows (for example, two of its sons,
or its parent and son). Once introduced, the two processes would be able
to invoke one another’s procedures with the same freedom the introducing
process enjoys. They could also introduce one another to other processes,
and so create even longer communication paths.

 -7-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model
 Introducing Processes to One Another

2.1 Introductions Within a Homogeneous Environment

Provided one remains within a "homogeneous environment" (that is, the domain
of a single IPC facility), the introduction of two processes requires little
more than the formation of an IPC channel between them. Adding to the
Protocol the following system procedures, which manipulate IPC "ports,"
enables the run-time environment of the process performing the introduction
to negotiate such a channel:

 ALOPORT (-> ph, COMPUTER, PORT)
 INDEX CHARSTR any
 CNNPORT (ph, computer, port)
 INDEX CHARSTR any
 DCNPORT (ph)
 INDEX

The detailed calling sequences for these procedures are dictated by the IPC
facility that underlies the distributed system. Those above are therefore
only representative of what may be required within any particular network,
but are only slightly less complicated than those required, for example,
within the ARPANET.

To create the channel, the introducing process’ run-time environment
allocates a PORT in each target process via ALOPORT, and then instructs
each process via CNNPORT to connect its port to the other’s via the IPC
facility. The process handle PH returned by ALOPORT serves as a handle
both initially for the allocated port, and then later for the process to
which the attached channel provides access. To "separate" the two processes,
the introducing process’ environment need only invoke the DCNPORT procedure
in each process, thereby dissolving the channel, releasing the associated
ports, and deallocating the process handles.

Armed with these three new system procedures, the environment can provide
the following new primitives to its applications program:

 ITDPROCESS (ph1, ph2 -> ph12, PH21, ih)
 INDEX INDEX INDEX INDEX INDEX
 SEPPROCESS (ih)
 INDEX

 -8-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model
 Introducing Process to One Another

The first primitive introduces the two processes whose handles PH1 and PH2
are specified. Each handle may designate either a son, in which case the
handle is one returned by CRTPROCESS; the parent process, for which a
special handle (for example, 1) must always be defined; or a previously
introduced process, in which case the handle is one obtained in a previous
invocation of ITDPROCESS.

ITDPROCESS returns handles PH12 and PH21 by which the two processes will
know one another, as well as an "introduction handle IH" that the applications
program can later employ to separate the two processes via SEPPROCESS. The
applications program initiating the introduction assumes responsibility for
communicating to each introduced applications program its handle for the
other.

2.2 Introductions Within a Heterogeneous Environment

While their interconnection via an IPC channel is sufficient to introduce
two processes to one another, in a heterogeneous environment the creation
of such a channel is impossible. Suppose, as depicted in Figure 2, that
processes P1 and P2 (in computers C1 and C2, respectively) are interconnected
within a distributed system by means of a network IPC facility. Assume
further that P2 attaches to the system another process P3 in a minicomputer
M that although attached to C2 is not formally a part of the network. With
this configuration, it is impossible for P2 to introduce processes P1 and P3
to one another by simply establishing an IPC channel between them, since
they are not within the domain of a single IPC facility.

One way of overcoming this problem is to extend the Model to embrace the
notion of a composite or "logical channel" composed of two or more physical
(that is, IPC) channels. A message transmitted by process P1 via the logical
channel to Pn (n=3 in the example above) would be relayed over successive
physical channels by the environments of intermediate processes P2 through
Pn-1. Although more expensive than physical channels, since each message
must traverse at least two physical channels and be handled by all the
environments along the way, logical channels would nevertheless enable
processes that could not otherwise do so to access one another’s resources.
Since the relaying of messages is a responsibility of the environment, the
applications program need never be aware of it.

 -9-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model
 Introducing Processes to One Another

As depicted in Figure 3, a logical channel would consist of table entries
maintained by the environment of each process P1 through Pn, plus the
environment to forward messages that arrive with a "routing code" addressing
the local table entry. Each table entry would contain process handles for
the two adjacent processes, as well as the routing code recognized by each.
To communicate a message to its distant neighbor, the source process (say
P1) would transmit it via its IPC channel to P2, with a routing code
addressing the appropriate table entry within P2. Upon receipt of the
message, P2 would locate its table entry via the routing code, update the
message with the routing code recognized by P3, and forward the message
to P3. Eventually the message would reach its final destination, Pn.

Adding to the Protocol the following system procedures enables the
environment to construct a logical channel like that described above:

 CRTROUTE (mycode, oldcode -> code, ph)
 INDEX [INDEX] INDEX INDEX
 DELROUTE (yourcode)
 INDEX

The simplest logical channel (n=3) is created by P2, which invokes CRTROUTE
in both P1 and P3, specifying in each case the routing code MYCODE it has
assigned to its segment of the logical channel, and receiving in return
the routing CODES and process handles PHs assigned by the two processes.
OLDCODE is not required in this simple case and is therefore EMPTY.

More complicated logical channels (n>3) are required when one or both
of the processes to be introduced is already linked, by a logical channel,
to the process performing the introduction. In such cases, a portion of
the new channel to be constructed must replicate the existing channel, and
hence the routing code OLDCODE for the table entry that represents that
channel within the target process is specified as an additional argument
of the system procedure. The target process must call CRTROUTE recursively
in the adjacent process to replicate the rest of the model channel.

 -10-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model
 Introducing Processes to One Another

The process Pi that creates a logical channel assumes responsibility for
insuring that it is eventually dismantled. It deletes the logical channel
by invoking DELROUTE in Pi-1 and Pi+1, each of which propagates the call
toward its end of the channel.

3. Controlling Access to Local Resources

The process introduction primitive proposed above effectively permits
access to a process to be transmitted from one process to another. Any
process P2 that already possesses a handle to a process P1 can obtain a
handle for use by a third process P3. Once P1 and P3 have been introduced,
P3 can freely call procedures in P1 (and vice versa).

Although a process can, by aborting the ALOPORT system procedure, prevent
its introduction to another process and so restrict the set of processes
that gain access to it, finer access controls may sometimes be required.
A process may, for example, house two separate resources, one of which
is to be made available only to its parent (for example), and the other
to any process to which the parent introduces it. Before such a strategy
can be conveniently implemented, the Model must be extended to permit
access controls to be independently applied to individual resources within
a single process.

Although a single procedure can be considered a resource, it is more practical and conven
ient to conceive of larger, composite resources
consisting of a number of related procedures. A simple data base
management module containing procedures for creating, deleting, assigning
values to, reading, and searching for data objects exemplifies such
composite resources. Although each procedure is useless in isolating, the
whole family of procedures provides a meaningful service. Such "package"
of logically related procedures might thus be the most reasonable object
of the finer access controls to be defined.

Access controls can be applied to packages by requiring that a process
first "open" and obtain a handle for a remote package before it may call
any of the procedures it contains. When the process attempts to open
the package, its right to do so can be verified and the attempt aborted if
necessary. Challenging the open attempt would, of course, be less expensive
than challenging every procedure call. The opening of a package would also
provide a convenient time for package-dependent state information to be
initialized.

 -11-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model
 Controlling Access to Local Resources

Adding to the Protocol the following pair of system procedures enables the
environment to open and close packages within another process. For
efficiency, these procedures manipulate an arbitrary number of packages
in a single transaction.

 OPNPACKAGE (packages -> pkhs)
 LISTofCHARSTRs LISTofINDEXs
 CLSPACKAGE (pkhs)
 (as above)

The first procedure opens and returns "package handles PKHS" for the
specified PACKAGES; the second closes one or more packages and releases
the handles PKHS previously obtained for them.

Besides incorporating these two new system procedures, the Protocol must
further require that a package handle accompany the procedure name in every
CALL message (an EMPTY handle perhaps designating a system procedure). Note
that this requirement has the side effect of making the package the domain
within which procedure names must be unique.

The system procedures described above enable the environment to make
available to its applications program, primitives that have calling
sequences similar to those of the corresponding system procedures but
which accept the process handle of the target process as an additional
argument. Their implementation requires only that the environment
identify the remote process from its internal tables and invoke OPNPACKAGE
or CLSPACKAGE in that process.

4. Standardizing Access to Global Variables

Conventional systems often maintain global "variables" that can be accessed
by modules throughout the system. Such variables are typically manipulated
using primitives of the form:

 (1) Return the current value of V.
 (2) Replace the current contents of V with a new value.

These primitives are either provided as language constructs or implemented
by specialized procedures. The former approach encourages uniform
treatment of all variables within the system.

Those distributed systems that maintain remotely-accessible variables must
also select a strategy for implementing the required access primitives.
While such primitives can, of course, be implemented as specialized

 -12-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model
 Standardizing Access to Global Variables

applications procedures, adding to the Protocol the following new system
procedures insures a uniform run-time access mechanism:

 RDVARIABLE (pkh, variable -> value)
 INDEX CHARSTR any
 WRVARIABLE (pkh, variable, value)
 INDEX CHARSTR any

These procedures effectively define variables as named data objects modeled
from PCP data types, and suggest that they be clustered in packages with
related procedures. The system procedures return and specify, respectively,
the VALUE of the VARIABLE whose name and package handle PKH are specified.

These new procedures enable the environment to make available its applications
program, primitives that have calling sequences similar to those of the
corresponding system procedures but which accept the process handle of the
target process as an additional argument. These primitives provide a basis
upon which a suitably modified compiler can reestablish the compile-time
uniformity that characterizes the manipulation of variables in conventional
programming environments. Their implementation requires only that the local
environment identify the remote process from its internal tables and invoke
RDVARIABLE or WRVARIABLE in that process.

Most variables will restrict the range of data types and values that may be
assigned to them; some may even be read-only. But because they are modeled
using PCP data types, their values can, in principle, be arbitrarily complex
(for example, a LIST of LISTS) and the programmer may sometimes wish to
manipulate only a single element of the variable (or, if the element is
itself a LIST, just one of its elements; and so on, to arbitrary depth).

Adding the following argument to their calling sequences extends the system
procedures proposed above to optionally manipulate a single element of a
variable’s composite value:

 substructure
 (LISTofINDEXs)

At successive levels of the value’s tree structure, the INDEX of the desired
element is identified; the resulting list of indices identifies the
SUBSTRUCTURE whose value is to be returned or replaced.

 -13-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model
 Routing Parameters Between Procedures

5. Routing Parameters Between Procedures

In conventional programming systems, the results of procedures are used in a
variety of ways, depending upon the context of the calls made upon them. A
result may, for example:

 (1) Provide the basis for a branch decision within the calling
 program.
 (2) Become an argument to a subsequent procedure call.
 (3) Be ignored and thus effectively discarded.

At run-time, the knowledge of a result’s intended use usually lies solely
within the calling program, which examines the results, passes it to a
second procedure, or ignores it as it chooses.

In a distributed system, the transportation of results from callee to caller,
carried out by means of one of more inter-process messages, can be an
expensive operation, especially when the results are large. Data movement
can be reduced in Cases 2 and 3 above by extending the Model to permit the
intended disposition of each procedure result to be made known in advance
to the callee’s environment. In Case 2, provided both callees reside
within the same process, the result can be held at its source and later
locally supplied to the next procedure. In Case 3, the result can be
discarded at its source (perhaps not even computed), rather than sent and
discarded at its destination.

5.1 Specifying Parameters Indirectly

Variables offer potential for the eliminating the inefficiencies involved in
Case 2 above by providing a place within the callees’ process where results
generated by one procedure can be held until required by another. The
Protocol can be extended to permit variables to be used in this way by
allowing the caller of any procedure to include optional "argument- and
result-list mask" like the following as additional parameters of the CALL
message:

 parameter list mask
 [LIST variable, ...)]
 [CHARSTR]

A parameter list mask would permit each parameter to be transmitted either
directly, via the parameter list, or indirectly via a VARIABLE within the
callee’s process. Thus each element of the mask specifies how the callee’s

 -14-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model
 Routing Parameters Between Procedures

environment is to obtain or dispose of the corresponding parameter. To supply
the result of one procedure as an argument to another, the caller need only
then appropriately set corresponding elements of the result and argument
list masks in the first and second calls, respectively. The result list
mask should be ignored if the procedure fails, and the error number and
diagnostic message returned directly to the caller.

5.2 Providing Scratch Variables for Parameter Routing

Although each applications program could provide variables for use as described
above, a more economical approach is to extend the Model to permit special
"scratch variables," maintained by the environment without assistance from
its applications program, to be created and deleted as necessary at run-time.
Adding to the Protocol the following pair of system procedures enables the
local environment to create and delete such variables in a remote process:

 CRTVARIABLE (variable, value)
 CHARSTR any
 DELVARIABLE (variable)
 CHARSTR

These procedures create and delete the specified VARIABLE, respectively.
CRTVARIABLE also assigns an initial VALUE to the newly-created variable.

These new procedures enable the environment to make available to its
applications program, primitives that have calling sequences similar to
those of the corresponding system procedures but which accept the process
handle of the target process as an additional argument. Their implementation
required only that the environment identify the remote process from its
internal tables and invoke CRTVARIABLE or DELVARIABLE in that process.

5.3 Discarding Results

The inefficiencies that result in Case 3 above are conveniently eliminated
by allowing the caller to identify via the result list mask (for example,
via a zero-length CHARSTR) that a result will be ignored and therefore need
not be returned to the caller.

 -15-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model
 Supporting a Richer Spectrum of Control Transfers

6. Supporting a Richer Spectrum of Control Transfers

As currently defined by the Model, a procedure call is a simple two-stage
dialog in which the caller first describes the operation it wishes performed
and the callee, after performing the operation, reports its outcome.
Although this simple dialog form is sufficient to conveniently implement
a large class of distributed systems, more complex forms are sometimes
required. The Model can be extended to admit a variety of more powerful
dialog forms, of which the four described below are examples.

6.1 Transferring Control Between Caller and Callee

Many conventional programming systems permit caller and callee to exchange
control any number of times before the callee returns. Such "coroutine
linkages" provide a means, for example, by which the callee can obtain
help with a problem that it has encountered or deliver the results of one
suboperation and obtain the arguments for the next.

Adding to the Protocol the following system procedure, whose invocation
relinquishes control of another, previously initiated procedure, enables
the environment to effect a coroutine linkage between caller and callee:

 TAKEPROCEDURE (tid, yourtid, parameters)
 INDEX BOOLEAN LIST

Its arguments include the identifier TID of the affected transaction, an
indication YOURTID of from whose name space the identifier was assigned
(that is, whether the process relinquishing control is the caller or callee),
and PARAMETERS provided by the procedure surrendering control. By exploiting
an existing provision of the Protocol (that is, by declining acknowledgment
of its calls to TAKEPROCEDURE) the invoking environment can effect the
control transfer with a single inter-process message.

The addition of this new procedure to the Protocol enables the environment
to provide the following new primitive to its applications program:

 LINKPROCEDURE (tid, arguments -> outcome, results)
 INDEX LIST [BOOLEAN] LIST

 -16-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model
 Supporting a Richer Spectrum of Control Transfers

This primitive assumes that the CALLPROCEDURE primitive is also modified to
return the pertinent transaction identifier should the callee initiate a
coroutine linkage rather than return. Invocation of LINKPROCEDURE then
continues the dialog by supplying ARGUMENTS and returning control to the remote
procedure, and then awaiting the next transfer of control and the RESULTS that
accompany it. If the remote procedure then returns, rather than initiating
another coroutine linkage, the primitive reports its OUTCOME and invalidates
the transaction identifier.

While this primitive blocks the applications program until the remoter
procedure relinquishes control, a variant that simply initiates the coroutine
linkage and allows the applications program to collect the outcome and
results in a second operation can also be provided.

6.2 Signaling the Caller/Callee

A monolog is often more appropriate than the dialog initiated by a coroutine
linkage. The caller or callee might wish, for example, to report an event it
has detected or send large parameters piecemeal to minimize buffering
requirements. Since no return parameters are required in such cases, the
initiating procedure need only "signal" its partner, while retaining control
of the call.

Adding to the Protocol the following system procedure extends the Model to
support signals and enables the environment to transmit parameters to or
from another, previously initiated procedure without relinquishing control
of the call:

 SGNLPROCEDURE (tid, yourtid, parameters)
 INDEX BOOLEAN LIST

Like the TAKEPROCEDURE procedure already described, its arguments include
the identifier TID of the affected transaction, an indication YOURTID of
from whose name space the identifier was assigned, and the PARAMETERS
themselves.

This new procedure enables the environment to make available to its
applications program a primitive that has a calling sequence similar to that
of the system procedure but which does not require YOURTID as an argument.
Its implementation requires only that the environment identify the remote
process via its internal tables and invoke SGNLPROCEDURE in that process.

 -17-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model
 Supporting a Richer Spectrum of Control Transfers

By requesting the acknowledgment of each call to SGNLPROCEDURE and, if
necessary, delaying subsequent calls affecting the same transaction until
the acknowledgment arrives, the invoking environment effects a crude form of
flow control and so prevents the remote process’ buffers from being overrun.

6.3 Soliciting Help from Superiors

As in conventional programming systems, remotely callable procedures within
a distributed system will sometimes call upon others to carry out portions
of their task. Each procedure along the "thread of control" resulting from
such nested calls is, in a sense, responsible to not only its immediate caller
but also to all those procedures that lie above it along the control thread.
To properly discharge its responsibilities, a procedure must sometimes
communicate with these "superiors."

Occasionally a procedure reaches a point in its execution beyond which it
cannot proceed without external assistance. It might, for example, require
additional resources or further direction from the human user upon whose
behalf it is executing. Before reaching this impasse, the procedure may
have invested considerable real and/or processing time that will be lost
if it aborts.

Adding to the Protocol the following system procedure minimizes such
inefficiencies by enabling the environment to solicit help from a callee’s
superiors:

 HELPPROCEDURE (tid, number, information -> solution)
 INDEX INDEX any any

Its arguments include the identifier TID of the affected transaction (the
direction of the control transfer being implicit in this case), a NUMBER
identifying the problem encountered, and arbitrary supplementary
INFORMATION.

The primitive that this new procedure enables the environment to provide
its applications program has an identical calling sequence. Its implementation
requires only that the environment identify the remote process from its
internal tables and invoke HELPPROCEDURE in that process.

The search for help begins with invocation of HELPPROCEDURE in the caller’s
environment. If the caller understands the problem (that is, recognizes

 -18-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming Model
 Supporting a Richer Spectrum of Control Transfers

its number) and is able to solve it, HELPPROCEDURE will simply return whatever
SOLUTION information the caller provides. Otherwise, HELPPROCEDURE must give
the next superior an opportunity to respond by calling itself recursively in
that process. The search terminates as soon as a superior responds positively
or when the end of the control thread is reached. In the latter case, each of
the nested HELPPROCEDURE procedures returns unsuccessfully to indicate to its
caller that the search failed.

6.4 Reporting an Event to Superiors

A procedure sometimes witnesses or causes an event of which its superiors
should be made aware (for example, the start or completion of some major
step in the procedure’s execution). Adding to the Protocol the following
system procedure enables the environment to notify a callee’s superiors of an
arbitrary event:

 NOTEPROCEDURE (tid, number, information)
 INDEX INDEX any

Like HELPPROCEDURE, its arguments include the identifier TID of the
transaction it affects, a NUMBER identifying the event being reports, and
arbitrary supplementary INFORMATION.

The primitive that this new procedure enables the environment to provide its
applications program has an identical calling sequence. Its implementation
requires only that the environment identify the remote process from its
internal tables and invoke NOTEPROCEDURE in that process.

By requesting acknowledgment of each call to NOTEPROCEDURE and, if necessary,
delaying subsequent calls that affect that transaction until the acknowledgment
arrives, the invoking environment effects a crude form of flow control and so
prevents the remote process’ buffers from being overrun.

Notification of the procedure’s superiors begins with invocation of
NOTEPROCEDURE in the caller’s process and works its way recursively up the
thread of control until the top is reached.

 -19-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Some Possible Extensions to the Model
 Aborting Executing Procedures

7. Aborting Executing Procedures

Conventional systems that accept commands from the user sometimes permit him
to cancel an executing command issued inadvertently or with erroneous
parameters, or one for whose completion he cannot wait. This ability is
particularly important when the command (for example, one that compiles a
source file) has a significant execution time. In a distributed system, the
execution of such a command may involve the invocation of one or more remote
procedures. Its cancellation, therefore, requires the abortion of any
outstanding remote procedure calls.

Adding to the Protocol the following system procedure provides the basis
for a command cancellation facility by enabling the environment to abort
another, previously invoked procedure:

 ABRTPROCEDURE (tid)
 INDEX

Its sole argument is the identified TID of the transaction it affects.

The primitive that this new procedure enables the environment to make
available to the applications program has an identical calling sequence.
Its implementation requires only that the local environment identify the
remote process from its internal tables and invoke ABRTPROCEDURE in that
process.

 -20-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Conclusions

 CONCLUSION

The EXPANDED Protocol and Model that result from the extensions proposed in
the present paper are summarized in Appendixes B and C, respectively.
Needless to say, many additional forms and aspects of process interaction,
of which Appendix D suggests a few, remain to be explored. Nevertheless,
the primitives already made available by the run-time environment provide
the applications programmer with a powerful and coherent set of tools for
constructing distributed systems.

 -21-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Acknowledgments

 ACKNOWLEDGMENTS

Many individuals within both SRI’s Augmentation Research Center (ARC) and the
larger ARPANET community have contributed their time and ideas to the
development of the Protocol and Model described in this and its companion
paper. The contributions of the following individuals are expressly
acknowledged: Dick Watson, Jon Postel, Charles Irby, Ken Victor, Dave Maynard,
Larry Garlick of ARC; and Bob Thomas and Rick Schantz of Bolt, Beranek and
Newman, Inc.

ARC has been working toward a high-level framework for network-based
distributed systems for a number of years now [2]. The particular Protocol
and Model result from research begun by ARC in July of 1974. This research
included developing the Model; designing and documenting, and implementing
a prototype run-time environment for a particular machine [4, 5], specifically
a PDP-10 running the Tenex operating system developed by Bolt, Beranek and
Newman, Inc. [6]. Three design iterations were carried out during a 12-month
period and the resulting specification implemented for Tenex. The Tenex RTE
provides a superset of the capabilities proposed in this paper.

The work reported here was supported by the Advanced Research Project Agency
of the Department of Defense, and by the Rome Air Development Center of the
Air Force.

 -22-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Appendix A: Transmission Formats for PCP Data Objects

 APPENDIX A

 TRANSMISSION FORMATS FOR PCP DATA OBJECTS

Data objects must be encoded in a standard transmission format before they can
be sent from one process to another via the Protocol. An effective strategy
is to define several formats and select the most appropriate one at run-time,
adding to the Protocol a mechanism for format negotiation. Format negotiation
would be another responsibility of the environment and could thus be made
completely invisible to the applications program.

Suggested below are two transmission formats. The first is a 36-bit binary
format for use between 36-bit machines, the second an 8-bit binary, "universal"
format for use between dissimilar machines. Data objects are fully typed in
each format to enable the environment to automatically decode and internalize
incoming parameters should it be desired to provide this service to the
applications program.

PCPB36, For Use Between 36-Bit Machines

 Bits 0-13 Unused (zero)
 Bits 14-17 Data type
 EMPTY =1 INTEGER=4 LIST=7
 BOOLEAN=2 BITSTR =5
 INDEX -3 CHARSTR=6
 Bits 18-20 Unused (zero)
 Bits 21-35 Value or length N
 EMPTY unused (zero)
 BOOLEAN 14 zero-bits + 1-bit value (TRUE=1/FALSE=0)
 INDEX unsigned value
 INTEGER unused (zero)
 BITSTR unsigned bit count N
 CHARSTR unsigned character count N
 LIST unsigned element count N
 Bits 36- Value
 EMPTY unused (nonexistent)
 BOOLEAN unused (nonexistent)
 INDEX unused (nonexistent)
 INTEGER two’s complement full-word value
 BITSTR bit string + zero padding to word boundary
 CHARSTR ASCII string + zero padding to word boundary
 LIST element data objects

 -23-

Network Working James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Appendix A: Transmission Formats for PCP Data Objects

PCPB8, For Use Between Dissimilar Machines

 Byte 0 Data type
 EMPTY =1 INTEGER=4 LIST=7
 BOOLEAN=2 BITSTR =5
 INDEX =3 CHARSTR=6
 Bytes 1- Value
 EMPTY unused (nonexistent)
 BOOLEAN 7 zero-bits + 1-bit value (TRUE=1/FALSE=0
 INDEX 2 byte unsigned value
 INTEGER 4-type two’s complement value
 BITSTR 2-byte unsigned bit count N + bit string
 + zero padding to byte boundary
 CHARSTR 2-byte unsigned character count N + ASCII string
 LIST 2-byte element count N + element data objects

 -24-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Appendix B: The Expanded Procedure Call Protocol

 APPENDIX B

 THE EXPANDED PROCEDURE CALL PROTOCOL

The Protocol that results from the extensions proposed in this paper is
summarized below. The reader should note the concise syntactic description
made possible by the underlying notion of PCP data types.

Parameter list masks have been included not only as additional parameters
of the CALL message, as proposed in the paper, but as arguments of the
TAKEPROCEDURE and SGNLPROCEDURE system procedures as well. Throughout the
Protocol description, "MASK" is shorthand for:

 [LIST (variable [CHARSTR], ...)]

Messages

 LIST (route INDEX, opcode INDEX CALL=1, tid [INDEX],
 pkh [INDEX], procedure CHARSTR, arguments LIST,
 argumentlistmask MASK, resultlistmask MASK)
 LIST (route INDEX, opcode INDEX RETURN=2, tid INDEX,
 outcome BOOLEAN, results LIST)

 If OUTCOME is FALSE
 RESULTS is LIST (error INDEX, diagnostic CHARSTR)

Process-Related System Procedures

 INIPROCESS (program CHARSTR,
 credentials LIST (error CHARSTR, password CHARSTR,
 account CHARSTR))
 ALOPORT (-> ph INDEX, computer CHARSTR, port)
 CNNPORT (ph INDEX, computer CHARSTR, port)
 DCNPORT (ph INDEX)
 CRTROUTE (mycode INDEX, oldcode [INDEX]
 -> code INDEX, ph INDEX)
 DELROUTE (yourcode INDEX)

Package-Related System Procedures

 OPNPACKAGE (packages LISTofCHARSTRs -> pkhs LISTofINDEXs)
 CLSPACKAGE (pkhs LISTofINDEXs)

 -25-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming System
 Appendix B: The Expanded Procedure Call Protocol

Variable-Related System Procedures

 CRTVARIABLE (variable CHARSTR, value)
 DELVARIABLE (variable CHARSTR)
 RDVARIABLE (pkh INDEX, variable CHARSTR,
 substructure [LISTofINDEXs] -> value)

Procedure-Related System Procedures

 TAKEPROCEDURE (tid INDEX, yourtid BOOLEAN, parameters LIST,
 argumentlistmask MASK, resultlistmask MASK)
 SGNLPROCEDURE (tid INDEX, yourtid BOOLEAN, parameters LIST,
 parameterlistmask MASK)
 HELPPROCEDURE (tid INDEX, number INDEX, information -> solution)
 NOTEPROCEDURE (tid INDEX, number INDEX, information)
 ABRTPROCEDURE (tid INDEX)

 -26-

Network Working Group James E. White
Request for Comments: 708 Elements of a Distributed Programming
 Appendix C: Summary of RTE Primitives

 APPENDIX C

 SUMMARY OF RTE PRIMITIVES

The DPS primitives made available to the applications program as a result of
the Model extensions proposed in this paper are summarized below.
Collectively, they provide the applications programmer with a powerful
and coherent set of tools for constructing distributed systems. Some of
the primitives (for example, CRTPROCESS and DELPROCESS) are necessary elements
for a "network operating system (NOS)," into which DPS may itself one day
evolve.

 CRTPROCESS (computer, program, credentials -> PH)
 DELPROCESS (ph)
 ITDPROCESS (ph1, ph2 -> ph12, ph21, ih)
 SEPPROCESS (ih)

Packages

 OPNPACKAGE (ph, packages -> pkhs)
 CLSPACKAGE (ph, pkhs)

Variables

 CRTVARIABLE (ph, variable, value)
 DELVARIABLE (ph, variable)
 RDVARIABLE (ph, pkh, variable, substructure -> value)
 WRTVARIABLE (ph, pkh, variable, substructure, value)

Procedures

 CALLPROCEDURE (ph, pkh, procedure, arguments, argumentlistmask,
 resultlistmask, -> outcome, results, tid)
 LINKPROCEDURE (tid, arguments, argumentlistmask,
 resultlistmask, -> outcome, results)
 SGNLPROCEDURE (tid, parameters, parameterlistmask)
 HELPPROCEDURE (tid, number, information -> solution)
 NOTEPROCEDURE (tid, number, information)
 ABRTPROCEDURE (tid)

 -27-

Network Working Group Elements of a Distributed Programming System
Request for Comments: 708 Appendix D: Additional Areas for Investigation

 APPENDIX D

 ADDITIONAL AREAS FOR INVESTIGATION

Although the expanded distributed programming system developed in this paper
and summarized in the previous appendix is already very powerful, many
additional aspects of process interaction remain, of course, to be explored.
Among the additional facilities that the Protocol must eventually enable the
environment to provide are mechanisms for:

 (1) Queuing procedure calls for long periods of time (for
 example, days).

 (2) Broadcasting requests to groups of processes.

 (3) Subcontracting work to other processes (without remaining
 a middleman).

 (4) Supporting brief or infrequent inter-process exchanges
 with minimal startup overhead.

 (5) Recovering from and restarting after system errors.

 -28-

Network Working Group Elements of a Distributed Programming System
Request for Comments: 708 References

 REFERENCES

1. White, J. E., "A High-Level Framework for Network-Based Resource Sharing,"
 submitted for publication in the AFIPS Conference Proceedings of the 1976
 National Computer Conference.

2. Watson, R. W., Some Thoughts on System Design to Facilitate Resource
 Sharing, ARPA Network Working Group Request for Comments 592, Augmentation
 Research Center, Stanford Research Institute, Menlo Park, California,
 November 20, 1973 (SRI-ARC Catalog Item 20391).

3. White, J. E., DPS-10 Version 2.5 Implementor’s Guide, Augmentation
 Research Center, Stanford Research Institute, Menlo Park, California,
 August 15, 1975 (SRI-ARC Catalog Item 26282).

4. White, J. E., DPS-10 Version 2.5 Programmer’s Guide, Augmentation Research
 Center, Stanford Research Institute, Menlo Park, California, August 13,
 1975 (SRI-ARC Catalog Item 26271).

5. White, J. E., DPS-10 Version 2.5 Source Code, Augmentation Research
 Center, Stanford Research Institute, Menlo Park, California, August 13,
 1975 (SRI-ARC Catalog Item 26267).

6. Bobrow, D. G., Burchfiel, J. D., Murphy, D. L., Tomlinson, R. S., "TENEX,
 a paged Time Sharing System for the PDP-10," Communications of the ACM,
 Vol. 15, No. 3, pp. 135-143, March 1972.

 -29-

Network Working Group Elements of a Distributed Programming System
Request for Comments: 708 Figure List

 FIGURE LIST

Fig. 1 Interfacing distant applications programs via their run-time
 environments and an IPC channel.

Fig. 2 Two processes that can only be introduced via a logical channel.

Fig. 3 A logical channel.

 -30-

