Net wor k Wor ki ng Group J. E. Donnell ey
Request for Comments: 712 Law ence Livernore Laboratory
February 1976

A Distributed Capability Conmputing System (DCCS)

Thi s paper was prepared for submi ssion to the international
Conf erence on Conputer Conmmuni cation, |CCC 76, August 3, 1976,
Toront o, Canada.

This is a preprint of a paper intended for publication in a journal
of proceedings. Since changes may be nade before publication, this
preprint is made available with the understanding that it will not be
cited without the perm ssion of the author.

The work reported in this paper was supported in part under contract
#EPA- | AG D5- E681-DB with the Environnental Protection Agency and in
part under contract #[RA] 76-12 with the Departnent
Transportation. The report was prepared for the U S. Energy Research
and Devel opnment Agency under contract #W 7405- Eng-48.

A Distributed Capability Conmputing System (DCCS)

Thi s paper describes a distributed conputing system The first
portion introduces an idealized operating systemcalled CCS
(Capability Computing System). |In the second portion, the DCCS
protocols are defined and the processes necessary to support the DCCS
on a CCS are described. The remainder of the paper discusses
utilizing the DCCS protocol in a conmputer network involving

het er ogeneous systens and presents sone applications. The
applications presented are to optimally solve the single copy problem
for distributed data access and to construct a transparent network
resource optim zation nmechani sm

The Capability Conputing System (CCS)

The CCS, though not exactly |like any existing operating system is
much |i ke some of the existing capability list (Clist) operating
systens described in the literature [1-7]. Many of the features of
the CCS cone froma proposed nodification to the RATS operating
system [1-3].

In the docunentation for nmpst conputer systens there are many
references to different types of objects. Typical objects discussed
are: files, processes, jobs, accounts, senaphores, tasks, words,
devices, forks, events, etc. etc.. One of the intents of Clist

Donnel | ey [Page 1]

RFC 712 A Distributed Capability Computing System February 1976

systens is to provide a uni formnethod of access to all such objects.
Having all CCS objects accessed through a uniform mechani small ow
DCCS to be inmplenmented in a type i ndependent manner

The CCS is a multiprocessing system supporting an active el ement
called a process. For npst purposes, the reader’s intuitive notion
of what a process is should suffice. A process is capable of
executing instructions like those in conmercially avail able
conputers. It has a nmenory area associated with it and has sone
status indicators like "RUN' and "WAIT". In Clist systenms, however,
a process also has a capability list (Clist). This list is an area
in which pointers to the objects that the process is allowed to
access are mmintained. These pointers are protected by the system
The process itself is only allowed to use its Clist as a source of
capabilities to access and as a repository for capabilities that it
has been granted. Figure 1 diagrans sone typical processes that are
di scussed later. 1In the diagranms, the left half of a process box is
the Clist and the right half is the nenory.

The key to the uniformaccess nethod in the CCS is the invocation
mechanism This is the mechani sm by which a process makes a request
on a capability inits Clist. An invocation is closely anal ogous to
a subroutine call on nost conputer systems. When a request is nade,
the invoki ng process passes sone paraneters to a service routine and
receives sone paranmeters in return

There are, however, several mmjor differences between the invocation
mechani sm and the usual subroutine calling mechanisms. The first
difference is that the service routine called is generally not in the
process’s nenory space. The service routine is pointed to by the
protected capability and can be inplenmented in hardware, m crocode,
system kernel code, in another arbitrary process, or, as we shall see
in the DCCS, in another conputer system |In Fig. 1. for exanple, the
serving process is servicing on invocation on the semaphore
requestor.

A second difference is that, when invoking a capability, other
capabilities can be passed and returned along with strictly data
paranmeters. In the DCCS, capabilities and data can al so be passed
through a comuni cati on network.

The final inportant distinction of the invocation nechani smcan best
be illustrated by considering the analogy to the outside teller

wi ndows often seen at banks. These wi ndows usually contain a drawer
that can be opened by the customer and teller are not both. Except
for this drawer, the custoner and teller are physically isolated. In
the case of the invocation mechanism the invoking process explicitly
passes certain capabilities and information to the service routine

Donnel | ey [Page 2]

RFC 712 A Distributed Capability Computing System February 1976

and designated C-list |locations and nenory areas for the return
paranmeters. Except for these paraneters, the invoking process and
the serving routine are isolated. In the DCCS, this protection
mechani smis extended throughout a network of systemns.

In the CCS, invoking a capability is the only way that a process can
pass or receive information or capabilities. Al of what are often
referred to as systemcalls on a typical operating systemare

i nvocations on appropriate capabilities in the CCS. A CCs C-1list
envel opes its process. This fact is needed in order to transparently
nove processes as described in the second application on network
optim zation (page 23).

CCS Capabilities

To build the DCCS, we will assume certain primtive capabilities in
the CCS. The invocations below are represented for sinplicity rather
than for efficiency or practicality. |In practice, capabilities
general |y have nore highly optimzed i nvocations with various error
returns, etc.. To characterize a capability, it suffices to describe
what it returns as a function of what it is passed. In the notation
used bel ow, the passed paraneter list is followed by a ">" and then
the returned parameter list. |In each paraneter list the data
paraneters are followed by a "" and then the capability paraneters.

1. File Capability
a. "Read", index; > data;

"Read" the data at the specified index. "Read" and the index
are passed. Data is returned.

b. "Wite", index, data; >

Wite the data into the area at the specified index. "Wite",
the index, and the data are passed. Nothing is returned.

2. Directory Capability
a. "Take", index; > ; capability
"Take" the capability fromthe specified index in the

directory. "Take" and the index are passed. The capability is
ret urned.

Donnel | ey [Page 3]

b. "Gve", index; capability> ;

RFC 712 A Distributed Capability Computing System February 1976

"G ve" the capability to the directory at the index specified.
"G ve" and the index are passed information. The capability is

al so passed. Nothing is returned.
c. "Find"; capability> result, index;

A directory, like a process Clist, is a repository for

capabilities. The first two invocations are anal ogous to the

two file invocations presented except that they involve
capability paraneters noved between directory and C i st
i nstead of between file and nenory. The last invocation
searches the directory for the passed capability. |If an

identical capability is found, "Yes" and the smallest index of

such a capability are returned. Oherwi se "No" and 0 are
returned.

3. Nil Capability

When a directory is initially created, it contains only ni
capabilities. Nl always returns "Enpty".

4. Process Capability
a. "Read", index; > data;
b. "Wite", index, data; > ;
c. "Take", index; > ; capability
d. "Gve", index; capability> ;
e. "Find"; capability> result, index;
f. "Start"; > ;

g. "Stop"; >

The a. and b. invocations go to the process’s menory space. C.

d.,

and e. gotoits Glist. F. and g. start and stop process execution

The CCS Extensi on Mechani sm

There is one nore basic capability nmechani sm needed for the CCS
i mpl enentati on of the DCCS. This nechani smallows processes to set
thensel ves up to create new capabilities that they can service. Such

Donnel | ey

[Page 4]

RFC 712 A Distributed Capability Computing System February 1976

nmechani sns differ widely on existing C-list systens. A workable
nmechani smis described. Another primtive capability is needed to
start things off:

5. Server Capability
a. "Create requestor", requestor number; > ; requestor
b. "My requestor?"; capability> answer, requestor nunber;
c. "Wait"; > reason, requestor nunber, PD; request

Two capabilities were introduced above besi des the server, the
requestor and request capabilities. These capabilities will be
descri bed as the invocations on a server are descri bed.

The first invocation creates and returns a requestor capability. The
nunber that is passed is associated with the requestor. The
requestor capability is the new capability being created. Any sort
of invocation can be perfornmed on a requestor. This is their whole
reason for existence. A process with a server capability can nmake a
requestor | ook like any kind of capability.

The "My requestor?" invocation can be used to determne if a
capability is a requestor on the invoked server, it returns either

"Yes", requestor number; or "No",O;

The last invocation "WAit"s until something that requires the
server’'s attention happens. There are two inportant events that a
service routine needs to be notified about. |If the last capability
to a requestor is overwitten so that the requestor cannot again be
i nvoked until a new one is created, the "wait" returns:

"Del eted"”, requestor nunber, 0; Ni
The last two paraneters, O and Nil, are just filler for the returned
PD and request (see 5c). Wwen a "wait" returns "Del eted", the
service routine can recycle any resources being used to service the
nunbered requestor (e.g., the requestor nunber).
The nost inportant event that causes a "wait" to return is when one
of the requestors for the server is invoked. 1In this case the server
returns:

"I nvoked", requestor nunber, PD; request

Donnel | ey [Page 5]

RFC 712 A Distributed Capability Computing System February 1976

The third paraneter, |abeled PD, stands for Paraneter Descriptor. It
descri bes the number of each kind of paraneter passing each way
during a requestor invocation. Specifically, it consists of four
nunbers: Data bits passed, capabilities passed, data bits requested,
and capabilities requested.

The | ast paraneter received, the request capability, is used by the
serving process to retrieve the passed paraneters and to return the
requested paranmeters to the requesting process. Accordingly, it has
the follow ng invocations:

6. Request Capability
a. "Read paraneters"; > {The passed paraneters
b. "Return", {The return parameters}> ;

The "Return" invocation has the additional effect of restarting the
requesting process.

One thing that should be noted about the server nechanismis that

i nvocations on a server’s requestors are queued until the server is
"wait"ed upon. This is one reason that a request is given a separate
capability. The serving process can, if it chooses, give the request
to sone other process for servicing, while it goes back and waits on
its server for nore requests. The corresponding situation in the
out si de bank w ndow anal ogy woul d be the case where the teller gives
the request to someone else for service so that the teller can return
to waiting custoners. The request capability points back to the
requesting process so that the return can be properly effected.

A sanpl e service, that of the well known semaphore [8] service
routi ne keeps a table containing the senmaphore val ues for each
semaphore that it is servicing. It also keeps a list of queued
requests that represent the processes that becone hung in the
semaphore by "P"ing the semaphore when it has a value | ess than or
equal to zero. The invocations on a semaphore are:

7. Semaphore

a. "P'; >

b. "V': > ;
A diagram and flow chart for the semaphore serving process is given
in Figures 1. and 2. The flow charts are given include nost of the

basi c capability invocations, but do not include detailed
descriptions of table searches. The table structure for the

Donnel | ey [Page 6]

RFC 712 A Distributed Capability Computing System February 1976

semaphore service routine includes entries for each supported
semaphore. Each entry contains the semaphore value and a link into a
list of pointers to the requests hung in the semaphore (if any).

The npst inportant feature of the server mechanismis that, by using
it, the functioning of any capability can be enul at ed.

This property, sinmilar to the insertion property discussed in [9], is
the cornerstone of the DCCS. The basic idea of the enulation is to
have the server "wait" for requests and pass themon to the
capability being emul ated. Such emulation of a single capability is
flow charted in Figure 3. The enulation flow charted is an overvi ew
that doesn’t handle all situations correctly. For exanple, a
capability may not return to invocations in the same order that they
are received. These situations also appear in the DCCS, so their
handling will be discussed there rather than here. It is inmportant
to note that, except for delays due to processing and comruni cati on
the enul ation done in the DCCS is exact.

The DCCS | npl enent ati on

The DCCS will initially be described on a network of CCS systens. W
will assume that there exists a network capability:

8. Network Capability
a. "lnput"; > Host no., nessage;
b. "Qutput", Host no., nessage > ;

It is assunmed that the "Qutput" invocation returns i mediately
after queuing the nmessage for output and that the "input"
i nvocation waits until nessage is avail able.

For pedagogi cal purposes, the description of the DCCS will be broken
into two parts. First a brief overview of the inportant nechanisns

will be given. The overvieww |l gloss over sone inportant issues

that will be resolved individually in the nore conpl ete description

that follows the overview

The intent of the DCCS is to allow capabilities on one host to be

ref erenced by processes on other hosts having the appropriate
capabilities. To do this, each host keeps a list of capabilities
that it supports for use by other hosts. Each host al so supports a
server, which gives out requestors that are nmade to appear as if they
were the corresponding capability supported by the rempte host. Wen
one of these emulated requestors is invoked, its paranmeters are
passed by the enul ating host through the network to the supporting

Donnel | ey [Page 7]

RFC 712 A Distributed Capability Computing System February 1976

host. The supporting host then sees to it that the proper capability
i s invoked and passed the paraneters. Wen the invoked paraneters
are passed back through the network to the emul ating host. The

emul ating host then returns the return paraneters to the requesting
process.

For exanple, let us take the "Read" request on a file diagranmed in
figure 4. Wen the enulated file (a requestor) is invoked, the

emul ati ng process receives "invoke", requestor nunber, PD;, request.
The requestor number that is returned is actually a descriptor

consi sting of two nunbers: Host numnber, capability nunber. These
descriptors are called Renpote Capability Descriptors (RCDs). An RCD
identifies a host and a capability in the |ist of capabilities
supported by that host. After receiving a request, the emulating
process reads the paraneters passed by the requesting process and
sends themalong with the Paraneters Descriptor to the renote host in
an "invoke" nessage.

When the renpte host receives this information, it passes the
paranmeters to the supported file capability by invoking it and
specifies the proper return paraneters as noted in the Paraneter
Descriptor. Wen the invoked file return paraneters, the returned
data i s passed back through the network to the emulating host in a
"Return" nessage. The returned data is then returned to the
requesting process by performng a "Return" invocation on the request
capability initially received by the enmulating host. Wen the
requesti ng process is awakened by the return, it will appear to it
exactly as if a local file had been invoked.

This works fine when the paraneters being passed and returned consi st
sinmply of information, but what happens when there are capabilities

i nvol ved? In this case the routines use the existing renpte
capability access nmechani sm and pass the appropriate descriptor. As
an exanpl e, the "Take" invocation on a directory is diagramed in
figure 5. The only essential difference is the fact that a
capability has to be returned. When the capability is returned by
the invoked directory (or whatever it really is), the supporting host
allocates a new slot in its supported capability list for the
capability and returns a new descriptor to the emulating host. Wen
the emul ati ng host receives the descriptor, it creates a new
requestor with the returned descriptor as its requestor number and
returns the requestor to the invoking process. The requestor so
returned acts as the capability taken fromthe renptely accessed
directory and can be invoked exactly as if were the real capability.

One inmportant thing to notice about this nechanismis that neither

the emul ati ng host nor the supporting host need to have any idea what
ki nd of capabilities they are supporting. The nechanismis

Donnel | ey [Page 8]

RFC 712 A Distributed Capability Computing System February 1976

i ndependent of their type. Al so inportant is the fact that neither
host need trust the other host with anything nore than the
capabilities that it has been rightfully granted. Even the DCCS
processes thensel ves need only be trusted with the network
capabilities and with the supported capabilities. Finally, note that
no secret passwords which nmight be disclosed are needed for security.
The DCCS directly extends the CCS protection nechani sns,

A nmore conpl ete description of the DCCS will now be given. To avoid
unnecessary conplication, however, several issues such as error

i ndi cations, systemrestart and recovery, network mal functions,
nessage size limtations, resource problens, etc. are not discussed.
These issues are not unique to the DCCS and their solutions are not
pertinent here.

As noted earlier, the conplete DCCS nmust address several issues that
were glossed over in the initial overview As these issues are

di scussed, several nessage types are introduced beyond the "I nvoke"
and "Return" nmessages discussed in the overview. The formats for al
the DCCS nessages are sumarized in figure 6.

A Timng -

I nvocations can take a very long time to conplete. W saw an
exanpl e in the semaphore capability earlier. An even nore graphic
exanpl e might be a clock capability that was requested to return
not hi ng AFTER 100 years had passed. Cearly we don’t want to have
the emul ating process wait until it receives a "Return" nessage
fromthe renote host before servicing nore invocations.

VWhat is done in the enulating host is to add the request
capability to a list of pending requests after sending the

"i nvoke" nessage to the supporting host (this is sonewhat |ike the
semaphore exanple earlier). The emulator can then go back and
wait for more | ocal requests.

There is a simlar problemon the supporting side. W don’t want
the process waiting on the network input capability to sinply

i nvoke the supported capability and wait for return. What it nust
do is to set up an invocation process to actually invoke the
supported capability so that pending network input can be pronptly
serviced. The invoking process nust then return the paraneters
after it receives them

These additi onal nechani sns add conplication of nmultiple requests
active between hosts. These requests are identified by a Renpte
Request Nunber (RRN). The RRN is an index into the list of
pendi ng requests.

Donnel | ey [Page 9]

RFC 712 A Distributed Capability Computing System February 1976

B. Loops -

If host A passes a capability to host B, and B is requested to
pass the requestor that is being used to enulate the capability
back to host A, should B sinply add the requestor to its support
list and allow A to access it renpotely? If it did, when the new
requestor was i nvoked on A the paraneters would be passed to B
where they woul d be passed to the requestor by the invoking
process. Invoking the requestor woul d cause the parameters to be
passed back through the network to A where the real capability
woul d finally be invoked. Then the return paraneters woul d have
to go through the reverse procedure to get back Avia B. This is
clearly not an optimal nechani sm

The solution to this probl em makes use of the "My requestor?"

i nvocation on a server capability described in 5b. Wen B checks
a capability that is to be returned to Awith the "My requestor?”
i nvocation and finds that the capability is one of its requestors
with a requestor nunber indicating that it is supported on A it
can sinmply return the requestor nunber (recall that is this is
really a Rempte Capability Descriptor, RCD) to A, containing the
fact that the capability specified is one that is local to A and
giving A the index to the capability in its supported capability
list.

C. Security

The nechani sm presented in B. brings up something of a security
issue. If B. tries to invoke a capability in A's supported |ist,
should A allow B access without question? If it did, any host on
the network could maliciously invoke any capability supported by
any other host. To allow access only if it has been granted
through the standard invocati on nechani sm each host can maintain
a bit vector indicating which hosts have access to a given
capability. |If a host does receive an invalid request, it is an
error condition.

D. Indirection

There is an additional twi st on a Loop problemnoted in B.. This
variation comes up when A passes a capability to B who then wants
to pass it to C. Here again B may unanbi guously specify which
capability is to be passed by sinply sending the Renbte Capability
Descriptor (RCD) that is knows it by. The RCD indicates that the
capability, however, A would probably not believe that C should
have access to it.

Donnel | ey [Page 10]

RFC 712 A Distributed Capability Computing System February 1976

B nust tell A "1, who have access to your 1'th capability, want
to grant it to host C'. To do this, another nessage type is used.
The "G ve" nessage specifies the supported capability and the host
that it should be given to (refer to figure 6). Here again,
giving away a capability that you don’t have is an error

condi tion.

E. Acknow edgenent -

There is one last problemwi th the "G ve" message. |f B sends the
"G ve" nessage to A and then continues to send the Renote
Capability Descriptor (RCD) to C, Cnmay try to use the RCD before
the "Gve" is received by A, For this reason, B nmust wait until A
has "ACK"'now edged the "G ve" nmessage before sending the RCD to C
Thi s mechani smrequires that hosts queue un"ACK'now edged "G ve"s.
The format for an "ACK" is given in figure 6. This queuei ng nay
be avoided for nost "Gve"s after the first for a given RCD, but
only at the cost of nuch additional menory and broadcasting

"Del ete"s (See F. bel ow).

F. Deletion -

If all the requestors on A for a given capability supported on B
are deleted. A may tell B so that B may:

a. Delete A's validation bit in the bit vector for the specified
capability and

b. If there are no hosts left that require support of the given

capability, the capability my be deleted fromthe supported

capability list.

This function requires a new "Del ete" nessage.
Figure 6 is a summary of the nessage formats. Figure7-11 flow chart
the complete DCCS. In the flow charts, abbreviations are used to
i ndi cates the directories:

CSL - Capability Support List

RRL - Renpte Request List

IPL - Invocation Process List
The tabl e manipulation is not given in detail. Three tables are
needed. The first is associated with the CSL and contains the bit

vectors indicating access as noted in C. above. The second table is
associated with the RRL. It contains a host nunber for each active

Donnel | ey [Page 11]

RFC 712 A Distributed Capability Computing System February 1976

request. An attenpted return on a request by a host other that the
requested host is an error. The final table is a nmessage buffer
cont ai ni ng the pending "I nvoke" and "Return" requests.

In order to avoid hazards in referencing the CSL and its table, a
semaphore called the CSLS is used. A nessage buffer semaphore, MBS,
is simlarly used to | ock the nmessage buffer. For the RRL and IPL no
| ocks are needed with the al gorithnms given.

CGeneral i zation and Application

To i npl emrent the DCCS, we assuned a network of CCS systens. The
specifications of the CCS were, however, very | oose. For exanple, no
mention was nade of instruction sets. Any CCS-like inplenmentation
coul d use the nmechani sns descri bed herein to snare their objects. A
process passed to systemwith a different instruction set, for
exanpl e, could be used as an efficient emulator.

The nost inportant generalization of the DCCS is to note that a given
i mpl ement ati on has no idea what kind of host it is talking to over
the network. Any sort of host could inplenent a protocol using the
nmessages given. For example, a single user systemmght allowits
user to performarbitrary invocations on renote capabilities and keep
a table of returned capabilities. Such a system m ght al so support
sonme kind of standard term nal capability that could be given to
renote processes. On a multi-user system simlar functions could be
performed for each user

In some sense, any systeminpl ementing the DCCS protocol becones a
Clist system The single user systemcould, for exanple, set up
renote processes servicing renote server capabilities giving out
requestors to the single user systemor any other systens. Returns
frominvocations could appear on the single user’'s termnal by renote
i nvocation of the termi nal capability, etc..

| mpl ementing the DCCS on non-C-list systens is simlar in sone
respects to what happened with sonme host to host protoco

i mpl ement ations on the Department O Defense’s ARPA network [10].
The ARPA network host to host protocols allows a process on one
systemto comruni cate with a process on another. Mny of the ARPA
net protocol inplenentations had the effect of introducing |oca
process to process conmunication in hosts that fornerly had none.

Donnel | ey [Page 12]

RFC 712 A Distributed Capability Computing System February 1976

Appli cations
. Single Copy

The first application is a solution to what | have dubbed the
single copy problemfor information resources. Wenever a
process receives information froma information resource, it
can only receive a local copy of the information. This fact is
apparent when the information come froma distributed data
base, but is also true in tightly coupled virtual nenory
situations where information from shared menory nust be copied
into local registers for processing. Once a process has a

| ocal copy of some information, it might like to try to insure
that the information remains current, i.e., that it is the

si ngl e copy.

The traditional solution to this problemis to |ock the

i nfornmati on resource with a semaphore before nmaking a | oca
copy and then invalidate the | ocal copy before unlocking the
resource. This solution suffers fromthe fact that, even

t hough ot her processes may not be requesting the copi ed data,
the data must be unl ocked quickly just in case. This can
result in many needl ess copi es bei ng made.

What is needed is a nechanismfor invalidating |ocal copies
exactly when requests by other processes would force
invalidation. To offer such a mechanism an information
resource can have, in addition to the usual reading and witing
i nvocations, the foll ow ng:

"White lock", portion; > ; wite notify
"RW I ock", portion; > RWnotify

The inmportant invocation on the notify capabilities is:
"Wait for notification"; > reason

The basic idea is to allow a process to request that it be
notified if an attenpt is being made to invalidate its copy.

If the copy is used for reading only, the process need only
request notifications of attenpted nodifications of the data
("Wite lock"). Wen a process is so notified, it is expected
to invalidate its copy and delete its wite notify capability
to informthe information resource server that the pending
wite access nay proceed.

Donnel | ey [Page 13]

RFC 712

Donnel | ey

A Distributed Capability Computing System February 1976

In the read wite lock case, the RWnotify capability may al so
be used for reading and witing the portion. Any other access
to the portion will cause notification. When notified, the
process with the RWnotify capability is expected to wite back
the latest copy of the information before deleting its RW
notify capability.

Space does not permt presenting nore details for this
mechanism The inportant fact to notice is that it permts an
i nformati on resource to be shared in such a way that, though
the information may be widely distributed, it is nmade to appear
as a single copy. This mechanism has inportant applications to
di stributed data bases.

Net wor k Resource Optinization

The application that probably best denonstrates the useful ness
of the DCCS is the sort of network optim zation capability that
can be used to create at |least the primtive capabilities
introduced earlier:

9. Account Capability
a. "Create", type; >; capability

The passed type paranmeter could at |east be any of: "File",
"Directory", "Process", or "Server". The appropriate type
of capability would be returned. The resources used for the
capability are charged to the particul ar account.

Now suppose that a user on one CCS systemw thin a DCCS network
has renpte access to account capabilities on several other CCS
systens. This user could create what night be called a super
account capability to optim ze use of his network resources.
The super account capability would actually be a requestor
serviced by a process with optim zation desired would be

conpl etely under user control, but sonme of the nore obvious
exanpl es are presented:

1. Static Object Creation Optimzation

a. Wien a new file is requested, create it on the system
with the fastest access or the | east cost per bit.

b. When a process is requested, create it on the systemwth

the fastest current response or with the | east cost per
instruction.

[Page 14]

RFC 712 A Distributed Capability Computing System February 1976

2. Dynamic optinization

To do dynamic optimzation, the super account woul d not give
the requesting process the capability that it received from
the renpte account after its static optimzation, but would
give out a requestor that it would make function like the
actual capability except optim zed.

a. Wien network conditions or user needs charges, files can
be nmoved to nore effective systems. changes in cost
conditions mght result in file movement. Charges in
reliability conditions mght result in noverment of files
and/or in addition or deletion of nmultiple copies.

b. If systemload conditions or CPU charges change, it night
be effective to relocate a process. The super account
service process coul d: create a new process on a nore
ef fective system stop the old process, nove the old C
list and menory to the new process and start the new
process up. The enul ation process given to the user
woul d never appear to change.

c. Simlar optimzations can be done on any ot her
capabilities.

Such a super account can automatically optimze a user’s
network resources to suit the user’s needs without changing
the functional characteristics of the objects being

optim zed

Fi nal Note

The DCCS mechani sms defined in this paper are currently being

i mpl enented on a Digital Equiprment Corporation PDP-11/45 conputer for
use as an experimental protocol on the ARPA conputer network [10].
The DCCS protocol will also formthe basis for a gateway between the
ARPA network and Energy Research and Devel openent Agency’'s CTR
network [11]. It is the authors hope that the DCCS nechani sm wil |
hasten the approach of the kind of networks that are needed to create
atruly free market in conputational resources.

Acknowl edgenent s

The author would like to thank the adnministrators and staff of the
Conput er Research Project at the Lawence Livenore Laboratory for
creating the kind of environnent conductive to the ideas presented in
this paper. Special thanks are due to Charles Landau for nany of the
Clist ideas as inplenented in the current RATS system

Donnel | ey [Page 15]

RFC 712 A Distributed Capability Computing System February 1976

Ref er ences

1. C R Landau, The RATS Operating System Law ence Livernore
Laboratory, Report UCRL-77378 (1975)

2. C. R Landau, An Introduction to RATS (Rl SOS/ ARPA Term na
Systenm): An Operating Systemfor the DEC PDP-11/45, Law ence
Li vernore Laboratory, Report UCRL-51582 (1974)

3. J. E. Donnelley, Notes on RATS and Capability List Operating
Systenms, Law ence Livernore Laboratory, Report UCI D 16902 (1975)

4. B. W Lanpson, "On Reliable and Extendabl e Operating Systens",
Techni ques in Software Engi neering, NATO Sci Comm Wbrkshop Materi al
Vol . 11 (1969)

5. W wilf, et. al., "HYDRA: The Kernel of a Miltiprocessor Qperating
Systent, Comunications of the ACM 17 6 (1974)

6. P. Neumann et. al., "On the Design of a Provably Secure Operating
Systenmt International Wrkshop on Protection in Operating Systens,

I RIA (1974)

7. R S. Fabry, "Capability-Based Addressing", CACM 17 7 (1974)

8. EE. W Dijkstra, "Cooperating Sequential Processes", published in
Programm ng Languages, F. Genuys, editor, Acadenic Press, pp. 43-112
(1968)

9. F. A Akkoyunlu, et. al., "Some Constraints and Tradeoffs in the
Desi gn of Network Comuni cations”, Proceedings of the Fifth Synposi um
on Qperating SystemPrinciples, Vol. 9 No. 5 pp. 67-74 (1975)

10. L. G Roberts and B. D. Wessler, "Computer Network Devel opnent to
Achi eve Resource Sharing", AFLPS Conference Proceedi ngs 36, pp
543-549 (1970)

11. "National CTR Conputer Center", Lawence Livernore Laboratory

Energy and Technol ogy Revi ew, Law ence Livernore Laboratory UCRL-
52000- 75- 12, Decenber (1975)

Donnel | ey [Page 16]

RFC 712 A Distributed Capability Computing System February 1976

The figures are not included in the online version. Interested
readers can obtain a hardcopy version of the docunents including the
figures by requesting a copy of UCRL-77800 from

Techni cal | nformati on Depart nment
Law ence Livernore Laboratory
University of California Livernore, California 94550

Questions or conments woul d be appreciated and should be directed to
t he aut hor:

Though the U S. mail

Janes E. Donnell ey

Law ence Livernore Laboratory L-307
P. O Box 808

Li vernore, California 94550

By tel ephone:
(415) 447-1100 ext. 3406

Vi a ARPA net muail
JED@BBN

"This report was prepared as an account of work sponsored by the
United States Governnent. Neither the United States nor the United
States Energy Research & Devel oprment Admini stration, nor any of their
enpl oyees, nor any of their contractors, subcontractors or their

enpl oyees, makes any warranty, express or inplied, or assumes any
legal liability or responsibility for the accuracy, conpleteness or
useful ness of any information, apparatus, product or process

di scl osed, or represents that its use would not infringe privately-
owned rights."

Donnel | ey [Page 17]

