
Network Working Group A. McKenzie
Request for Comments: 714 BBN-NCC
NIC: 35144 April 1976

 A Host/Host Protocol for an ARPANET-Type Network

 Recently we have been involved in the planning of a network, which,
 if implemented, would use ARPANET IMPs without modification, but
 would allow re-specification of Host/Host (and higher level)
 Protocol. The remainder of this document is a slightly edited
 version of our recommendation for Host/Host protocol; we thought that
 it might be of interest to the ARPANET Community.

I. INTRODUCTION

 The Host/Host Protocol for the ARPANET was the first such protocol
 designed for use over a packet-switched network. The current version
 has been in existence since early 1972 and has provided for the
 transportation of billions of bits over tens or hundreds of thousands
 of connections. Clearly, the protocol is adequate for the job; this
 does not mean that it is ideal, however. In particular, the ARPANET
 Host/Host protocol has been criticized on the following grounds
 (among others):

 (1) It is specified as a simplex protocol. Each established
 connection is a simplex entity, thus two connections (one in each
 direction) must be established in order to carry out an exchange
 of messages. This provides great generality but at a perhaps
 unacceptable cost in complexity.

 (2) It is not particularly robust, in that it cannot continue to
 operate correctly in the face of several types of message loss.
 While it is true that the ARPANET itself rarely loses messages,
 messages are occasionally lost, both by the network and by the
 Hosts.

 (3) Partly because of the simplex nature of connections, the flow
 control mechanisms defined in the ARPANET protocol do not make
 efficient use of the transactional nature of much of data
 processing. Rather than carrying flow control information (in
 the form of permits, or requests for more information) in the
 reverse traffic, a separate channel is set up to convey this
 information. Thus, for transactional systems, up to twice as
 many messages are exchanged (half for flow control information
 and half for data) as would be needed for data alone.

McKenzie [Page 1]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 (4) Prohibition against the multiple use of a connection termination
 point makes the establishment of communication with service
 facilities extremely cumbersome.

 The International Federation for Information Processing (IFIP)
 Working Group 6.1 (Packet-switched Network Internetworking) has
 recently approved a proposal for an internetwork end-to-end protocol.
 The IFIP Protocol is based on experience from the ARPANET, the
 (French) Cyclade Network, and the (British) NPL Network, as well as
 the plans of other networks. Thus, one would expect that it would
 have all of the strengths and few (or none) of the weaknesses of the
 protocols which are in use on, or planned for, these networks.

 In fact, the IFIP Protocol avoids the deficiencies of the ARPANET
 protocol mentioned above. Connections are treated as full-duplex
 entities, and this decision permits flow control information to be
 carried on the reverse channel in transaction-oriented systems where
 there is reverse channel traffic occurring naturally. In addition,
 the IFIP Protocol is to some extent self synchronizing; in
 particular, there is no type of message loss from which the Protocol
 does not permit recovery in a graceful way.

 The IFIP Protocol makes a minimal number of assumptions about the
 network over which it will operate. It is designed to permit
 fragmentation, as a message crosses from one network to another,
 without network reassembly. It anticipates duplication, or non-
 delivery, of messages or message fragments and provides ways to
 recover from these conditions. Finally, it permits delivery of
 messages at their destination Host in a completely different order
 from the order in which they were input by the source Host.
 Unfortunately, it achieves these advantages at a relatively high
 overhead cost in terms of transferred bits. The complete source and
 destination process addresses are carried in every message, 24-bits
 of fragment identification are carried with each fragment and 16-bits
 of acknowledgement information are else carried in every message.

 When considering channel capacities of hundreds of kilobits (or
 more), message overhead of a few hundred bits is a modest price to
 pay in order to achieve great flexibility and generality. However,
 for a stand-alone network of the type under consideration, and
 especially in view of the anticipated use of many circuits of 10kbs
 capacity, the IFIP Protocol offers far more generality than is
 needed, for which a fairly severe overhead price is paid.

 The virtual circuit protocols currently being debated within the
 International Telegraph and Telephone Consultative Committee (CCITT)
 are a step in the opposite direction. Virtual circuit protocols
 attempt to make a packet switching network indistinguishable (from a

McKenzie [Page 2]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 customer’s point of view) from a switched circuit network, except
 possibly in regard to error or delay characteristics. Thus, virtual
 circuit protocols generally place responsibility for end-to-end
 communications control within the network rather than within the
 Hosts. For example, when a receiving Host limits the rate at which
 it accepts data from the network, the network in turn limits the rate
 of input from the Host which is transmitting this data stream. Host
 protocols which are designed for virtual circuit networks can be
 quite simple, if somewhat inflexible. For example, the Host might
 give the network a "link number" or "index" and ask the network to
 set up a virtual circuit to some other Host to be associated with
 this number, and report back if and when the circuit is established.
 However, significant development would be required to add a virtual
 circuit capability to the ARPANET IMP software; the required changes
 would seem to be more expensive and carry greater uncertainty than
 they are worth.

 In light of the above, our approach in defining this proposed
 protocol has been to start with the ARPANET Host/Host Protocol and
 modify it according to some of the concepts of the IFIP Protocol in
 order to remedy its major deficiencies. The remainder of this
 document specifies the protocol, which we have designed for this
 purpose.

II. COMMUNICATION CONCEPTS

 The IMP subnetwork imposes a number of physical restrictions on
 communications between Hosts. These restrictions are presented in
 BBN Report No. 1822. In particular, the concepts of leaders,
 messages, padding, message ID’s and message types are of interest to
 the design of Host/Host Protocol. The following discussion assumes
 that the reader is familiar with these concepts.

 The IMP subnetwork takes cognizance only of Hosts, but in general a
 Host connected to the network can support several users, several
 terminals, or several independent processes. Since many or all of
 these users, terminals, or processes will need to use the network
 concurrently, a fundamental requirement of the Host/Host Protocol is
 to provide process-to-process communication over the network. Thus,
 it is necessary for the Host/Host Protocol to provide a richer
 addressing structure than is required by the IMP subnetwork.

 Processes within a Host are envisioned as communicating with the rest
 of the network through a network control program (NCP) resident in
 that Host, which implements the Host/Host protocol. The primary
 functions of an NCP are to establish connections, break connections,
 and control data flow over connections. A connection couples two
 processes so that the output from one process is input to the other

McKenzie [Page 3]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 and vice versa. The NCP may be implemented either as part of the
 Host’s operating system or a separate user process, although it must
 have the capability of communicating with all of the processes or
 routines which are attempting to use the network.

 In order to accomplish its tasks, the NCP of one Host must
 communicate with the NCPs of other Hosts. To this end, a particular
 communication path between each pair of Hosts has been designated as
 the control connection. Messages transmitted over the control
 connection are called control messages, and must always be
 interpreted by an NCP as a sequence of one or more control commands.
 For example, one kind of control command is used to initiate a
 connection while another kind carries notification that a connection
 has been terminated.*

 * Note that in BBN Report No. 1822, messages of non-zero type are
 called control messages, and are used to control the flow of
 information between a Host and its IMP. In this document the
 term "control message" is used for a message of type zero
 transmitted over the control connection. The IMPs take no
 special notice of these messages.

 The maximum size of a message is limited by the IMP subnetwork to
 approximately 1000 8-bit bytes, and in fact may be further limited by
 the receiving Host for flow control reasons, as described later.

 Accordingly, the transmitting process, or its Network Control
 Program, must take responsibility for fragmenting long interprocess
 messages into messages of a size conforming to the Host/Host and
 Host/IMP protocols. For this reason, it is impossible for a sending
 Host to guarantee that any significance should be attached to message
 boundaries by receiving processes. Nevertheless, message boundaries
 will occur naturally, and should be used in a reasonable way wherever
 possible; that is, a sending process or its NCP should not act
 arbitrarily in deciding to fragment messages. For example, this
 protocol specifies that each control message must contain an integral
 number of control commands and no single control command will be
 split into two pieces which are carried through the network in
 separate messages.

 A major concern of the Host/Host Protocol is the definition of the
 method for references to processes in other Hosts. In order to
 facilitate this, a standard name space is used, with a separate
 portion of the name space allocated to each Host. Each Host
 therefore must map internal process identifiers into its portion of
 this name space. The elements of the name space are called sockets.
 A socket forms one end of a connection and a connection is fully
 specified by a pair of sockets, one in each Host. A socket is

McKenzie [Page 4]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 identified by a Host number and a 16-bit socket number. The same
 16-bit socket number in different Hosts represents difference
 sockets. In order to avoid the transmission of a pair of 16-bit
 socket numbers in each message between these sockets, the process of
 connection establishment allows each Host to define a mapping, valid
 for the lifetime of the connection being established, from the 32
 bits which specify the socket pair to an 8-bit number.

 No constraints are placed on the assignment of socket numbers;
 however, since a pair of socket numbers defines a unique connection,
 it is clear that in assigning socket numbers, a Host must ensure that
 for each new connection at least one of the socket numbers is unique.
 For example, a Host which supports many terminals might choose to use
 a terminal’s physical interface number as a portion of the socket
 number involved in any connection established on behalf of that
 terminal. This would insure uniqueness at the terminal end. Thus,
 no conflict would occur if several terminals attempted to access a
 common resource (identified by its own unique socket number).

 From the foregoing it should be clear that the Host/Host protocol
 allows a single socket to participate in several connections
 simultaneously. This is quite similar to what happens in the
 telephone system, where a company, as well as an individual, can be
 identified with a phone number. As seen from the outside, the phone
 number of a company is sharable, since several conversations can
 proceed at the same time and the caller does not have to worry about
 the already existing conversations. Conversely, the phone number of
 an individual is not sharable, since he can process only one
 conversation at a time; the same is generally true of a connection to
 a terminal which might be using the network.

 A final major concept which should be explained is the "windowing"
 concept, which is used for flow control. This concept is adapted
 from the IFIP protocol with some appropriate modifications for use in
 an ARPANET-type network. When a connection is established, a
 sequence number is initialized to some specified starting point and
 the receiver allocates a certain number of credits to the sender.
 Each credit entitles the sender to transmit one message; that is, the
 receiver agrees to provide buffering for the number of messages
 specified by the number of credits granted. If one thinks of
 sequence numbers advancing from left to right, the initial sequence
 number defines the left edge of a window into the entire sequence
 number space and the credit, when added to the initial sequence
 number, defines the right edge of the window. The transmitting
 process is permitted to send as many messages and as would fill the
 window, but not more.

McKenzie [Page 5]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 When a receiver receives a message whose sequence number is at the
 left window edge (or several consecutive messages extending rightward
 from the left window edge) the receiver returns an acknowledgement
 for the rightmost such message, along with a new credit, and advances
 his own window; its new left edge immediately follows the last
 acknowledged message and it’s new right edge is at the location
 defined by adding the new credit to the new left window edge.
 Similarly, when a sender receives an acknowledgement he advances his
 own left window edge to the location in the sequence number space
 specified by the acknowledgement and his own right window edge to the
 location specified by adding the new credit allocation to the left
 window edge. Fields are reserved in each data message to carry an
 acknowledgement and a credit for traffic flowing in the reverse
 direction. Thus, in the case of interactive or transactional
 exchanges, no control messages need to be sent.

 In the event that a sender does not receive acknowledgements for
 previously transmitted messages within some timeout period, the
 messages are transmitted again, using the same sequence number as was
 previously assigned. This allows straightforward recovery from the
 situation of lost messages. On the other hand, if it is the
 returning acknowledgement which is lost, the fact that the
 retransmitted message carries an identical sequence number allows the
 receiver to discard it. However, the receiver should notice that at
 the time of retransmission the sender had not received an
 acknowledgement; therefore, the receiver should re-acknowledge this
 (and any subsequently received messages) by transmitting an
 acknowledgement bearing the current left window edge. Thus, in both
 the case of lost data messages and the case of lost acknowledgements
 the protocol remains synchronized.

 The primary difference between this protocol and the IFIP Protocol is
 in the size of the sequence number field. The IFIP Protocol is
 designed for interconnections of many networks with huge
 variabilities in delay and with a strong possibility that messages
 will not be delivered at the destination in the same order in which
 they were transmitted by the source. Thus, the IFIP Protocol uses a
 16-bit sequence number field which, even at megabit per second rates
 cannot be completely cycled through in less than several hours.
 However, the proposed ARPANET-type network has the characteristic
 that delays are typically short, messages are rarely lost, and they
 are always delivered in the same order in which they were sent if
 they are delivered at all. Therefore, this Host/Host Protocol uses
 only a 4-bit sequence number field which, of course, is cycled
 through every 16 messages. This imposes the constraint that a window
 may never be larger than eight messages. Since the sequence number
 is contained in a 4-bit field, it is also possible to use only four

McKenzie [Page 6]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 bits for each of the credit and acknowledgement fields; thus, this
 protocol uses only 12 bits in each message header rather than 40 bits
 used under the IFIP Protocol.

III. NCP FUNCTIONS

 The functions of the NCP are to establish connections, terminate
 connections, control flow, transmit interrupts, and respond to test
 inquiries. These functions are explained in this section, and
 control commands are introduced as needed. In Section IV the formats
 of all control commands are presented together.

 Connection Establishment

 The command used to establish the connection is the RFC (request
 for connection).

 8* 16 16 8 16 8
 --
 ! RFC ! my-socket ! your-socket ! Index ! size ! credit !
 --

 * The number shown above each control command field is the
 length of that field in bits.

 The RFC command either requests the establishment of a connection
 between a pair of sockets or accepts a previously received request
 for connection. Since the RFC command is used both for requesting
 and accepting the establishment of a connection, it is possible
 for either of two cooperating processes to initiate connection
 establishment. Even if both processes were to simultaneously
 request the establishment of a connection, each would interpret
 receipt of the RFC sent by the other as an acceptance of its own
 RFC, and thus the connection would be established without
 difficulty. The my-socket and your-socket fields in the RFC
 identify the sockets which terminate the ends of the connection at
 each Host. The index field of the RFC specifies an index number
 which will be contained in each data transmission sent over this
 connection from the "my-socket" to the "your-socket" end of the
 connection. The size field of the RFC specifies the maximum
 number of 8-bit bytes which are permitted to be sent from the
 "your-socket" to the "my-socket" end of the connection in any one
 message. The credit field of the RFC specifies the initial size
 (in the range 0-7) of the window in the "your-socket" to the "my-
 socket" direction of the connection. A pair of RFCs exchanged
 between two Hosts matches when the my-socket field of one equals
 your-socket field of the other, and vice versa. The connection is
 established when a matching pair of RFCs has been exchanged.

McKenzie [Page 7]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 Connections are uniquely specified by the sockets which terminate
 the connection; thus, a pair of socket numbers cannot be used to
 identify two different connections simultaneously. Similarly, the
 index is used to specify which connection a data message pertains
 to; thus, an index value cannot be reused while the connection to
 which it was first assigned is still active or in the process of
 being established. For example, consider an RFC sent from Host A
 to Host B whose my-socket field contains the value X, your-socket
 field contains the value Y, and index contains the value Z. Until
 the requested connection has been closed (even if it is never
 established) or reinitialized, Host A is prohibited from sending a
 different RFC to Host B whose my-socket field and your-socket
 fields are X and Y, or whose index field is Z. Note that the
 prohibition against the reuse of the values X and Y treats them as
 a pair; that is, another RFC may be sent from Host A to Host B,
 whose my-socket field contains the value X so long as the your-
 socket field contains some value other than Y.

 In general there is no prescribed lifetime for an RFC. A Host is
 permitted to queue incoming RFCs and withhold a response for an
 arbitrarily long time, or, alternatively, to reject requests
 immediately if it has not already sent a matching RFC. Of course,
 the Host which originally sent the RFC may be unwilling to wait
 for an arbitrarily long time so it may abort the request.

 The decision to queue or not to queue incoming RFCs has important
 implications which must not be ignored. Each RFC which is queued,
 of course, requires a small amount of memory in the Host doing the
 queuing. If the incoming RFC is queued until a local process
 takes control of the local socket and accepts (or rejects) the
 RFC, but no local process ever takes control of the socket, the
 RFC must be queued "forever". On the other hand, if no queuing is
 performed, the cooperating processes which may be attempting to
 establish communication may be able to establish this
 communication only by accident.

 The most reasonable solution to the problems posed above is for
 each NCP to give processes running in its own Host two options for
 attempting to initiate connections. The first option would allow
 a process to cause an RFC to be sent to a specified remote socket,
 with the NCP notifying the process as to whether this RFC was
 accepted or rejected by the remote Host. The second option would
 allow a process to tell its own NCP to "listen" for an RFC to a
 specified local socket from some remote socket (the process might
 also specify the particular remote socket and/or Host it wishes to
 communicate with) and to accept the RFC (i.e., return a matching

McKenzie [Page 8]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 RFC) if and when it arrives. Note that this also involves queuing
 (of "listen" requests) but it is internal queuing, which is
 susceptible to reasonable management by the local Host.

 Connection Termination

 The command used to terminate a connection is CLS (close).

 8 16 16

 ! CLS ! my-socket ! your-socket !

 The my-socket field and your-socket field of the CLS command
 identify the sockets which terminate the connection being closed.
 Each side must send and receive a CLS command before the
 connection termination is completed and prohibitions on the reuse
 of the socket pair and index value are ended.

 It is not necessary for connection to be established (i.e., for
 both RFCs to be exchanged) before connection termination begins.
 For example, if a Host wishes to refuse a request for connection
 it sends back a CLS instead of a matching RFC. The refusing Host
 then waits for the initiating Host to acknowledge the refusal by
 returning a CLS. Similarly, if a Host wishes to abort its
 outstanding request for connection it sends a CLS command. The
 foreign Host is obliged to acknowledge the CLS with its own CLS.
 Note that even though the connection was never established, CLS
 commands must be exchanged before the prohibition on the reuse of
 the socket pair or the index is completely ended. Under normal
 circumstances a Host should not send a CLS command for a
 connection on which that Host has unacknowledged data outstanding.
 Of course, the other Host may have just transmitted data so the
 sender of the CLS command may expect to receive additional data
 from the other Host.

 The Host should quickly acknowledge an incoming CLS so that the
 foreign Host can purge its tables. In particular, in the absence
 of outstanding unacknowledged data a Host must acknowledge an
 incoming close within 60 seconds. Following a 60 second period,
 the Host transmitting a CLS may regard the socket pair and the
 index as "unused" and it may delete the values from any tables
 describing active connections. Of course, if the foreign Host
 malfunctions in such a way that the CLS is ignored for longer than
 60 seconds, subsequent attempts to establish connections or
 transmit data may lead to ambiguous results. To deal with this
 possibility, a Host should in general "reinitialize" its use of
 connection parameters before attempting to establish a new

McKenzie [Page 9]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 connection to any Host which has failed to respond to CLS
 commands. Methods for reinitializing connection parameter tables
 are described below.

 Acknowledgement

 As described in the previous section, flow control is handled by a
 windowing scheme, based on sequence numbers. Credits and
 acknowledgements can be piggybacked on data traveling over the
 reverse channel. Thus, in general, acknowledgement of the receipt
 of messages will take place over the data connection rather than
 over the control connection. However, there are some cases when
 it may be desirable to pass acknowledgements over the control
 connection (for example, when there is no data to be returned in
 the reverse direction). In addition, for efficiency it may be
 desirable to negatively acknowledge data transmissions known not
 to have been delivered, rather than waiting for the timeout and
 retransmission mechanism to cause such messages to be
 retransmitted. [Note that such negative acknowledgement is not
 required, since timeout and retransmission is always sufficient to
 guarantee eventual delivery of all data, but may be used to
 increase the efficiency of communication.] Since the frequency of
 use of the negative acknowledgement system over an ARPANET-type
 network will be extremely low, it is undesirable to leave space
 for negative acknowledgements in the header of every data message.
 Thus, negative acknowledgement can be most conveniently handled by
 control messages.

 There are two commands dealing with acknowledgements.

 8 8 4 4

 ! ACK ! index ! seq ! crd !

 The ACK (acknowledgement) command carries three data fields. The
 index value is the index used by the sender of the acknowledgement
 to identify the connection. The sequence ("seq") field contains
 the sequence number of the highest-numbered sequential data
 message correctly received over the connection. [The very first
 data message to be transmitted over a newly established connection
 will have the sequence number one; until this data message is
 correctly received, any acknowledgement commands transmitted for
 this connection (for example, to change the credit value) will
 have the sequence field set to zero. This applies whether the
 "acknowledgement" is carried by an ACK command or is contained in
 data messages being sent to the foreign Host over the connection.]
 The credit ("crd") field contains a number, in the range 0-7,

McKenzie [Page 10]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 which gives the size of the receive window. This number, when
 added to the "seq", gives the sequence number of the highest
 numbered message which is permitted to be transmitted by the
 foreign Host. Thus, a credit of zero says that the Host
 transmitting the ACK command is currently not prepared to accept
 any messages over the connection; and a credit of 7 says the Host
 is prepared to accept up to 7 messages over the connection. Of
 course, since the sequence number is contained in a 4-bit field,
 the addition of the sequence number and the credit value must be
 performed modulo 16 (sequence number zero immediately follows
 sequence number 15).

 As noted above, the ACK command is intended for use with data
 connections where there is no data flow in one direction, for
 example, the transmission of a file to a line printer. In fact it
 should be clear that, since transmission of control messages is
 not synchronized with transmission of data messages (either in the
 network or, more importantly, in the transmitting NCP), ACK
 commands should not be sent for any connection over which data is
 flowing in the same direction. Thus, if an ACK command is
 generated, the NCP which transmits it must insure that the control
 message which contains it is transmitted prior to the transmission
 of new data messages for the same connection.

 8 8 8

 ! NACK ! index ! seq !

 The NACK (negative acknowledgement) command contains two data
 fields. As with the positive acknowledgement command described
 above, the first field is the index number assigned to this
 connection by the sender of the NACK. However, the second field
 contains only the 4-bit sequence number, right justified in an 8-
 bit field, of the data message for the connection in question
 which is being negatively acknowledged. As previously noted, the
 NACK serves no vital function in the protocol but may occasionally
 allow more efficient communication. The NACK is intended to be
 used when the window width is greater than one, the message at the
 left window edge has not been correctly received, and messages
 toward the right of the window have been correctly received. A
 timeout will eventually cause the retransmission of the missing
 message, at which point the left window edge can be moved forward
 several messages. Use of the NACK, however, could trigger the
 immediate retransmission of the missing message and thus reduce
 the delay. Of course, if more than one message is missing it may

McKenzie [Page 11]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 be desirable to send several NACKs for one index in a single
 control message; the protocol permits this, although it is
 extremely unlikely to occur.

 Re-initialization

 Occasionally, due to lost control messages, system crashes, NCP
 errors, or other factors, communication between two NCPs will be
 disrupted. One possible effect of any such disruption might be
 that neither of the involved NCPs could be sure that its stored
 information regarding connections with the other Host matched the
 information stored by the NCP of the other Host. In this
 situation, an NCP may wish to reinitialize its tables and request
 that the other Host do likewise. This re-initialization may be
 requested for a particular index and/or socket pair, or globally
 for all connections possibly established with the other Host. For
 these purposes, the protocol provides three control commands as
 described below:

 8 16 16 8

 ! RCP ! my-socket ! your-socket ! index !

 The RCP (reinitialize connection parameters) command contains
 three data fields. The my-socket and your-socket fields contain a
 pair of socket numbers, which define a connection; the index field
 contains a value which would identify data messages over a
 connection. When this command is received by an NCP it should
 purge its tables of any reference to a connection identified by
 the socket pair or any reference to a connection for which
 received data would be identified by the specified index value; of
 course, only connections using these values with the Host sending
 the RCP would be purged. In effect, the Host sending the RCP
 command is saying: "I am about to send you an RFC using this
 socket pair and this index to identify a data connection, which I
 hope we can agree to establish. I do not believe that any use of
 this socket pair or this index conflicts with any previous use,
 but if you believe it does, please record the fact (for later
 examination) as an error and then delete from your tables the
 conflicting information so that we may proceed to establish the
 connection."

 In case more global difficulties or loss of state information are
 suspected, the protocol provides the pair of control commands RST
 (reset) and RRP (reset reply).

McKenzie [Page 12]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 8

 ! RST !

 8

 ! RRP !

 The RST command is to be interpreted by the Host receiving it as a
 signal to purge its tables of any entries which arose from
 communication with the Host which sent the RST. The Host sending
 the RST should likewise purge its tables of any entries which
 arose from communication with the Host to which the RST was sent.
 The Host receiving the RST should acknowledge receipt by returning
 an RRP. Once the first Host has sent an RST to the second Host,
 the first Host should not communicate with the second Host (except
 for responding to RST) until the second Host returns an RRP. If
 both NCPs decide to send RSTs at approximately the same time, each
 Host will receive an RST and each must answer with an RRP even
 though its own RST has not been answered.

 A Host should not send an RRP when an RST has not been received.
 Further, a Host should send only one RST (and no other commands)
 in a single control message and should not send another RST to the
 same Host until either 60 seconds have elapsed or a command which
 is not an RST or RRP has been received from that Host. Under
 these conditions, a single RRP constitutes an answer to all RSTs
 sent to that Host and any other RRPs arriving from that Host
 should be discarded.

 Interrupts

 It is sometimes necessary in a communication system to circumvent
 flow control mechanisms when serious errors or other important
 conditions are detected. For example, the user of a time sharing
 terminal who creates and begins the execution of a program which
 contains an erroneous infinite loop may need to "attract the
 attention" of the operating system to ask it to cancel the
 execution of his program, even though the operating system may
 normally "listen" to the terminal only when the program in
 execution asks for input. Similarly, in a computer communication
 network, where flow control may prevent the transmission of data
 from one process to another, under certain extraordinary
 conditions it may be necessary to pass a signal from one process
 to another. Since the channel between the NCPs of two Hosts is
 not subject to the flow control mechanisms imposed on the data

McKenzie [Page 13]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 connections, it is possible to transmit such an "out-of-band"
 signal over the control connection, and for this purpose the INT
 (interrupt) command is provided.

 8 8 8

 ! INT ! index ! seq !

 The INT command contains two data fields. The index field
 identifies the data connection to which the "interrupt" pertains;
 the sequence number ("seq"), which is four bits right-justified in
 an eight-bit field, gives the sequence number of the first data
 message which should "come after" the interrupt. In other words,
 the INT command notifies the receiving NCP of an exception
 condition which must be synchronized with the data stream, and the
 sequence number provides the necessary synchronization. Any data
 messages with sequence numbers to the left of the specified
 sequence number were generated before the exception condition
 arose.

 An NCP which receives an INT command should advance the right
 window edge of the specified data connection so that the window
 contains at least the sequence number specified in the interrupt
 command. (It may be necessary to acknowledge data messages which
 were not correctly received or were not buffered in order to be
 able to advance the window to this point; justification is
 provided by the assumption that the INT was sent only because the
 flow control mechanisms were preventing the transmission of
 important information.) Of course, the interrupt or exception
 signal itself is subject to the interpretation of the Host
 receiving the signal, but should have a meaning equivalent to:
 "notify the process in execution, or that process’ superior, that
 something exceptional has happened and that the data now buffered
 is an important message."

 Test Inquiry

 It may sometimes be useful for one Host to determine if some other
 Host is carrying on network conversations. The control command to
 be used for this purpose is ECO (echo).

 8 8

 ! ECO ! data !

McKenzie [Page 14]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 The data field of the ECO command may contain any bit
 configuration chosen by the Host sending the ECO. Upon receiving
 an ECO command, an NCP should respond by returning the data to the
 sender in an ERP (echo reply) command.

 8 8

 ! ERP ! data !

 A Host should respond (with an ERP command) to an incoming ECO
 command within a reasonable time, here defined as sixty seconds or
 less. A Host should not send an ERP when no ECO has been
 received.

 IV. DECLARATIVE SPECIFICATIONS

 Message Format

 All Host-to-Host messages which conform to this protocol shall be
 constructed as follows:

 Bits 1-96: Leader - This field is as specified in BBN Report No.
 1822, with the following additional specifications.

 Bits 38-40: Maximum Message Size - This field should be zero for
 all control messages. For messages sent over data connections,
 the value of this field should be calculated from the size
 received in the RFC which established the connection.

 Bits 65-76: Message-id - This field is subdivided into eight bits
 giving the index of the connection of which the message is a part,
 and four bits giving the sequence number of the message. The
 index is contained in bits 65-72, and the sequence number in bits
 73-76.

 Bits 97-100: Acknowledgement - This field contains the four-bit
 sequence number of the highest-numbered data message to the left
 of the window for this connection; that is, the sequence number
 identifying the highest-numbered of the sequence of consecutively
 numbered (none missing) data messages which have been correctly
 received over this connection. If no data messages have been
 received since the connection was established, this field must
 contain the value zero. This field is not used (i.e., may have
 any value) in control messages.

McKenzie [Page 15]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 Bits 101-104: Credit - This field contains a number in the range
 0-7. Adding this number (modulo 16) to the sequence number in the
 acknowledgement field (bits 97-100) gives the highest sequence
 number which the foreign Host is permitted to send over this data
 connection. Thus, a value of zero in this field indicates that no
 new data messages should be sent, and a value of seven indicates
 that the foreign Host may send up to seven messages beyond the
 message whose sequence number is specified by the acknowledgement
 bits. Since flow control does not apply to messages sent over the
 control connection, this field may have any value in control
 messages.

 Bits 105 - ... : Text and padding - A sequence of 8-bit bytes of
 text, followed by padding, as specified in BBN Report No. 1822.

 Index Assignment

 Index values must be assigned (in bits 65-72) as follows:

 Number Assignment

 0 Identifies a control connection

 1 Reserved for revisions to this protocol

 2-191 Identify data connections

 192-255 Reserved for expansion or for other protocols

 Sequence Number Assignment

 Every data message contains a sequence number in bits 73-76. The
 sequence number is used by the receiver to detect the fact that a
 transmitted message has been lost, to identify the correct
 location in the data stream to insert a retransmitted (and
 therefore probably out of order) message which was previously lost
 (or to detect the retransmitted message as a duplicate) and to
 identify acknowledged messages (or sequences of messages) to the
 sender. The sequence number is also used by the flow control
 mechanism. Since the IMP subnetwork itself contains elaborate
 mechanisms to achieve these same goals, it is not anticipated that
 the error-recovery mechanisms based on the sequence numbers will
 be called into play frequently, and thus their efficiency is not
 of primary importance.

 Sequence numbers are assigned to the two directions of a
 connection independently. For a given direction of a connection,
 the first data message transmitted after the connection is

McKenzie [Page 16]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 established must have sequence number one. Subsequent messages
 are assigned sequentially increasing (modulo 16) sequence numbers;
 that is, sequence number zero is assigned to the message following
 message number 15.

 Sequence numbers are not assigned to control messages, since the
 protocol is designed to permit these messages to be delivered
 out-of-sequence without ill effect, and since flow control cannot
 be applied to the control link.

 Control Messages

 Messages sent over the control connection have the same format as
 other Host-to-Host messages, with the exceptions noted above.
 However, control messages may not contain more than 120 8-bit
 bytes of text. Further, control messages must contain an integral
 number of control commands; a single control command must not be
 split into parts which are transmitted in different control
 messages.

 Message Transmission and Retransmission

 Control messages may be transmitted whenever they are required.
 Data messages, however, may be transmitted only when permitted by
 the flow control mechanism; that is, whenever the sequence number
 assigned to the message is within the "window" for the appropriate
 direction of the given connection. The "left window edge" (LWE)
 is defined by the highest sequence number (modulo 16) which has
 been acknowledged (or zero, if no messages have been
 acknowledged). The "right window edge" (RWE) is defined by adding
 (modulo 16) the most recently received credit to the left window
 edge. [Note that LWE=RWE if the most recently received credit is
 zero.] A message with sequence number SEQ may be transmitted only
 if, prior to the (possible) reduction modulo 16 of the SEQ and/or
 RWE, it is true that

 LWE less-than SEQ less-than-or-equal RWE

 Messages should be retransmitted whenever any of the following
 conditions occur:

 - The IMP subnetwork has returned an "Incomplete transmission"
 (type 9) or "Error in Data" (type 8) response to the message
 (identified by having bits 41-76 of the response equal to those
 bits of the transmitted message). Note that this condition
 applies to control messages as well as data messages.

McKenzie [Page 17]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 - The sequence number of this message is equal to (LWE + 1), and
 it has been more than 30 seconds since the message was last
 transmitted.

 - The sequence number of the message is specifically identified in
 a NACK command for this connection from the foreign Host.

 Since messages may occasionally have to be retransmitted, it is
 clear that they should not be discarded by the transmitting NCP
 until they have been acknowledged. A message is considered to be
 acknowledged when its sequence number, or the sequence number of
 any message to the right of it in the same direction of the given
 connection, is returned in the acknowledgement field of a data
 message transmitted in the other direction over this connection,
 or is returned in an ACK command for this connection from the
 foreign Host.

 Control Commands

 Control commands are formatted in terms of 8-bit bytes. Each
 command begins with a one byte opcode. Opcodes are assigned the
 sequential values 0, 1, 2, ... to permit table lookup upon
 receipt. The conditions underlying the design and anticipated use
 of the control commands are described in Section III.

 NOP - No Operation

 8

 ! NOP !

 The NOP command may be sent at any time and should be discarded by
 the receiver. It may be useful for formatting control messages.

 RST - Reset

 8

 ! RST !

 The RST command is used by one Host to inform another that all
 information regarding any previously existing connections between
 the two Hosts should be purged from the NCP tables of the Host
 receiving the RST. Except for responding to RSTs, the Host which
 sent the RST should not communicate further with the other Host
 until an RRP is received in response. When a Host is about to

McKenzie [Page 18]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 begin communicating (e.g., send an RFC command) to another Host
 with which it has no open connections, it is good practice to
 first send an RST command and wait for an RRP command.

 RRP - Reset Reply

 8

 ! RRP !

 The RRP command must be sent in reply to an RST command.

 RFC - Request for Connection

 8 16 16 8 16 8

 ! RFC ! my-socket ! your-socket ! index ! size ! credit !

 The RFC command is used to establish a connection. The "my-
 socket" field specifies the socket local to the Host transmitting
 the RFC; the "your-socket" field specifies the socket local to the
 Host to which the RFC is transmitted. The "index" field specifies
 the index value which will be given in bits 65-72 of each data
 message sent from "my-socket" to "your-socket". The "size" field
 specifies the maximum number of 8-bit bytes which may be
 transmitted in any single message from "your-socket" to "my-
 socket". The "credit" field specifies the size of the initial
 sequence number window (in the range 0-7) in the "your-socket" to
 "my-socket" direction.

 CLS - Close

 8 16 16

 ! CLS ! my-socket ! your-socket !

 The CLS command is used to terminate a connection. The connection
 need not be completely established before CLS is sent.

 RCP - Re-Initialize Connection Parameters

 8 16 16 8

 ! RCP ! my-socket ! your-socket ! index !

McKenzie [Page 19]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 The RCP command is used by one Host to inform another that all
 information regarding a possibly previously-existing connection
 between "my-socket" and "your-socket" AND all information
 regarding a possibly previously-existing connection identified by
 "index" (between these Hosts) should be purged from the tables of
 the Host receiving the RCP. The "my-socket", "your-socket", and
 "index" fields are defined as in the RFC command.

 ACK - Acknowledgement

 8 8 4 4

 ! ACK ! index ! seq ! crd !

 The ACK command may be used to acknowledge received data, or to
 assign credit, without sending a data message. The value in the
 index field identifies the data connection which uses the same
 index value (in the direction from the sender of the ACK to the
 receiver of the ACK). The eight bits following the index field
 (the "seq" and "crd" field) have the same meaning as bits 97-104
 of the data message identified by the index value.

 NACK -- Negative Acknowledgement

 8 8 8

 ! NACK ! index ! seq !

 The NACK command informs the receiver of the NACK that it should
 immediately retransmit the data message identified by the
 remaining fields. The index field is defined exactly as for the
 ACK command. The "seq" field gives the 4-bit sequence number
 (right-justified) which should be immediately retransmitted. Note
 that the data message to be retransmitted does not have an index
 value equal to "index", but instead is transmitted over the other
 direction of the data connection which the Host sending the NACK
 identifies by "index". No Host is ever required to transmit or
 act upon a NACK command; however, use of the NACK may occasionally
 permit a decrease in retransmission delay.

 INT - Interrupt

 8 8 8

 ! INT ! index ! seq !

McKenzie [Page 20]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 The INT command is sent over the control link to provide an "out-
 of-band" (and hence not subject to flow control) signal for the
 data connection denoted by the index field. The index value is
 the value which would appear in bits 65-72 of a data message sent
 from the sender of the INT command to the receiver of the INT
 command. The means of synchronizing this signal with the data
 being transmitted over the data connection is the inclusion of a
 4-bit sequence number (right-justified) in the "seq" field. The
 number specified by this field denotes the first data message
 which "follows" the out-of-band signal.

 ECO - Echo Request

 8 8

 ! ECO ! data !

 The ECO command is used only for test purposes. The data field
 may be any bit configuration convenient to the Host sending the
 ECO command.

 ERP - Echo Reply

 8 8

 ! ERP ! data !

 The ERP command must be sent in reply to an ECO command. The data
 field must be identical to the data field in the incoming ECO
 command.

 Opcode Assignment

 Opcodes are defined to be 8-bit unsigned binary numbers. The
 values assigned to opcodes are:

 NOP = 0

 INT = 1

 RFC = 2

 CLS = 3

 ACK = 4

McKenzie [Page 21]

RFC 714 A Host/Host Protocol for an ARPANET-type Network April 1976

 NACK = 5

 RCP = 6

 RST = 7

 RRP = 8

 ECO = 9

 ERP = 10

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Alex McKenzie with]
 [support from BBN Corp. and its successors. 7/2000]

McKenzie [Page 22]

