
Network Working Group P. Mockapetris
Request for Comments: 882 ISI
 November 1983

 DOMAIN NAMES - CONCEPTS and FACILITIES

 +---+
 | |
 | This RFC introduces domain style names, their use |
 | for ARPA Internet mail and host address support, |
 | and the protocols and servers used to implement |
 | domain name facilities. |
 | |
 | This memo describes the conceptual framework of the |
 | domain system and some uses, but it omits many |
 | uses, fields, and implementation details. A |
 | complete specification of formats, timeouts, etc. |
 | is presented in RFC 883, "Domain Names - |
 | Implementation and Specification". That RFC |
 | assumes that the reader is familiar with the |
 | concepts discussed in this memo. |
 | |
 +---+

INTRODUCTION

 The need for domain names

 As applications grow to span multiple hosts, then networks, and
 finally internets, these applications must also span multiple
 administrative boundaries and related methods of operation
 (protocols, data formats, etc). The number of resources (for
 example mailboxes), the number of locations for resources, and the
 diversity of such an environment cause formidable problems when we
 wish to create consistent methods for referencing particular
 resources that are similar but scattered throughout the
 environment.

 The ARPA Internet illustrates the size-related problems; it is a
 large system and is likely to grow much larger. The need to have
 a mapping between host names (e.g., USC-ISIF) and ARPA Internet
 addresses (e.g., 10.2.0.52) is beginning to stress the existing
 mechanisms. Currently hosts in the ARPA Internet are registered
 with the Network Information Center (NIC) and listed in a global
 table (available as the file <NETINFO>HOSTS.TXT on the SRI-NIC
 host) [1]. The size of this table, and especially the frequency
 of updates to the table are near the limit of manageability. What
 is needed is a distributed database that performs the same
 function, and hence avoids the problems caused by a centralized
 database.

 The problem for computer mail is more severe. While mail system
 implementers long ago recognized the impossibility of centralizing

Mockapetris [Page 1]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 mailbox names, they have also created an increasingly large and
 irregular set of methods for identifying the location of a
 mailbox. Some of these methods involve the use of routes and
 forwarding hosts as part of the mail destination address, and
 consequently force the mail user to know multiple address formats,
 the capabilities of various forwarders, and ad hoc tricks for
 passing address specifications through intermediaries.

 These problems have common characteristics that suggest the nature
 of any solution:

 The basic need is for a consistent name space which will be
 used for referring to resources. In order to avoid the
 problems caused by ad hoc encodings, names should not contain
 addresses, routes, or similar information as part of the name.

 The sheer size of the database and frequency of updates suggest
 that it must be maintained in a distributed manner, with local
 caching to improve performance. Approaches that attempt to
 collect a consistent copy of the entire database will become
 more and more expensive and difficult, and hence should be
 avoided. The same principle holds for the structure of the
 name space, and in particular mechanisms for creating and
 deleting names; these should also be distributed.

 The costs of implementing such a facility dictate that it be
 generally useful, and not restricted to a single application.
 We should be able to use names to retrieve host addresses,
 mailbox data, and other as yet undetermined information.

 Because we want the name space to be useful in dissimilar
 networks, it is unlikely that all users of domain names will be
 able to agree on the set of resources or resource information
 that names will be used to retrieve. Hence names refer to a
 set of resources, and queries contain resource identifiers.
 The only standard types of information that we expect to see
 throughout the name space is structuring information for the
 name space itself, and resources that are described using
 domain names and no nonstandard data.

 We also want the name server transactions to be independent of
 the communications system that carries them. Some systems may
 wish to use datagrams for simple queries and responses, and
 only establish virtual circuits for transactions that need the
 reliability (e.g. database updates, long transactions); other
 systems will use virtual circuits exclusively.

Mockapetris [Page 2]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 Elements of the solution

 The proposed solution has three major components:

 The DOMAIN NAME SPACE, which is a specification for a tree
 structured name space. Conceptually, each node and leaf of the
 domain name space tree names a set of information, and query
 operations are attempts to extract specific types of
 information from a particular set. A query names the domain
 name of interest and describes the type of resource information
 that is desired. For example, the ARPA Internet uses some of
 its domain names to identify hosts; queries for address
 resources return ARPA Internet host addresses. However, to
 preserve the generality of the domain mechanism, domain names
 are not required to have a one-to-one correspondence with host
 names, host addresses, or any other type of information.

 NAME SERVERS are server programs which hold information about
 the domain tree’s structure and set information. A name server
 may cache structure or set information about any part of the
 domain tree, but in general a particular name server has
 complete information about a subset of the domain space, and
 pointers to other name servers that can be used to lead to
 information from any part of the domain tree. Name servers
 know the parts of the domain tree for which they have complete
 information; these parts are called ZONEs; a name server is an
 AUTHORITY for these parts of the name space.

 RESOLVERS are programs that extract information from name
 servers in response to user requests. Resolvers must be able
 to access at least one name server and use that name server’s
 information to answer a query directly, or pursue the query
 using referrals to other name servers. A resolver will
 typically be a system routine that is directly accessible to
 user programs; hence no protocol is necessary between the
 resolver and the user program.

 These three components roughly correspond to the three layers or
 views of the domain system:

 From the user’s point of view, the domain system is accessed
 through simple procedure or OS calls to resolvers. The domain
 space consists of a single tree and the user can request
 information from any section of the tree.

 From the resolver’s point of view, the domain system is
 composed of an unknown number of name servers. Each name
 server has one or more pieces of the whole domain tree’s data,

Mockapetris [Page 3]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 but the resolver views each of these databases as essentially
 static.

 From a name server’s point of view, the domain system consists
 of separate sets of local information called zones. The name
 server has local copies of some of the zones. The name server
 must periodically refresh its zones from master copies in local
 files or foreign name servers. The name server must
 concurrently process queries that arrive from resolvers using
 the local zones.

 In the interests of performance, these layers blur a bit. For
 example, resolvers on the same machine as a name server may share
 a database and may also introduce foreign information for use in
 later queries. This cached information is treated differently
 from the authoritative data in zones.

 Database model

 The organization of the domain system derives from some
 assumptions about the needs and usage patterns of its user
 community and is designed to avoid many of the the complicated
 problems found in general purpose database systems.

 The assumptions are:

 The size of the total database will initially be proportional
 to the number of hosts using the system, but will eventually
 grow to be proportional to the number of users on those hosts
 as mailboxes and other information are added to the domain
 system.

 Most of the data in the system will change very slowly (e.g.,
 mailbox bindings, host addresses), but that the system should
 be able to deal with subsets that change more rapidly (on the
 order of minutes).

 The administrative boundaries used to distribute responsibility
 for the database will usually correspond to organizations that
 have one or more hosts. Each organization that has
 responsibility for a particular set of domains will provide
 redundant name servers, either on the organization’s own hosts
 or other hosts that the organization arranges to use.

 Clients of the domain system should be able to identify trusted
 name servers they prefer to use before accepting referrals to
 name servers outside of this "trusted" set.

 Access to information is more critical than instantaneous

Mockapetris [Page 4]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 updates or guarantees of consistency. Hence the update process
 allows updates to percolate out though the users of the domain
 system rather than guaranteeing that all copies are
 simultaneously updated. When updates are unavailable due to
 network or host failure, the usual course is to believe old
 information while continuing efforts to update it. The general
 model is that copies are distributed with timeouts for
 refreshing. The distributor sets the timeout value and the
 recipient of the distribution is responsible for performing the
 refresh. In special situations, very short intervals can be
 specified, or the owner can prohibit copies.

 Some users will wish to access the database via datagrams;
 others will prefer virtual circuits. The domain system is
 designed so that simple queries and responses can use either
 style, although refreshing operations need the reliability of
 virtual circuits. The same overall message format is used for
 all communication. The domain system does not assume any
 special properties of the communications system, and hence
 could be used with any datagram or virtual circuit protocol.

 In any system that has a distributed database, a particular
 name server may be presented with a query that can only be
 answered by some other server. The two general approaches to
 dealing with this problem are "recursive", in which the first
 server pursues the query for the client at another server, and
 "iterative", in which the server refers the client to another
 server and lets the client pursue the query. Both approaches
 have advantages and disadvantages, but the iterative approach
 is preferred for the datagram style of access. The domain
 system requires implementation of the iterative approach, but
 allows the recursive approach as an option. The optional
 recursive style is discussed in [14], and omitted from further
 discussion in this memo.

 The domain system assumes that all data originates in master files
 scattered through the hosts that use the domain system. These
 master files are updated by local system administrators. Master
 files are text files that are read by a local name server, and
 hence become available to users of the domain system. A standard
 format for these files is given in [14].

 The standard format allows these files to be exchanged between
 hosts (via FTP, mail, or some other mechanism); this facility is
 useful when an organization wants a domain, but doesn’t want to
 support a name server. The organization can maintain the master
 files locally using a text editor, transfer them to a foreign host
 which runs a name server, and then arrange with the system
 administrator of the name server to get the files loaded.

Mockapetris [Page 5]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 Each host’s name servers and resolvers are configured by a local
 system administrator. For a name server, this configuration data
 includes the identity of local master files and instructions on
 which non-local master files are to be loaded from foreign
 servers. The name server uses the master files or copies to load
 its zones. For resolvers, the configuration data identifies the
 name servers which should be the primary sources of information.

 The domain system defines procedures for accessing the data and
 for referrals to other name servers. The domain system also
 defines procedures for caching retrieved data and for periodic
 refreshing of data defined by the system administrator.

 The system administrators provide:

 The definition of zone boundaries

 Master files of data

 Updates to master files

 Statements of the refresh policies desired

 The domain system provides:

 Standard formats for resource data

 Standard methods for querying the database

 Standard methods for name servers to refresh local data from
 foreign name servers

DOMAIN NAME SPACE

 Name space specifications and terminology

 The domain name space is a tree structure. Each node and leaf on
 the tree corresponds to a resource set (which may be empty). Each
 node and leaf has an associated label. Labels are NOT guaranteed
 to be unique, with the exception of the root node, which has a
 null label. The domain name of a node or leaf is the path from
 the root of the tree to the node or leaf. By convention, the
 labels that compose a domain name are read left to right, from the
 most specific (lowest) to the least specific (highest).

 Internally, programs that manipulate domain names represent them
 as sequences of labels, where each label is a length octet
 followed by an octet string. Because all domain names end at the
 root, which has a null string for a label, these internal

Mockapetris [Page 6]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 representations can use a length byte of zero to terminate a
 domain name. When domain names are printed, labels in a path are
 separated by dots ("."). The root label and its associated dot
 are omitted from printed domain names, but the root can be named
 by a null domain name (" " in this memo).

 To simplify implementations, the total number of octets that
 represent label octets and label lengths is limited to 255. Thus
 a printed domain name can be up to 254 characters.

 A special label is defined that matches any other label. This
 label is the asterisk or "*". An asterisk matches a single label.
 Thus *.ARPA matches FOO.ARPA, but does not match FOO.BAR.ARPA.
 The asterisk is mainly used to create default resource records at
 the boundary between protocol families, and requires prudence in
 its use.

 A domain is identified by a domain name, and consists of that part
 of the domain name space that is at or below the domain name which
 specifies the domain. A domain is a subdomain of another domain
 if it is contained within that domain. This relationship can be
 tested by seeing if the subdomain’s name has the containing
 domain’s name as the right part of its name. For example, A.B.C.D
 is a subdomain of B.C.D, C.D, D, and " ".

 This tree structure is intended to parallel the administrative
 organization and delegation of authority. Potentially, each node
 or leaf on the tree can create new subdomains ad infinitum. In
 practice, this delegation can be limited by the administrator of
 the name servers that manage the domain space and resource data.

 The following figure shows an example of a domain name space.

 |
 +------------------+------------------+
 | | |
 COLORS FLAVORS TRUTH
 | |
 +-----+-----+ |
 | | | NATURAL
 RED BLUE GREEN |
 |
 +---------------+---------------+
 | | |
 CHOCOLATE VANILLA STRAWBERRY

 In this example, the root domain has three immediate subdomains:
 COLORS, FLAVORS, and TRUTH. The FLAVORS domain has one immediate
 subdomain named NATURAL.FLAVORS. All of the leaves are also

Mockapetris [Page 7]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 domains. This domain tree has the names " "(the root), COLORS,
 RED.COLORS, BLUE.COLORS, GREEN.COLORS, FLAVORS, NATURAL.FLAVORS,
 CHOCOLATE.NATURAL.FLAVORS, VANILLA.NATURAL.FLAVORS,
 STRAWBERRY.NATURAL.FLAVORS, and TRUTH. If we wished to add a new
 domain of ARTIFICIAL under FLAVORS, FLAVORS would typically be the
 administrative entity that would decide; if we wished to create
 CHIP and MOCHA names under CHOCOLATE, CHOCOLATE.NATURAL.FLAVORS
 would typically be the appropriate administrative entity.

 Resource set information

 A domain name identifies a set of resource information. The set
 of resource information associated with a particular name is
 composed of separate resource records (RRs).

 Each resource record has the following major components:

 The domain name which identifies resource set that holds this
 record, and hence the "owner" of the information. For example,
 a RR that specifies a host address has a domain name the
 specifies the host having that address. Thus F.ISI.ARPA might
 be the owner of a RR which specified an address field of
 10.2.0.52. Since name servers typically store their resource
 information in tree structures paralleling the organization of
 the domain space, this information can usually be stored
 implicitly in the database; however it is always included in
 each resource record carried in a message.

 Other information used to manage the RR, such as length fields,
 timeouts, etc. This information is omitted in much of this
 memo, but is discussed in [14].

 A resource type field that specifies the type of the resource
 in this resource record. Types refer to abstract resources
 such as host addresses or mail delivery agents. The type field
 is two octets long and uses an encoding that is standard
 throughout the domain name system.

 A class field identifies the format of the resource data, such
 as the ARPA Internet format (IN) or the Computer Science
 Network format (CSNET), for certain RR types (such as address
 data). Note that while the class may separate different
 protocol families, networks, etc. it does not do so in all
 cases. For example, the IN class uses 32 bit IP addresses
 exclusively, but the CSNET class uses 32 bit IP addresses, X.25
 addresses, and phone numbers. Thus the class field should be
 used as a guide for interpreting the resource data. The class
 field is two octets long and uses an encoding that is standard
 throughout the domain name system.

Mockapetris [Page 8]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 Resource data that describes the resource. The format of this
 data can be determined given the type and class fields, but
 always starts with a two octet length field that allows a name
 server or resolver to determine the boundaries of the resource
 data in any transaction, even if it cannot "understand" the
 resource data itself. Thus name servers and resolvers can hold
 and pass on records which they cannot interpret. The format of
 the internal data is restricted only by the maximum length of
 65535 octets; for example the host address record might specify
 a fixed 32 bit number for one class, and a variable length list
 of addresses in another class.

 While the class field in effect partitions the resource data in
 the domain name system into separate parallel sections according
 to class, services can span class boundaries if they use
 compatible resource data formats. For example, the domain name
 system uses compatible formats for structure information, and the
 mail data decouples mail agent identification from details of how
 to contact the agent (e.g. host addresses).

 This memo uses the following types in its examples:

 A - the host address associated with the domain name

 MF - identifies a mail forwarder for the domain

 MD - identifies a mail destination for the domain

 NS - the authoritative name server for the domain

 SOA - identifies the start of a zone of authority

 CNAME - identifies the canonical name of an alias

 This memo uses the following classes in its examples:

 IN - the ARPA Internet system

 CS - the CSNET system

 The first type of resource record holds a host name to host
 address binding. Its fields are:

 +--------+--------+--------+--------------//----------------------+
 |<owner> | A | <class>| <class specific address>information |
 +--------+--------+--------+--------------//----------------------+

Mockapetris [Page 9]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 The content of the class specific information varies according to
 the value in the CLASS field; for the ARPA Internet, it is the 32
 bit ARPA Internet address of the host, for the CSNET it might be
 the phone number of the host. For example, F.ISI.ARPA might have
 two A records of the form:

 +----------+--------+--------+----------------------------+
 |F.ISI.ARPA| A | IN | 10.2.0.52 |
 +----------+--------+--------+----------------------------+
 and
 +----------+--------+--------+----------------------------+
 |F.ISI.ARPA| A | CS | 213-822-2112 |
 +----------+--------+--------+----------------------------+

 Note that the data formats for the A type are class dependent, and
 the Internet address and phone number formats shown above are for
 purposes of illustration only. The actual data formats are
 specified in [14]. For example, CS class data for type A records
 might actually be a list of Internet addresses, phone numbers and
 TELENET addresses.

 The mail forwarder (MF) and mail delivery (MD) records have the
 following format:

 +--------+--------+--------+----------------------------+
 |<owner> | MD/MF | <class>| <domain name> |
 +--------+--------+--------+----------------------------+

 The <domain name> field is a domain name of the host that will
 handle mail; note that this domain name may be completely
 different from the domain name which names the resource record.
 For example, F.ISI.ARPA might have two records of the form:

 +----------+--------+--------+----------------------------+
 |F.ISI.ARPA| MD | IN | F.ISI.ARPA |
 +----------+--------+--------+----------------------------+
 and
 +----------+--------+--------+----------------------------+
 |F.ISI.ARPA| MF | IN | B.ISI.ARPA |
 +----------+--------+--------+----------------------------+

 These records mean that mail for F.ISI.ARPA can either be
 delivered to the host F.ISI.ARPA or forwarded to B.ISI.ARPA, which
 will accept responsibility for its eventual delivery. In
 principle, an additional name lookup is required to map the domain
 name of the host to the appropriate address, in practice this
 information is usually returned in the response to the mail query.

 The SOA and NS types of resource records are used to define limits

Mockapetris [Page 10]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 of authority. The domain name given by the owner field of a SOA
 record is the start of a zone; the domain name given by the owner
 field of a NS record identifies a point in the name space where
 authority has been delegated, and hence marks the zone boundary.
 Except in the case where a name server delegates authority to
 itself, the SOA identifies the top limit of authority, and NS
 records define the first name outside of a zone. These resource
 records have a standard format for all of the name space:

 +----------+--------+--------+-----------------------------+
 | <owner> | SOA | <class>| <domain name, etc> |
 +----------+--------+--------+-----------------------------+

 +----------+--------+--------+-----------------------------+
 | <owner> | NS | <class>| <domain name> |
 +----------+--------+--------+-----------------------------+

 The SOA record marks the start of a zone when it is present in a
 database; the NS record both marks the end of a zone started by an
 SOA (if a higher SOA is present) and also points to a name server
 that has a copy of the zone specified by the <owner. field of the
 NS record.

 The <domain name, etc> in the SOA record specifies the original
 source of the information in the zone and other information used
 by name servers to organize their activities. SOA records are
 never cached (otherwise they would create false zones); they can
 only be created in special name server maintenance operations.

 The NS record says that a name server which is authoritative for
 records of the given CLASS can be found at <domain name>.

 Queries

 Queries to a name server must include a domain name which
 identifies the target resource set (QNAME), and the type and class
 of desired resource records. The type and class fields in a query
 can include any of the corresponding type and class fields that
 are defined for resource records; in addition, the query type
 (QTYPE) and query class (QCLASS) fields may contain special values
 that match more than one of the corresponding fields in RRs.

 For example, the QTYPE field may contain:

 MAILA - matches all mail agent RRs (e.g. MD and MF).

 * - matches any RR type.

Mockapetris [Page 11]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 The QCLASS field may contain:

 * - matches any RR class.

 Using the query domain name, QTYPE, and QCLASS, the name server
 looks for matching RRs. In addition to relevant records, the name
 server may return RRs that point toward a name server that has the
 desired information or RRs that are expected to be useful in
 interpreting the relevant RRs. For example a name server that
 doesn’t have the requested information may know a name server that
 does; a name server that returns a domain name in a relevant RR
 may also return the RR that binds that domain name to an address.

 Note that the QCLASS=* construct requires special interpretation
 regarding authority. Since a name server may not know all of the
 classes available in the domain system, it can never know if it is
 authoritative for all classes. Hence responses to QCLASS=*
 queries can never be authoritative.

 Example space

 For purposes of exposition, the following name space is used for
 the remainder of this memo:

 |
 +------------------+------------------+
 | | |
 DDN ARPA CSNET
 | | |
 +-----+-----+ | +-----+-----+
 | | | | | |
 JCS ARMY NAVY | UDEL UCI
 |
 +--------+---------------+---------------+--------+
 | | | | |
 DTI MIT ISI UDEL NBS
 | |
 +---+---+ +---+---+
 | | | | |
 DMS AI A B F

Mockapetris [Page 12]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

NAME SERVERS

 Introduction

 Name servers store a distributed database consisting of the
 structure of the domain name space, the resource sets associated
 with domain names, and other information used to coordinate
 actions between name servers.

 In general, a name server will be an authority for all or part of
 a particular domain. The region covered by this authority is
 called a zone. Name servers may be responsible for no
 authoritative data, and hence have no zones, or may have several
 zones. When a name server has multiple zones, the zones may have
 no common borders or zones may be contiguous.

 While administrators should not construct overlapping zones, and
 name servers must defend against overlapping zones, overlapping is
 regarded as a non-fatal flaw in the database. Hence the measures
 taken to protect against it are omitted for the remainder of this
 memo. A detailed discussion can be found in [14].

 When presented with a query for a domain name over which it has
 authority, a name server returns the desired resource information
 or an indication that the query refers to a domain name or
 resource that does not exist. If a name server is presented with
 a query for a domain name that is not within its authority, it may
 have the desired information, but it will also return a response
 that points toward an authoritative name server. If a name server
 is not an authority for a query, it can never return a negative
 response.

 There is no requirement that a name server for a domain reside in
 a host which has a name in the same domain, although this will
 usually be the case. There is also no restriction on the number
 of name servers that can have authority over a particular domain;
 most domains will have redundant authoritative name servers. The
 assumption is that different authoritative copies are identical,
 even though inconsistencies are possible as updates are made.

 Name server functions are designed to allow for very simple
 implementations of name servers. The simplest name server has a
 static set of information and uses datagrams to receive queries
 and return responses.

 More sophisticated name server implementations can improve the
 performance of their clients by caching information from other
 domains. Although this information can be acquired in a number of
 ways, the normal method is to store the information acquired by a

Mockapetris [Page 13]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 resolver when the resolver consults other name servers. In a
 sophisticated host, the resolver and name server will coordinate
 their actions and use a shared database. This cooperation
 requires the incorporation of a time-to-live (TTL) field in all
 cached resource records. Caching is discussed in the resolver
 section of this memo; this section is devoted to the actions of a
 name servers that don’t cache.

 In order to free simple name servers of the requirement of
 managing these timeouts, simple name servers should only contain
 resource records that are expected to remain constant over very
 long periods or resource records for which the name server is an
 authority. In the following discussion, the TTL field is assumed
 to be stored in the resource record but is omitted in descriptions
 of databases and responses in the interest of clarity.

 Authority and administrative control of domains

 Although we want to have the potential of delegating the
 privileges of name space management at every node, we don’t want
 such delegation to be required.

 Hence we introduce the concept of authority. Authority is vested
 in name servers. A name server has authority over all of its
 domain until it delegates authority for a subdomain to some other
 name server.

 Any administrative entity that wishes to establish its own domain
 must provide a name server, and have that server accepted by the
 parent name server (i.e. the name server that has authority over
 the place in the domain name space that will hold the new domain).
 While the principles of authority allow acceptance to be at the
 discretion of parent name servers, the following criteria are used
 by the root, and are recommended to all name servers because they
 are responsible for their children’s actions:

 1. It must register with the parent administrator of domains.

 2. It must identify a responsible person.

 3. In must provide redundant name servers.

 The domain name must be registered with the administrator to avoid
 name conflicts and to make the domain related information
 available to other domains. The central administrator may have
 further requirements, and a domain is not registered until the
 central administrator agrees that all requirements are met.

 There must be a responsible person associated with each domain to

Mockapetris [Page 14]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 be a contact point for questions about the domain, to verify and
 update the domain related information, and to resolve any problems
 (e.g., protocol violations) with hosts in the domain.

 The domain must provide redundant (i.e., two or more) name servers
 to provide the name to address resolution service. These name
 servers must be accessible from outside the domain (as well as
 inside) and must resolve names for at least all the hosts in the
 domain.

 Once the central administrator is satisfied, he will communicate
 the existence to the appropriate administrators of other domains
 so that they can incorporate NS records for the new name server
 into their databases.

 Name server logic

 The processing steps that a name server performs in responding to
 a query are conceptually simple, although implementations may have
 internal databases that are quite complex.

 For purposes of explanation, we assume that the query consists of
 a type QTYPE, a class QCLASS, and a domain name QNAME; we assume
 that the name server stores its RRs in sets where each set has all
 of the RRs for a particular domain. Note that this database
 structure and the following algorithms are meant to illustrate one
 possible implementation, rather than a specification of how all
 servers must be implemented.

 The following notation is used:

 ord(DOMAIN-NAME) returns the number of labels in DOMAIN-NAME.

 findset(DOMAIN-NAME) returns a pointer to the set of stored RRs
 for DOMAIN-NAME, or NULL if there is no such
 information.

 set(POINTER) refers to a set located previously by
 findset, where POINTER is the value returned
 by findset.

 relevant(QTYPE,TYPE) returns true if a RR of the specified TYPE is
 relevant to the specified QTYPE. For
 example, relevant(MAILA,MF) is true and
 relevant(MAILA,NS) is false.

 right(NAME,NUMBER) returns a domain name that is the rightmost
 NUMBER labels in the string NAME.

Mockapetris [Page 15]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 copy(RR) copies the resource record specified by RR
 into the response.

 The name server code could be represented as the following
 sequence of steps:

 { find out whether the database makes this server
 authoritative for the domain name specified by QNAME }

 for i:=0 to ord(QNAME) { sequence through all nodes in QNAME }
 do begin
 ptr:=findset(right(QNAME,i));
 if ptr<>NULL
 then { there is domain data for this domain name }
 begin
 for all RRs in set(ptr)
 do if type(RR)=NS and class(RR)=QCLASS
 then begin
 auth=false;
 NSptr:=ptr
 end;
 for all RRs in set(ptr)
 do if type(RR)=SOA and class(RR)=QCLASS
 then auth:=true
 end
 end;
 end;

 { copy out authority search results }

 if auth
 then { if authority check for domain found }
 if ptr=null
 then return(Name error)
 else
 else { if not authority, copy NS RRs }
 for all RRs in set(nsptr)
 do if (type(RR)=NS and class(RR)=QCLASS)
 or
 (QCLASS=*)
 then copy(RR);

 { Copy all RRs that answer the question }

 for all RRs in set(ptr)
 do if class(RR)=QCLASS and relevant(QTYPE,type(RR))
 then copy(RR);

 The first section of the code (delimited by the for loop over all

Mockapetris [Page 16]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 of the subnodes of QNAME) discovers whether the name server is
 authoritative for the domain specified by QNAME. It sequences
 through all containing domains of QNAME, starting at the root. If
 it encounters a SOA it knows that the name server is authoritative
 unless it finds a lower NS RR which delegates authority. If the
 name server is authoritative, it sets auth=true; if the name
 server is not authoritative, it sets NSptr to point to the set
 which contains the NS RR closest to the domain specified by QNAME.

 The second section of the code reflects the result of the
 authority search into the response. If the name server is
 authoritative, the code checks to see that the domain specified by
 QNAME exists; if not, a name error is returned. If the name
 server is not authoritative, the code copies the RRs for a closer
 name server into the response.

 The last section of the code copies all relevant RRs into the
 response.

 Note that this code is not meant as an actual implementation and
 is incomplete in several aspects. For example, it doesn’t deal
 with providing additional information, wildcards, QCLASS=*, or
 with overlapping zones. The first two of these issues are dealt
 with in the following discussions, the remaining issues are
 discussed in [14].

 Additional information

 When a resolver returns information to a user program, the
 returned information will often lead to a second query. For
 example, if a mailer asks a resolver for the appropriate mail
 agent for a particular domain name, the name server queried by the
 resolver returns a domain name that identifies the agent. In
 general, we would expect that the mailer would then request the
 domain name to address binding for the mail agent, and a new name
 server query would result.

 To avoid this duplication of effort, name servers return
 additional information with a response which satisfies the
 anticipated query. This information is kept in a separate section
 of the response. Name servers are required to complete the
 appropriate additional information if such information is
 available, but the requestor should not depend on the presence of
 the information since the name server may not have it. If the
 resolver caches the additional information, it can respond to the
 second query without an additional network transaction.

 The appropriate information is defined in [14], but generally

Mockapetris [Page 17]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 consists of host to address bindings for domain names in returned
 RRs.

 Aliases and canonical names

 In existing systems, hosts and other resources often have several
 names that identify the same resource. For example, under current
 ARPA Internet naming support, USC-ISIF and ISIF both identify the
 same host. Similarly, in the case of mailboxes, many
 organizations provide many names that actually go to the same
 mailbox; for example Mockapetris@ISIF, Mockapetris@ISIB, etc., all
 go to the same mailbox (although the mechanism behind this is
 somewhat complicated).

 Most of these systems have a notion that one of the equivalent set
 of names is the canonical name and all others are aliases.

 The domain system provides a similar feature using the canonical
 name (CNAME) RR. When a name server fails to find a desired RR in
 a set associated with some domain name, it checks to see if the
 resource set contains a CNAME record with a matching class. If
 so, the name server includes the CNAME record in the response, and
 continues the query at the domain name specified in the data field
 of the CNAME record.

 Suppose a name server was processing a query with QNAME=ISIF.ARPA,
 QTYPE=A, and QCLASS=IN, and had the following resource records:

 ISIF.ARPA CNAME IN F.ISI.ARPA
 F.ISI.ARPA A IN 10.2.0.52

 Both of these RRs would be returned in the response.

 In the above example, because ISIF.ARPA has no RRs other than the
 CNAME RR, the resources associated with ISIF.ARPA will appear to
 be exactly those associated with F.ISI.ARPA for the IN CLASS.
 Since the CNAME is effective only when the search fails, a CNAME
 can also be used to construct defaults. For example, suppose the
 name server had the following set of RRs:

 F.ISI.ARPA A IN 10.2.0.52
 F.ISI.ARPA MD IN F.ISI.ARPA
 XXXX.ARPA CNAME IN F.ISI.ARPA
 XXXX.ARPA MF IN A.ISI.ARPA

 Using this database, type A queries for XXXX.ARPA would return the
 XXXX.ARPA CNAME RR and the F.ISI.ARPA A RR, but MAILA or MF
 queries to XXXX.ARPA would return the XXXX.ARPA MF RR without any
 information from F.ISI.ARPA. This structure might be used to send

Mockapetris [Page 18]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 mail addressed to XXXX.ARPA to A.ISI.ARPA and to direct TELNET for
 XXXX.ARPA to F.ISI.ARPA.

 Wildcards

 In certain cases, an administrator may wish to associate default
 resource information for all or part of a domain. For example,
 the CSNET domain administrator may wish to establish IN class mail
 forwarding for all hosts in the CSNET domain without IN
 capability. In such a case, the domain system provides a special
 label "*" that matches any other label. Note that "*" matches
 only a single label, and not zero or more than one label. Note
 also that the "*" is distinct from the "*" values for QCLASS and
 QTYPE.

 The semantics of "*" depend upon whether it appears in a query
 domain name (QNAME) or in a RR in a database.

 When an "*" is used in a QNAME, it can only match a "*" in a
 resource record.

 When "*" appears in a RR in a database, it can never override
 an existing exact match. For example, if a name server
 received a query for the domain UDEL.CSNET, and had appropriate
 RRs for both UDEL.CSNET and *.CSNET, the UDEL.CSNET RRs would
 be used and the *.CSNET RRs would be ignored. If a query to
 the same database specified FOO.CSNET, the *.CSNET RR would be
 used, but the corresponding labels from the QNAME would replace
 the "*". Thus the FOO.CSNET query would match the *.CSNET RR
 and return a RR for FOO.CSNET rather than *.CSNET.

 RRs containing "*" labels are copied exactly when zones are
 transfered via name server maintenance operations.

 These semantics are easily implemented by having the name server
 first search for an exact match for a query, and then replacing
 the leftmost label with a "*" and trying again, repeating the
 process until all labels became "*" or the search succeeded.

 TYPE=* in RRs is prohibited. If it were to be allowed, the
 requestor would have no way of interpreting the data in the RR
 because this data is type dependent.

 CLASS=* is also prohibited. Similar effects can be achieved using
 QCLASS=*, and allowing both QCLASS=* and CLASS=* leads to
 complexities without apparent benefit.

Mockapetris [Page 19]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 A scenario

 In our sample domain space, suppose we wanted separate
 administrative control for the root, DDN, ARPA, CSNET, MIT and ISI
 domains. We might allocate name servers as follows:

 |(B.ISI.ARPA)
 |(UDEL.CSNET)
 +------------------+------------------+
 | | |
 DDN ARPA CSNET
 |(JCS.DDN) |(F.ISI.ARPA) |(UDEL.ARPA)
 +-----+-----+ |(A.ISI.ARPA)+-----+-----+
 | | | | | |
 JCS ARMY NAVY | UDEL UCI
 |
 +--------+---------------+---------------+--------+
 | | | | |
 DTI MIT ISI UDEL NBS
 |(AI.MIT.ARPA) |(F.ISI.ARPA)
 +---+---+ +---+---+
 | | | | |
 DMS AI A B F

 In this example the authoritative name server is shown in
 parentheses at the point in the domain tree at which is assumes
 control.

 Thus the root name servers are on B.ISI.ARPA and UDEL.CSNET, the
 DDN name server is on JCS.DDN, the CSNET domain server is on
 UDEL.ARPA, etc.

 In an actual system, all domains should have redundant name
 servers, but in this example only the ARPA domain has redundant
 servers A.ISI.ARPA and F.ISI.ARPA. (The B.ISI.ARPA and UDEL.CSNET
 name servers happen to be not redundant because they handle
 different classes.) The F.ISI.ARPA name server has authority over
 the ARPA domain, but delegates authority over the MIT.ARPA domain
 to the name server on AI.MIT.ARPA. The A.ISI.ARPA name server
 also has authority over the ARPA domain, but delegates both the
 ISI.ARPA and MIT.ARPA domains to other name servers.

Mockapetris [Page 20]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 B.ISI.ARPA Name server for " "

 B.ISI.ARPA has the root name server for the IN class. Its
 database might contain:

 Domain Resource Record

 " " SOA IN A.ISI.ARPA
 DDN NS IN JCS.DDN
 ARPA NS IN F.ISI.ARPA
 CSNET NS IN UDEL.ARPA
 " " NS IN B.ISI.ARPA
 " " NS CS UDEL.CSNET

 JCS.DDN A IN 9.0.0.1
 F.ISI.ARPA A IN 10.2.0.52
 UDEL.CSNET A CS 302-555-0000
 UDEL.ARPA A IN 10.0.0.96

 The SOA record for the root is necessary so that the name server
 knows that it is authoritative for the root domain for class IN.
 The contents of the SOA resource record point back to A.ISI.ARPA
 and denote that the master data for the zone of authority is
 originally from this host. The first three NS records denote
 delegation of authority. The NS root entry for the B.ISI.ARPA
 name server is necessary so that this name server knows about
 itself, and can respond correctly to a query for NS information
 about the root (for which it is an authority). The root entry for
 class CS denotes that UDEL.CSNET is the authoritative name server
 for the CS class root. UDEL.CSNET and UDEL.ARPA may or may not
 refer to the same name server; from this information it is
 impossible to tell.

 If this name server was sent a query specifying QTYPE=MAILA,
 QCLASS=IN, QNAME=F.ISI.ARPA, it would begin processing (using the
 previous algorithm) by determining that it was not an authority
 for F.ISI.ARPA. The test would note that it had authority at " ",
 but would also note that the authority was delegated at ARPA and
 never reestablished via another SOA. Thus the response would
 return the NS record for the domain ARPA.

 Any queries presented to this server with QCLASS=CS would result
 in the UDEL.CSNET NS record being returned in the response.

Mockapetris [Page 21]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 F.ISI.ARPA Name server for ARPA and ISI.ARPA

 In the same domain space, the F.ISI.ARPA database for the domains
 ARPA and ISI.ARPA might be:

 Domain Resource Record

 " " NS IN B.ISI.ARPA
 " " NS CS CSNET.UDEL
 ARPA SOA IN B.ISI.ARPA
 ARPA NS IN A.ISI.ARPA
 ARPA NS IN F.ISI.ARPA
 MIT.ARPA NS IN AI.MIT.ARPA
 ISI.ARPA SOA IN F.ISI.ARPA
 ISI.ARPA NS IN F.ISI.ARPA

 A.ISI.ARPA MD IN A.ISI.ARPA
 ISI.ARPA MD IN F.ISI.ARPA
 A.ISI.ARPA MF IN F.ISI.ARPA
 B.ISI.ARPA MD IN B.ISI.ARPA
 B.ISI.ARPA MF IN F.ISI.ARPA
 F.ISI.ARPA MD IN F.ISI.ARPA
 F.ISI.ARPA MF IN A.ISI.ARPA
 DTI.ARPA MD IN DTI.ARPA
 NBS.ARPA MD IN NBS.ARPA
 UDEL.ARPA MD IN UDEL.ARPA

 A.ISI.ARPA A IN 10.1.0.32
 F.ISI.ARPA A IN 10.2.0.52
 B.ISI.ARPA A IN 10.3.0.52
 DTI.ARPA A IN 10.0.0.12
 AI.MIT.ARPA A IN 10.2.0.6
 DMS.MIT.ARPA A IN 10.1.0.6
 NBS.ARPA A IN 10.0.0.19
 UDEL.ARPA A IN 10.0.0.96

 For the IN class, the SOA RR for ARPA denotes that this name
 server is authoritative for the domain ARPA, and that the master
 file for this authority is stored on B.ISI.ARPA. This zone
 extends to ISI.ARPA, where the database delegates authority back
 to this name server in another zone, and doesn’t include the
 domain MIT.ARPA, which is served by a name server on AI.MIT.ARPA.

 This name server is not authoritative for any data in the CS
 class. It has a pointer to the root server for CS data which
 could be use to resolve CS class queries.

 Suppose this name server received a query of the form
 QNAME=A.ISI.ARPA, QTYPE=A, and QCLASS=IN. The authority search

Mockapetris [Page 22]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 would notice the NS record for " ", its SOA at ARPA, a delegation
 at ISI.ARPA, and the reassumption of authority at ISI.ARPA. Hence
 it would know that it was an authority for this query. It would
 then find the A record for A.ISI.ARPA, and return a datagram
 containing this record.

 Another query might be QNAME=B.ISI.ARPA, QTYPE=MAILA, QCLASS=*.
 In this case the name server would know that it cannot be
 authoritative because of the "*" value of QCLASS, and would look
 for records for domain B.ISI.ARPA that match. Assuming that the
 name server performs the additional record inclusion mentioned in
 the name server algorithm, the returned datagram would include:

 ISI.ARPA NS IN F.ISI.ARPA
 " " NS CS UDEL.CSNET
 B.ISI.ARPA MD IN B.ISI.ARPA
 B.ISI.ARPA MF IN F.ISI.ARPA
 B.ISI.ARPA A IN 10.3.0.52
 F.ISI.ARPA A IN 10.2.0.52

 If the query were QNAME=DMS.MIT.ARPA, QTYPE=MAILA, QCLASS=IN, the
 name server would discover that AI.MIT.ARPA was the authoritative
 name server and return the following:

 MIT.ARPA NS IN AI.MIT.ARPA
 AI.MIT.ARPA A IN 10.2.0.6

 In this case, the requestor is directed to seek information from
 the MIT.ARPA domain name server residing on AI.MIT.ARPA.

Mockapetris [Page 23]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 UDEL.ARPA and UDEL.CSNET name server

 In the previous discussion of the sample domain, we stated that
 UDEL.CSNET and UDEL.ARPA might be the same name server. In this
 example, we assume that this is the case. As such, the name
 server is an authority for the root for class CS, and an authority
 for the CSNET domain for class IN.

 This name server deals with mail forwarding between the ARPA
 Internet and CSNET systems. Its RRs illustrate one approach to
 solving this problem. The name server has the following resource
 records:

 " " SOA CS UDEL.CSNET
 " " NS CS UDEL.CSNET
 " " NS IN B.ISI.ARPA
 CSNET SOA IN UDEL.ARPA
 CSNET NS IN UDEL.ARPA
 ARPA NS IN A.ISI.ARPA

 *.CSNET MF IN UDEL.ARPA
 UDEL.CSNET MD CS UDEL.CSNET
 UCI.CSNET MD CS UCI.CSNET
 UDEL.ARPA MD IN UDEL.ARPA

 B.ISI.ARPA A IN 10.3.0.52
 UDEL.ARPA A IN 10.0.0.96
 UDEL.CSNET A CS 302-555-0000
 UCI.CSNET A CS 714-555-0000

 Suppose this name server received a query of the form
 QNAME=UCI.CSNET, QTYPE=MAILA, and QCLASS=IN. The name server
 would discover it was authoritative for the CSNET domain under
 class IN, but would find no explicit mail data for UCI.CSNET.
 However, using the *.CSNET record, it would construct a reply:

 UCI.CSNET MF IN UDEL.ARPA
 UDEL.ARPA A IN 10.0.0.96

 If this name server received a query of the form QNAME=UCI.CSNET,
 QTYPE=MAILA, and QCLASS=CS, the name server would return:

 UCI.CSNET MD CS UCI.CSNET
 UCI.CSNET A CS 714-555-0000

 Note that although this scheme allows for forwarding of all mail
 addressed as <anything>.CSNET, it doesn’t help with names that
 have more than two components, e.g. A.B.CSNET. Although this
 problem could be "fixed" by a series of MF entries for *.*.CSNET,

Mockapetris [Page 24]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 ..*.CSNET, etc, a more tasteful solution would be to introduce a
 cleverer pattern matching algorithm in the CSNET name server.

 Summary of requirements for name servers

 The requirements for a name server are as follows:

 1. It must be recognized by its parent.

 2. It must have complete resource information for all domain
 names for which it is the authority.

 3. It must periodically refresh authoritative information from
 a master file or name server which holds the master.

 4. If it caches information it must also handle TTL management
 for that information.

 5. It must answer simple queries.

 Inverse queries

 Name servers may also support inverse queries that map a
 particular resource to a domain name or domain names that have
 that resource. For example, while a query might map a domain name
 to a host address, the corresponding inverse query might map the
 address back to the domain name.

 Implementation of this service is optional in a name server, but
 all name servers must at least be able to understand an inverse
 query message and return an error response.

 The domain system cannot guarantee the completeness or uniqueness
 of inverse queries because the domain system is organized by
 domain name rather than by host address or any other resource
 type. In general, a resolver or other program that wishes to
 guarantee that an inverse query will work must use a name server
 that is known to have the appropriate data, or ask all name
 servers in a domain of interest.

 For example, if a resolver wishes to perform an inverse query for
 an arbitrary host on the ARPA Internet, it must consult a set of
 name servers sufficient to know that all IN data was considered.
 In practice, a single inverse query to a name server that has a
 fairly comprehensive database should satisfy the vast majority of
 inverse queries.

 A detailed discussion of inverse queries is contained in [14].

Mockapetris [Page 25]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 Completion services

 Some existing systems provide the ability to complete partial
 specifications of arguments. The general principle is that the
 user types the first few characters of the argument and then hits
 an escape character to prompt the system to complete the rest.
 Some completion systems require that the user type enough of the
 argument to be unique; others do not.

 Other systems allow the user to specify one argument and ask the
 system to fill in other arguments. For example, many mail systems
 allow the user to specify a username without a host for local mail
 delivery.

 The domain system defines name server completion transactions that
 perform the analogous service for the domain system.
 Implementation of this service is optional in a name server, but
 all name servers must at least be able to understand a completion
 request and return an error response.

 When a resolver wishes to request a completion, it sends a name
 server a message that sets QNAME to the partial string, QTYPE to
 the type of resource desired, and QCLASS to the desired class.
 The completion request also includes a RR for the target domain.
 The target domain RR identifies the preferred location of the
 resource. In completion requests, QNAME must still have a null
 label to terminate the name, but its presence is ignored. Note
 that a completion request is not a query, but shares some of the
 same field formats.

 For example, a completion request might contain QTYPE=A, QNAME=B,
 QCLASS=IN and a RR for ISI.ARPA. This request asks for completion
 for a resource whose name begins with "B" and is "close" to
 ISI.ARPA. This might be a typical shorthand used in the ISI
 community which uses "B" as a way of referring to B.ISI.ARPA.

 The first step in processing a completion request is to look for a
 "whole label" match. When the name server receives the request
 mentioned above, it looks at all records that are of type A, class
 IN, and whose domain name starts (on the left) with the labels of
 QNAME, in this case, "B". If multiple records match, the name
 server selects those whose domain names match (from the right) the
 most labels of the preferred domain name. If there are still
 multiple candidates, the name server selects the records that have
 the shortest (in terms of octets in the name) domain name. If
 several records remain, then the name server returns them all.

 If no records are found in the previous algorithm, the name server
 assumes that the rightmost label in QNAME is not complete, and

Mockapetris [Page 26]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 looks for records that match but require addition of characters to
 the rightmost label of QNAME. For example, the previous search
 would not match BB.ARPA to B, but this search would. If multiple
 hits are found, the same discarding strategy is followed.

 A detailed discussion of completion can be found in [14].

RESOLVERS

 Introduction

 Resolvers are programs that interface user programs to domain name
 servers. In the simplest case, a resolver receives a request from
 a user program (e.g. mail programs, TELNET, FTP) in the form of a
 subroutine call, system call etc., and returns the desired
 information in a form compatible with the local host’s data
 formats.

 Because a resolver may need to consult several name servers, the
 amount of time that a resolver will take to complete can vary.
 This variance is part of the justification for the split between
 name servers and resolvers; name servers may use datagrams and
 have a response time that is essentially equal to network delay
 plus a short service time, while resolvers may take an essentially
 indeterminate amount of time.

 We expect to see two types of resolvers: simple resolvers that can
 chain through multiple name servers when required, and more
 complicated resolvers that cache resource records for use in
 future queries.

 Simple resolvers

 A simple resolver needs the following capabilities:

 1. It must know how to access a name server, and should know the
 authoritative name server for the host that it services.

 2. It must know the protocol capabilities for its clients so that
 it can set the class fields of the queries it sends to return
 information that is useful to its clients. If the resolver
 serves a client that has multiple protocol capabilities, it
 should be able to support the preferences of the client.

 The resolver for a multiple protocol client can either collect
 information for all classes using the * class value, or iterate
 on the classes supported by the client. Note that in either
 case, the resolver must understand the preferences of the host.
 For example, the host that supports both CSNET and ARPA

Mockapetris [Page 27]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 Internet protocols might prefer mail delivery (MD) to mail
 forwarding (MF), regardless of protocol, or might prefer one
 protocol regardless of whether MD or MF is required. Care is
 required to prevent loops.

 3. The resolver must be capable of chaining through multiple name
 servers to get to an authoritative name server for any query.
 The resolver should guard against loops in referrals; a simple
 policy is to discard referrals that don’t match more of the
 query name than the referring name server, and also to avoid
 querying the same name server twice (This test should be done
 using addresses of name servers instead of domain names to
 avoid problems when a name server has multiple domain names or
 errors are present in aliases).

 4. The resolver must be able to try alternate name servers when a
 name server doesn’t respond.

 5. The resolver must be able to communicate different failure
 conditions to its client. These failure conditions include
 unknown domain name, unknown resource for a know domain name,
 and inability to access any of the authoritative name servers
 for a domain.

 6. If the resolver uses datagrams for queries, it must recover
 from lost and duplicate datagrams.

 Resolvers with cache management

 Caching provides a tool for improving the performance of name
 service, but also is a potential source of incorrect results. For
 example, a database might cache information that is later changed
 in the authoritative name servers. While this problem can’t be
 eliminated without eliminating caching, it can be reduced to an
 infrequent problem through the use of timeouts.

 When name servers return resource records, each record has an
 associated time-to-live (TTL) field. This field is expressed in
 seconds, and has 16 bits of significance.

 When a resolver caches a returned resource record it must also
 remember the TTL field. The resolver must discard the record when
 the equivalent amount of time has passed. If the resolver shares
 a database with a name server, it must decrement the TTL field of
 imported records periodically rather than simply deleting the
 record. This strategy is necessary to avoid exporting a resource
 record whose TTL field doesn’t reflect the amount of time that the
 resource record has been cached. Of course, the resolver should

Mockapetris [Page 28]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

 not decrement the TTL fields of records for which the associated
 name server is an authority.

Mockapetris [Page 29]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

Appendix 1 - Domain Name Syntax Specification

 The preferred syntax of domain names is given by the following BNF
 rules. Adherence to this syntax will result in fewer problems with
 many applications that use domain names (e.g., mail, TELNET). Note
 that some applications described in [14] use domain names containing
 binary information and hence do not follow this syntax.

 <domain> ::= <subdomain> | " "

 <subdomain> ::= <label> | <subdomain> "." <label>

 <label> ::= <letter> [[<ldh-str>] <let-dig>]

 <ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

 <let-dig-hyp> ::= <let-dig> | "-"

 <let-dig> ::= <letter> | <digit>

 <letter> ::= any one of the 52 alphabetic characters A through Z
 in upper case and a through z in lower case

 <digit> ::= any one of the ten digits 0 through 9

 Note that while upper and lower case letters are allowed in domain
 names no significance is attached to the case. That is, two names
 with the same spelling but different case are to be treated as if
 identical.

 The labels must follow the rules for ARPANET host names. They must
 start with a letter, end with a letter or digit, and have as interior
 characters only letters, digits, and hyphen. There are also some
 restrictions on the length. Labels must be 63 characters or less.

 For example, the following strings identify hosts in the ARPA
 Internet:

 F.ISI.ARPA LINKABIT-DCN5.ARPA UCL-TAC.ARPA

Mockapetris [Page 30]

RFC 882 November 1983
 Domain Names - Concepts and Facilities

REFERENCES and BIBLIOGRAPHY

 [1] E. Feinler, K. Harrenstien, Z. Su, and V. White, "DOD Internet
 Host Table Specification", RFC 810, Network Information Center,
 SRI International, March 1982.

 [2] J. Postel, "Computer Mail Meeting Notes", RFC 805,
 USC/Information Sciences Institute, February 1982.

 [3] Z. Su, and J. Postel, "The Domain Naming Convention for Internet
 User Applications", RFC 819, Network Information Center, SRI
 International, August 1982.

 [4] Z. Su, "A Distributed System for Internet Name Service",
 RFC 830, Network Information Center, SRI International,
 October 1982.

 [5] K. Harrenstien, and V. White, "NICNAME/WHOIS", RFC 812, Network
 Information Center, SRI International, March 1982.

 [6] M. Solomon, L. Landweber, and D. Neuhengen, "The CSNET Name
 Server", Computer Networks, vol 6, nr 3, July 1982.

 [7] K. Harrenstien, "NAME/FINGER", RFC 742, Network Information
 Center, SRI International, December 1977.

 [8] J. Postel, "Internet Name Server", IEN 116, USC/Information
 Sciences Institute, August 1979.

 [9] K. Harrenstien, V. White, and E. Feinler, "Hostnames Server",
 RFC 811, Network Information Center, SRI International,
 March 1982.

 [10] J. Postel, "Transmission Control Protocol", RFC 793,
 USC/Information Sciences Institute, September 1981.

 [11] J. Postel, "User Datagram Protocol", RFC 768, USC/Information
 Sciences Institute, August 1980.

 [12] J. Postel, "Simple Mail Transfer Protocol", RFC 821,
 USC/Information Sciences Institute, August 1980.

 [13] J. Reynolds, and J. Postel, "Assigned Numbers", RFC 870,
 USC/Information Sciences Institute, October 1983.

 [14] P. Mockapetris, "Domain Names - Implementation and
 Specification", RFC 883, USC/Information Sciences Institute,
 November 1983.

Mockapetris [Page 31]

