
Network Working Group Robert W. Scheifler
Request for Comments: 1013 June 1987

 X WINDOW SYSTEM PROTOCOL, VERSION 11
 Alpha Update
 April 1987
 Copyright (c) 1986, 1987 Massachusetts Institute of Technology
 X Window System is a trademark of M.I.T.

Status of this Memo

 This RFC is distributed to the Internet community for information
 only. It does not establish an Internet standard. The X window
 system has been widely reviewed and tested. The internet community
 is encouraged to experiment with it. Distribution of this memo is
 unlimited (see copyright notice on page 2).

M.I.T. [Page 1]

RFC 1013 June 1987

 Permission to use, copy, modify, and distribute this document for any
 purpose and without fee is hereby granted, provided that the above
 copyright notice appear in all copies and that both that copyright
 notice and this permission notice are retained, and that the name of
 M.I.T. not be used in advertising or publicity pertaining to this
 document without specific, written prior permission. M.I.T. makes no
 representations about the suitability of this document or the
 protocol defined in this document for any purpose. It is provided
 "as is" without express or implied warranty.

 Author: Robert W. Scheifler
 Laboratory for Computer Science
 545 Technology Square, Room 418
 Cambridge, MA 02139

 Contributors:
 Dave Carver (Digital HPW)
 Branko Gerovac (Digital HPW)
 Jim Gettys (MIT/Project Athena, Digital)
 Phil Karlton (Digital WSL)
 Scott McGregor (Digital SSG)
 Ram Rao (Digital UEG)
 David Rosenthal (Sun)
 Dave Winchell (Digital UEG)

 Implementors of initial server who provided useful input:
 Susan Angebranndt (Digital)
 Raymond Drewry (Digital)
 Todd Newman (Digital)

 Invited reviewers who provided useful input:
 Andrew Cherenson (Berkeley)
 Burns Fisher (Digital)
 Dan Garfinkel (HP)
 Leo Hourvitz (Next)
 Brock Krizan (HP)
 David Laidlaw (Stellar)
 Dave Mellinger (Interleaf)
 Ron Newman (MIT)
 John Ousterhout (Berkeley)
 Andrew Palay (ITC CMU)
 Ralph Swick (MIT)
 Craig Taylor (Sun)
 Jeffery Vroom (Stellar)

 This document does not attempt to provide the rationale or pragmatics
 required to fully understand the protocol or to place it in
 perspective within a complete system. Knowledge of X Version 10
 will certainly aid in understanding this document.

M.I.T. [Page 2]

RFC 1013 June 1987

 The protocol contains many management mechanisms that are not
 intended for normal applications. Not all mechanisms are needed to
 build a particular user interface. It is important to keep in mind
 that the protocol is intended to provide mechanism, not policy.

 This document does not attempt to define precise formats or bit
 encodings.

M.I.T. [Page 3]

RFC 1013 June 1987

 SECTION 1. TERMINOLOGY

 Access control list
 X maintains a list of hosts from which client programs may be
 run. By default, only programs on the local host may use the
 display, plus any hosts specified in an initial list read by
 the server. This "access control list" can be changed by
 clients on the local host. Some server implementations may
 also implement other authorization mechanisms.

 Active grab
 A grab is "active" when the pointer or keyboard is actually
 owned by the single grabbing client.

 Ancestors
 If W is an inferior of A, then A is an "ancestor" of W.

 Atom
 An "atom" is a unique id corresponding to a string name.
 Atoms are used to identify properties, types, and selections.

 Backing store
 When a server maintains the contents of a window, the
 off-screen saved pixels are known as a "backing store".

 Bit gravity
 When a window is resized, the contents of the window are
 not necessarily discarded. It is possible to request the
 server (though no guarantees are made) to relocate the
 previous contents to some region of the window. This
 attraction of window contents for some location of a window
 is known as "bit gravity".

 Bitmap
 A "bitmap" is a pixmap of depth one.

 Button grabbing
 Buttons on the pointer may be passively "grabbed" by a
 client. When the button is pressed, the pointer is then
 actively grabbed by the client.

 Byte order
 For image (pixmap/bitmap) data, byte order is defined by
 the server, and clients with different native byte ordering
 must swap bytes as necessary. For all other parts of the
 protocol, the byte order is defined by the client, and the
 server swaps bytes as necessary.

 Children
 The "children" of a window are its first-level subwindows.

M.I.T. [Page 4]

RFC 1013 June 1987

 Client
 An application program connects to the window system server
 by some interprocess communication (IPC) path, such as a TCP
 connection or a shared memory buffer. This program is the
 window system server. More precisely, the client is the IPC
 path itself; a program with multiple paths open to the server
 is viewed as multiple clients by the protocol. Resource
 lifetimes are controlled by connection lifetimes, not by
 program lifetimes.

 Clipping regions
 In a graphics context, a bitmap or list of rectangles can
 be specified to restrict output to a particular region of
 the window. The image defined by the bitmap or rectangles
 is called a "clipping region".

 Color cell
 An entry in a colormap is known as a "color cell". An entry
 contains three values specifying red, green and blue
 intensities. These values are always viewed as 16 bit
 unsigned numbers, with zero being minimum intensity. The
 values are scaled by the server to match the display
 hardware. The components of a cell are coincident with
 components of other cells in DirectColor and TrueColor
 colormaps.

 Colormap
 A "colormap" consists of a set of color cells. A pixel value
 indexes the color map to produce intensities to be displayed.
 Depending on hardware limitations, one or more colormaps may
 be installed at one time, such that windows associated with
 those maps display with true colors.

 Connection
 The IPC path between the server and client program is known
 as a "connection". A client program typically (but not
 necessarily) has one connection to the server over which
 requests and events are sent.

 Containment
 A window "contains" the pointer if the window is viewable and
 the hotspot of the cursor is within a visible region of the
 window or a visible region of one of its inferiors. The
 border of the window is included as part of the window for
 containment. The pointer is "in" a window if the window
 contains the pointer but no inferior contains the pointer.

 Coordinate system
 The coordinate system has X horizontal and Y vertical, with
 the origin [0, 0] at the upper left. Coordinates are
 discrete, and in terms of pixels. Each window and pixmap has

M.I.T. [Page 5]

RFC 1013 June 1987

 its own coordinate system. For a window, the origin is at
 the inside upper left, inside the border.

 Cursor
 A "cursor" is the visible shape of the pointer on a screen.
 It consist of a hot spot, a source bitmap, a shape bitmap,
 and a pair of colors. The cursor defined for a window
 controls the visible appearance when the pinter is in that
 window.

 Depth
 The "depth" of a window or pixmap is number of bits per pixel
 it has. The depth of a gcontext is the depth of the root of
 the gcontext.

 Device
 Keyboards, mice, tablets, track-balls, button boxes, etc. are
 all collectively known as input "devices". The core protocol
 only deals with two devices, "the keyboard" and "the
 pointer".

 Drawable
 Both windows and pixmaps may be used as sources and
 destinations in graphics operations. These are collectively
 known as "drawables". However, an InputOnly window cannot be
 used as a source or destination in a graphics operation.

 Event
 Clients are informed of information asynchronously via
 "events". These events may be either asynchronously generated
 from devices, or generated as side effects of client
 requests. Events are grouped into types; events are never
 sent to a client by the server unless the client has
 specificially asked to be informed of that type of event,
 but other clients can force events to be sent to other
 clients. Events are typically reported relative to a window.

 Event mask
 Events are requested relative to a window. The set of event
 types a client requests relative to a window described using
 an "event mask".

 Event sychronization
 There are certain race conditions possible when
 demultiplexing device events to clients (in particular
 deciding where pointer and keyboard events should be sent
 when in the middle of window management operations). The
 event synchronization mechanism allows synchronous processing
 of device events.

M.I.T. [Page 6]

RFC 1013 June 1987

 Event propagation
 Device-related events "propagate" from the source window to
 ancestor windows until some client has expressed interest in
 handling that type of event, or until the event is discarded
 explicitly.

 Event source
 The smallest window containing the pointer is the "source"
 of a device related event.

 Exposure event
 Servers do not guarantee to preserve the contents of windows
 when windows are obscured or reconfigur contents of regions
 of windows have been lost.

 Extension
 Named "extensions" to the core protocol can be defined to
 extend the system. Extension to output requests, resources,
 and event types are all possible, and expected.

 Font
 A "font" is an array of glyphs (typically characters). The
 protocol does no translation or interpretation of character
 sets. The client simply indicates values used to index the
 glyph array. A font contains additional metric information
 to determine inter-glyph and inter-line spacing.

 Glyph
 A "glyph" is an image, typically of a character, in a font.

 Grab
 Keyboard keys, the keyboard, pointer buttons, the pointer,
 and the server can be "grabbed" for exclusive use by a
 client. In general, these facilities are not intended to be
 used by normal applications, but are intended for various
 input and window managers to implement various styles of
 user interfaces.

 Graphics context
 Various information for graphics output is stored in "GC"’s,
 such as foreground pixel, background pixel, line width,
 clipping region, etc.

 Hotspot
 A cursor has an associated "hot spot" which defines a point
 in the cursor that corresponds to the coordinates reported
 for the pointer.

 Identifier
 Each resource has an "identifier", a unique value associated
 with it that clients use to name the resource. An identifier

M.I.T. [Page 7]

RFC 1013 June 1987

 can be used over any connection to name the resource.

 Inferiors
 The "inferiors" of a window are all of the subwindows nested
 below it: the children, the children’s children, etc.

 Input focus
 The "input focus" is nominally where keyboard input goes.
 Keyboard events are by default sent to the client expressing
 interest on the window the pointer is in. This is said to be
 a "real estate driven" input focus. It is also possible to
 attach the keyboard input to a specific window; events will
 then be sent to the appropriate client independent of the
 pointer position.

 Input manager
 Control over keyboard input is typically provided by an
 "input manager" client.

 InputOnly window
 A window that cannot be used for graphics requests.
 InputOnly windows are "invisible", and can be used to control
 such things as cursors, input event generation, and grabbing.

 InputOutput window
 The "normal" kind of opaque window, used for both input
 and output.

 Key grabbing
 Keys on the keyboard may be passively "grabbed" by a client.
 When the key is pressed, the keyboard is then actively
 grabbed by the client.

 Keyboard grabbing
 A client can actively "grab" control of the keyboard, and key
 events will be sent to that client rather than the client the
 events would normally have been sent to.

 Mapping
 A window is said to be "mapped" if a map call has been
 performed on it. Unmapped windows are never viewable or
 visible.

 Modifier keys
 Shift, Control, Meta, Super, Hyper, ALT, Compose, Apple,
 CapsLock, ShiftLock, and similar keys are called "modifier"
 keys.

 Obscures
 Window A "obscures" window B if both are viewable
 InputOutput windows and A is higher in the global stacking

M.I.T. [Page 8]

RFC 1013 June 1987

 order, and the rectangle defined by the outside edges of
 intersects the rectangle defined by the outside edges of B.
 Note the (fine) distinction with "occludes". Also note that
 window borders are included in the calculation.

 Occludes
 Window A "occludes" window B if both are mapped and A is
 higher in the global stacking order, and the rectangle
 defined by the outside edges of A intersects the rectangle
 defined by the outside edges of B. Note the (fine)
 distinction with "obscures". Also note that window borders
 are included in the calculation.

 Padding
 Some padding bytes are inserted in the data stream to
 maintain alignment of the protocol requests on natural
 boundaries. This increases ease of portability to some
 machine architectures.

 Parent window
 If C is a child of P, then P is the "parent" of C.

 Passive grab
 Grabbing a key or button is a "passive" grab. The grab
 activates when the key or button is actually pressed.

 Pixel value
 A "pixel" is an N-bit value, where N is the number of bit
 planes used in a particular window or pixmap. For a window,
 a pixel value indexes a colormap to derive an actual color
 to be displayed.

 Pixmap
 A "pixmap" is a three dimensional array of bits. A pixmap
 is normally thought of as a two dimensional array of pixels,
 where each pixel can be a value from 0 to (2^N)-1, where N
 is the depth (z axis) of the pixmap. A pixmap can also be
 thought of as a stack of N bitmaps.

 Plane mask
 Graphics operations can be restricted to only affect a
 subset of bit planes of a destination. A "plane mask" is
 a bit mask describing which planes are to be modified, and
 is stored in a graphics context.

 Pointer
 The "pointer" is the pointing device attached to the cursor,
 and tracked on the screens.

 Pointer grabbing
 A client can actively "grab" control of the pointer, and

M.I.T. [Page 9]

RFC 1013 June 1987

 button and motion events will be sent to that client rather
 than the client the events would normally have been sent to.

 Pointing device
 A "pointing device" is typically a mouse or tablet, or some
 other device with effective dimensional motion. There is
 only one visible cursor is defined by the core protocol,
 and it tracks whatever pointing device is attached as the
 pointer.

 Property
 Windows may have associated "properties", consisting of a
 name, a type, a data format, and some data. The protocol
 places no interpretation on properties, they are intended
 as a general-purpose naming mechanism for clients. For
 example, clients might share information such as resize
 hints, program names, and icon formats with a window
 manager via properties.

 Property list
 The "property list" of a window is the list of properties
 that have been defined for the window.

 Redirecting control
 Window managers (or client programs) may wish to enforce
 window layout policy in various ways. When a client
 attempts to change the size or position of a window, the
 operation may be "redirected" to a specified client,
 rather than the operation actually being performed.

 Reply
 Information requested by a client program is sent back to
 the client with a "reply". Both events and replys are
 multipexed on the same connection. Most requests do not
 generate replies.

 Request
 A command to the server is called a "request". It is a
 single block of data sent over a connection.

 Resource
 Windows, pixmaps, cursors, fonts, graphics contexts, and
 colormaps are known as "resources". They all have unique
 identifiers associated with them for naming purposes. The
 lifetime of a resource is bounded by the lifetime of the
 connection over which the resource was created.

 Root
 The "root" of a pixmap or gcontext is the same as the root
 of whatever drawable was used when the pixmap or gcontext
 was created. The "root" of a window is the root window

M.I.T. [Page 10]

RFC 1013 June 1987

 under which the window was created.

 Root window
 Each screen has a "root window" covering it. It cannot be
 reconfigured or unmapped, but otherwise acts as a full
 fledged window. A root window has no parent.

 Save set
 The "save set" of a client is a list of other client’s
 windows which, if they are inferiors of one of the client’s
 windows at connection close, should not be destroyed, and
 which should be remapped if it is unmapped. Save sets are
 typically used by window managers to avoid lost windows if
 the manager should terminate abnormally.

 Screen
 A server may provide several independent "screens", which
 typically have physically independent monitors. This would
 be the expected configuration when there is only a single
 keyboard and pointer shared among the screens.

 Server
 The "server" provides the basic windowing mechanism. It
 handles IPC connections from clients, demultipexes graphics
 requests onto the screens, and multiplexes input back to the
 appropriate clients.

 Server grabbing
 The server can be "grabbed" by a single client for exclusive
 use. This prevents processing of any requests from other
 client connections until the grab is complete. This is
 typically only a transient state for such things as
 rubber-banding and pop-up menus, or to execute requests
 indivisibly.

 Sibling
 Children of the same parent window are known as "sibling"
 windows.

 Stacking order
 Sibling windows may "stack" on top of each other. Windows
 above both obscure and occlude lower windows. This is
 similar to paper on a desk. The relationship between
 sibling windows is known as the "stacking order".

 Stipple
 A "stipple pattern" is a bitmap that is used to tile a
 region to serve as an additional clip mask for a fill
 operation with the foreground color.

M.I.T. [Page 11]

RFC 1013 June 1987

 Tile
 A pixmap can be replicated in two dimensions to "tile"
 a region. The pixmap itself is also known as a "tile".

 Timestamp
 A time value, expressed in milliseconds, typically since
 the last server reset. Timestamp values wrap around (after
 about 49.7 days). The server, given its current time is
 represented by timestamp T, always interprets timestamps
 from clients by treating half of the timestamp space as
 being earlier in time than T, and half of the timestamp
 space as being later in time than T. One timestamp value
 (named CurrentTime) is never generated by the server;
 this value is reserved for use in requests to represent
 the current server time.

 Type
 A type is an arbitrary atom used to identify the
 interpretation of property data. Types are completely
 uninterpreted by the server; they are solely for the
 benefit of clients.

 Unviewable
 A window is "unviewable" if it is mapped but some ancestor is
 unmapped.

 Viewable
 A window is "viewable" if it and all of its ancestors are
 mapped. This does not imply that any portion of the window
 is actually visible.

 Visible
 A region of a window is "visible" if someone looking at the
 screen can actually "see" it: the window is viewable and the
 region is not occluded by any other window.

 Window gravity
 When windows are resized, subwindows may be repositioned
 automatically relative to some position in the window. This
 attraction of a subwindow to some part of its parent is known
 as "window gravity".

 Window manager
 Manipulation of windows on the screen, and much of the user
 interface (policy) is typically provided by a "window
 manager" client.

 XYFormat
 The data for a pixmap is said to be in "XYFormat" if it is
 organized as a set of bitmaps representing individual bit
 planes.

M.I.T. [Page 12]

RFC 1013 June 1987

 ZFormat
 The data for a pixmap is said to be in "ZFormat" if it is
 organized as a set of pixel values in scanline order.

SECTION 2. PROTOCOL FORMATS

Request Format

 Every request contains an 8-bit "major" opcode, and a 16-bit length
 field expressed in units of 4 bytes. Every request consists of 4
 bytes of header containing the major opcode, the length field, and a
 data byte) followed by zero or more additional bytes of data; the
 length field defines the total length of the request, including the
 header. The length field in a request must equal the minimum length
 required to contain the request; if the specified length is smaller
 or larger than the required length, an error is enerated. Unused
 bytes in a request are not required to be zero. Major opcodes 128
 through 255 are reserved for extensions. Extensions are intended
 to contain multiple requests, so extension requests typically have
 an additional minor opcode encoded in the "spare" data byte in the
 request header, but the placement and interpretation of this minor
 opcode, and all other fields in extension requests, are not defined
 by the core protocol. Every request is implicitly assigned a sequence
 number, starting with one,used in replies, errors, and events.

Reply Format

 Every reply contains a 32-bit length field expressed in units of 4
 bytes. Every reply consists of 32 bytes, followed by zero or more
 additional bytes of data, as specified in the length field. Unused
 bytes within a reply are not guaranteed to be zero. Every reply
 also contains the least significant 16 bits of the sequence number
 of the corresponding request.

Error Format

 Error reports are 32 bytes long. Every error includes an 8-bit error
 code. Error codes 128 through 255 are reserved for extensions. Every
 error also includes the major and minor opcodes of the failed
 request, and the least significant 16 bits of the sequence number of
 the request. For the following errors (see Section 5), the failing
 resource id is also returned: Colormap, Cursor, Drawable, Font,
 GContext, IDChoice, Pixmap, and Window. For Atom errors, the failing
 atom is returned. For Value errors, the failing value is returned.
 Other core errors return no additional data. Unused bytes within
 an error are not guaranteed to be zero.

Event Format

 Events are 32 bytes long. Unused bytes within an event are not

M.I.T. [Page 13]

RFC 1013 June 1987

 guaranteed to be zero. Every event contains an 8-bit type code. The
 most significant bit in this code is set if the event was generated
 from a SendEvent request. Event codes 64 through 127 are reserved for
 extensions, although the core protocol does not define a mechanism
 for selecting interest in such events. Every core event (with the
 exception of KeymapNotify) also contains the least significant 16
 bits of the sequence number of the last request issued by the client
 that was (or is currently being) processed by the server.

SECTION 3. SYNTAX

 The syntax {...} encloses a set of alternatives.

 The syntax [...] encloses a set of structure components.

 In general, TYPEs are in upper case and AlternativeValues are
 capitalized.

 Requests in Section 10 are described in the following format:

 RequestName
 arg1: type1
 ...
 argN: typeN
 =>
 result1: type1
 ...
 resultM: typeM

 Errors: kind1, ..., kindK

 Description.

If no => is present in the description, then the request has no
reply (it is asynchronous), although errors may still be reported.

Events in Section 12 are described in the following format:

 EventName
 value1: type1
 ...
 valueN: typeN

 Description.

M.I.T. [Page 14]

RFC 1013 June 1987

SECTION 4. COMMON TYPES

LISTofFOO

 A type name of the form LISTofFOO means a counted list of elements
 of type FOO; the size of the length field may vary (it is not
 necessarily the same size as a FOO), in some cases may be implicit,
 and is not fully specified in this document.

BITMASK and LISTofVALUE

 The types BITMASK and LISTofVALUE are somewhat special. Various
 requests contain arguments of the form:
 value-mask: BITMASK
 value-list: LISTofVALUE
 used to allow the client to specify a subset of a heterogeneous
 collection of "optional" arguments. The value-mask specifies which
 arguments are to be provided; each such argument is assigned a unique
 bit position. The representation of the BITMASK will typically
 contain more bits than there are defined arguments; unused bits in
 the value-mask must be zero (or the server generates a Value error).
 The value-list contains one value for each one bit in the mask, from
 least to most significant bit in the mask. Each value is represented
 with 4 bytes, but the actual value occupies only the least
 significant bytes as required; the values of the unused bytes do not
 matter.

Or Types

 A type of the form "T1 or ... or Tn" means the union of the indicated
 types; a single-element type is given as the element without
 enclosing braces.

DEVICE: 32-bit id (<class,model,manufacturer,unit> 8 bits each)
WINDOW: 32-bit id
PIXMAP: 32-bit id
CURSOR: 32-bit id
FONT: 32-bit id
GCONTEXT: 32-bit id
COLORMAP: 32-bit id
DRAWABLE: WINDOW or PIXMAP
ATOM: 32-bit id (top 3 bits guaranteed to be zero)
VISUALID: 32-bit id (top 3 bits guaranteed to be zero)
VALUE: 32-bit quantity (used only in LISTofVALUE)
INT8: 8-bit signed integer
INT16: 16-bit signed integer
INT32: 32-bit signed integer
CARD8: 8-bit unsigned integer
CARD16: 16-bit unsigned integer
CARD32: 32-bit unsigned integer

M.I.T. [Page 15]

RFC 1013 June 1987

TIMESTAMP: CARD32
BITGRAVITY: {Forget, Static,
 NorthWest, North, NorthEast,
 West, Center, East,
 SouthWest, South, SouthEast}
WINGRAVITY: {Unmap, Static,
 NorthWest, North, NorthEast,
 West, Center, East,
 SouthWest, South, SouthEast}
BOOL: {True, False}
EVENT: {KeyPress, KeyRelease,
 OwnerGrabButton,
 ButtonPress, ButtonRelease, EnterWindow, LeaveWindow,
 PointerMotion, PointerMotionHint,
 Button1Motion, Button2Motion, Button3Motion,
 Button4Motion, Button5Motion, ButtonMotion
 Exposure, VisibilityChange,
 StructureNotify, ResizeRedirect,
 SubstructureNotify, SubstructureRedirect,
 FocusChange,
 PropertyChange, ColormapChange,
 KeymapState}
POINTEREVENT: {ButtonPress, ButtonRelease, EnterWindow, LeaveWindow,
 PointerMotion, PointerMotionHint,
 Button1Motion, Button2Motion, Button3Motion,
 Button4Motion, Button5Motion, ButtonMotion
 KeymapState}
DEVICEEVENT: {KeyPress, KeyRelease,
 ButtonPress, ButtonRelease,
 PointerMotion,
 Button1Motion, Button2Motion, Button3Motion,
 Button4Motion, Button5Motion, ButtonMotion}
KEYCODE: CARD8
BUTTON: CARD8
KEYMASK: {Shift, CapsLock, Control, Mod1, Mod2, Mod3, Mod4, Mod5}
BUTMASK: {Button1, Button2, Button3, Button4, Button5}
KEYBUTMASK: KEYMASK or BUTMASK
STRING8: LISTofCARD8
STRING16: LISTofCHAR2B
CHAR2B: [byte1, byte2: CARD8]
POINT: [x, y: INT16]
RECTANGLE: [x, y: INT16,
 width, height: CARD16]
ARC: [x, y: INT16,
 width, height: CARD16,
 angle1, angle2: INT16]
HOST: [family: {Internet, NS, ECMA, Datakit, DECnet}
 address: LISTofCARD8]

 The [x,y] coordinates of a RECTANGLE specify the upper left corner.

M.I.T. [Page 16]

RFC 1013 June 1987

 The primary interpretation of "large" characters in a STRING16 is
 that they are composed of two bytes used to index a 2-D matrix;
 hence the use of CHAR2B rather than CARD16. This corresponds to
 the JIS/ISO method of indexing two-byte characters. It is expected
 that most "large" fonts will be defined with two-byte matrix
 indexing. For large fonts constructed with linear indexing, a
 CHAR2B can be interpreted as a 16-bit number by treating byte1 as
 the most significant byte; this means that clients should always
 transmit such 16-bit character values most significant byte first,
 as the server will never byte-swap CHAR2B quantities.

 The length, format, and interpretation of a HOST address are specific
 to the family.

SECTION 5. ERRORS

 In general, when a request terminates with an error, the request has
 no side effects (i.e., there is no partial execution). The only
 requests for which this is not true are ChangeWindowAttributes,
 ChangeGC, PolyText8, PolyText16, FreeColors, StoreColors, and
 ChangeKeyboardControl.

 The following error codes can be returned by the various requests:

Access
 An attempt to grab a key/button combination already grabbed
 by another client.

 An attempt to free a colormap entry not allocated by the
 client.

 An attempt to store into a read-only or an unallocated
 colormap entry.

 An attempt to modify the access control list from other than
 the local (or otherwise authorized) host.

 An attempt to select an event type, that at most one client
 can select at a time, when another client has already
 selected it.

Alloc
 The server failed to allocate the requested resource.

 Note that this only covers allocation errors at a very coarse
 level, and is not intended to (nor can it in practice hope
 to) cover all cases of a server running out of allocation
 space in the middle of service.

M.I.T. [Page 17]

RFC 1013 June 1987

 The semantics when a server runs out of allocation space are
 left unspecified.

Atom
 A value for an ATOM argument does not name a defined ATOM.

Colormap
 A value for a COLORMAP argument does not name a defined
 COLORMAP.

Cursor
 A value for a CURSOR argument does not name a defined CURSOR.

Drawable
 A value for a DRAWABLE argument does not name a defined
 WINDOW or PIXMAP.

Font
 A value for a FONT or argument does not
 name a defined FONT.

GContext
 A value for a GCONTEXT argument does not name a defined
 GCONTEXT.

IDChoice
 The value chosen for a resource identifier is either not
 included in the range assigned to the client, or is already
 in use.

Implementation
 The server does not implement some aspect of the request. A
 server which generates this error for a core request is
 deficient. As such, this error is not listed for any of the
 requests, but clients should be prepared to receive such
 errors, and handle or discard them.

Length
 The length of a request is shorter or longer than that
 required to minimally contain the arguments.

Match
 An InputOnly window is used as a DRAWABLE.

 Some argument (or pair of arguments) has the correct type and
 range, but fails to "match" in some other way required by the
 request.

Name
 A font or color of the specified name does not exist.

M.I.T. [Page 18]

RFC 1013 June 1987

Pixmap
 A value for a PIXMAP argument does not name a defined PIXMAP.

Property
 The requested property does not exist for the specified
 window.

Request
 The major or minor opcode does not specify a valid request.

Value
 Some numeric value falls outside the range of values accepted
 by the request. Unless a specific range is specified for an
 argument, the full range defined by the argument’s type is
 accepted. Any argument defined as a set of alternatives can
 generate this error.

Window
 A value for a WINDOW argument does not name a defined WINDOW.

Note: the Atom, Colormap, Cursor, Drawable, Font, GContext, Pixmap,
and Window errors are also used when the argument type is extended
by union with a set of fixed alternatives, e.g.,<Window or
PointerRoot or None>.

SECTION 6. KEYBOARDS

 Keycodes are always in the inclusive range [8,255].

 For keyboards with both left-side and right-side modifier keys (e.g.,
 Shift and Control), the mask bits in the protocol always define the
 OR of the keys. If electronically distinguishable, they can have
 separate up/down events generated, and clients that want to
 distinguish can track the individual states manually.

 <As part of the core we need to define a universal association
 between keycaps and keycodes. A keycap is the graphical information
 imprinted on a keyboard key, e.g., "$ 4", "T", "+ =".>

SECTION 7. POINTERS

 Buttons are always numbered starting with one.

SECTION 8. PREDEFINED ATOMS

 Predefined atoms are not strictly necessary, and may not be useful in
 all environments, but will eliminate many InternAtom requests in most
 applications. The core protocol imposes no semantics on these names,

M.I.T. [Page 19]

RFC 1013 June 1987

 except as they are used in FONTPROP structures (see QueryFont). Note
 that upper/lower case matters.

 BITMAP ICON_SIZE RGB_GREEN_MAP
 COMMAND ITALIC_ANGLE RGB_RED_MAP
 COPYRIGHT MAX_SPACE SECONDARY
 CUT_BUFFER0 MIN_SPACE SIZE_HINTS
 CUT_BUFFER1 NAME STRIKEOUT_ASCENT
 CUT_BUFFER2 NORMAL_HINTS STRIKEOUT_DESCENT
 CUT_BUFFER3 NORM_SPACE STRING
 CUT_BUFFER4 PIXMAP SUBSCRIPT_X
 CUT_BUFFER5 POINT_SIZE SUBSCRIPT_Y
 CUT_BUFFER6 PRIMARY SUPERSCRIPT_X
 CUT_BUFFER7 QUAD_WIDTH SUPERSCRIPT_Y
 DEFAULT_CHAR RECTANGLE UNDERLINE_POSITION
 END_SPACE RESIZE_HINT UNDERLINE_THICKNESS
 FACE_NAME RESOLUTION WEIGHT
 FAMILY_NAME RGB_BEST_MAP WINDOW
 FONT_ASCENT RGB_BLUE_MAP WM_HINTS
 FONT_DESCENT RGB_COLOR_MAP X_HEIGHT
 ICON RGB_DEFAULT_MAP ZOOM_HINTS
 ICON_NAME

SECTION 9. CONNECTION SETUP

 For remote clients, the X protocol can be built on top of any
 reliable byte stream. For TCP connections, displays on a given host
 a numbered starting from 0, and the server for display N listens and
 accepts connections on port 6000+N.

 The client must send an initial byte of data to identify the byte
 order to be employed. The value of the byte must be octal 102 or
 154. The value 102 (ASCII uppercase B) means values are transmitted
 most significant byte first, and value 154 (ASCII lowercase l) means
 values are transmitted least significant byte first. Except where
 explicitly noted in the protocol, all 16-bit and 32-bit quantities
 sent by the client must be transmitted with this byte order, and all
 16-bit and 32-bit quantities returned by the server will be
 transmitted with this byte order.

 Following the byte-order byte, the following information is sent by
 the client at connection setup:

 protocol-major-version: CARD16
 protocol-minor-version: CARD16
 authorization-protocol-name: STRING8
 authorization-protocol-data: STRING8

 The version numbers indicate what version of the protocol the
 client expects the server to implement. See below for an

M.I.T. [Page 20]

RFC 1013 June 1987

 explanation. The authorization name indicates what
 authorization protocol the client expects the server to use,
 and the data is specific to that protocol. Specification of
 valid authorization mechanisms is not part of the core X
 protocol. It is hoped that eventually one authorization
 protocol will be agreed upon. In the mean time, a server
 that implements a different protocol than the client expects,
 or a server that only implements the host-based mechanism,
 will simply ignore this information.

 Received by the client at connection setup:
 success: BOOL
 protocol-major-version: CARD16
 protocol-minor-version: CARD16
 length: CARD16

 Length is the amount of additional data to follow, in units
 of 4 bytes. The version numbers are an escape hatch in case
 future revisions of the protocol are necessary. In general,
 the major version would increment for incompatible changes,
 and the minor version would increment for small upward
 compatible changes. Barring changes, the major version
 will be eleven, and the minor version will be zero. The
 protocol version numbers returned indicate the protocol the
 server actually supports. This might not equal the version
 sent by the client. The server can (but need not) refuse
 connections from clients that offer a different version
 than the server supports. A server can (but need not)
 support more than one version simultaneously.

 Additional data received if authorization fails:
 reason: STRING8

 Additional data received if authorization is accepted:
 vendor: STRING8
 release-number: CARD32
 resource-id-base, resource-id-mask: CARD32
 image-byte-order: {LSBFirst, MSBFirst}
 bitmap-format-scanline-unit: {8, 16, 32}
 bitmap-format-scanline-pad: {8, 16, 32}
 bitmap-format-bit-order: {LeastSignificant, MostSignificant}
 pixmap-formats: LISTofFORMAT
 roots: LISTofSCREEN
 keyboard: DEVICE
 pointer: DEVICE
 motion-buffer-size: CARD32
 maximum-request-length: CARD16

 where

 FORMAT: [depth: CARD8,

M.I.T. [Page 21]

RFC 1013 June 1987

 bits-per-pixel: {4, 8, 16, 24, 32}
 scanline-pad: {8, 16, 32}]
 SCREEN: [root: WINDOW
 device: DEVICE
 width-in-pixels, height-in-pixels: CARD16
 width-in-millimeters,height-in-millimeters:CARD16
 allowed-depths: LISTofDEPTH
 root-depth: CARD8
 root-visual: VISUALID
 default-colormap: COLORMAP
 white-pixel, black-pixel: CARD32
 min-installed-maps, max-installed-maps: CARD16
 backing-stores: {Never, WhenMapped, Always}
 save-unders: BOOL
 current-input-masks: SETofEVENT]
 DEPTH: [depth: CARD8
 visuals: LISTofVISUALTYPE]
 VISUALTYPE: [visual-id: VISUALID
 class: {StaticGray, StaticColor,
 TrueColor,GrayScale, PseudoColor,
 DirectColor}
 red-mask, green-mask, blue-mask: CARD32
 bits-per-rgb-value: CARD8
 colormap-entries: CARD16]

 Per server information:

 The vendor string gives some indentification of the owner of the
 server implementation. The semantics of the release-number is
 controlled by the vendor.

 The resource-id-mask contains a single contiguous set of bits (at
 least 18); the client allocates resource ids by choosing a value
 with (only) some subset of these bits set, and ORing it with
 resource-id-base. Only values constructed in this way can be
 used to name newly created resources over this connection.
 Resource ids never have the top 3 bits set. The client is not
 restricted to linear or contiguous allocation of resource ids.
 Once an id has been freed, it can be reused, but this should not
 be necessary. An id must be unique with respect to the ids of
 all other resources, not just other resources of the same type.

 Although the server is in general responsible for byte swapping
 data to match the client, images are always transmitted and
 received in formats (including byte order) specified by the
 server. The byte order for images is given by image-byte-order,
 and applies to each scanline unit in XYFormat (bitmap) format,
 and to each pixel value in ZFormat.

 A bitmap is represented in scanline order. Each scanline is padded
 to a multiple of bits as given by bitmap-format-scanline-pad. The

M.I.T. [Page 22]

RFC 1013 June 1987

 pad bits are of arbitrary value. The scanline is quantized in
 multiples of bits as given by bitmap-format-scanline-unit. Within
 each unit, the leftmost bit in the bitmap is either the least or
 most significant bit in the unit, as given by
 bitmap-format-bit-order. If a pixmap is represented in XYFormat,
 each plane is represented as a bitmap, and the planes appear from
 most to least significant in bit order.

 For each pixmap depth supported by some screen, pixmap-formats lists
 the ZFormat used to represent images of that depth. In ZFormat, the
 pixels are in scanline order, left to right within a scanline. The
 number of bits used to hold each pixel is given by bits-per-pixel,
 and may be larger than strictly required by the depth. When the
 bits-per-pixel is 4, the order of nibbles in the byte is the same as
 the image byte-order. Each scanline is padded to a multiple of bits
 as given by scanline-pad.

 How a pointing device roams the screens is up to the server
 implementation, and is transparent to the protocol. No geometry
 among screens is defined.

 The server may retain the recent history of pointer motion, and to a
 finer granularity than is reported by MotionNotify events. Such
 history is available via the GetPointerMotions request. The
 approximate size of the history buffer is given by
 motion-buffer-size.

 Maximum-request-length specifies the maximum length of a request, in
 4-byte units, accepted by the server; i.e., this is the maximum value
 that can appear in the length field of a request. Requests larger
 than this generate a Length error, and the server will read and
 simply discard the entire request. Maximum-request-length will
 always be at least 4096 (i.e., requests of length up to and including
 16384 bytes will be accepted by all servers).

 Per screen information:

 The allowed-depths specifies what pixmap and window depths are
 supported. Pixmaps are supported for each depth listed, and windows
 of that depth are supported if at least one visual type is listed for
 the depth. A pixmap depth of one is always supported and listed, but
 windows of depth one might not be supported. A depth of zero is
 never listed, but zero-depth InputOnly windows are always supported.

 Root-depth and root-visual specify the depth and visual type of the
 root window. Width-in-pixels and height-in-pixels specify the size
 of the root window (which cannot be changed). The class of the root
 window is always InputOutput. Width-in-millimeters and
 height-in-millimeters can be used to determine the physical size and
 the aspect ratio.

M.I.T. [Page 23]

RFC 1013 June 1987

 The default-colormap is the one initially associated with the root
 window. Clients with minimal color requirements creating windows of
 the same depth as the root may want to allocate from this map by
 default.

 Black-pixel and white-pixel can be used in implementing a
 "monochrome" application. These pixel values are for permanently
 allocated entries in the default-colormap; the actual RGB values may
 be settable on some screens.

 The border of the root window is initially a pixmap filled with the
 black-pixel. The initial background of the root window is a pixmap
 filled with some unspecified two-color pattern using black-pixel and
 white-pixel.

 Min-installed-maps specifies the number of maps that can be
 guaranteed to installed simultaneously (with InstallColormap),
 regardless of the number of entries allocated in each map.
 Max-installed-maps specifies the maximum number of maps that might
 possibly be installed simultaneously, depending on their
 allocations. For the typical case of a single hardware colormap,
 both values will be one.

 Backing-stores indicates when the server supports backing stores for
 this screen, although it may be storage limited in the number of
 windows it can support at once. If save-unders is True, then the a
 server can support the save-under mode in CreateWindow and
 ChangeWindowAttributes, although again it may be storage limited.

 The current-input-events is what GetWindowAttributes would return for
 the all-event-masks for the root window.

 Per visual-type information:

 A given visual type might be listed for more than one depth, or for
 more than one screen.

 For PseudoColor, a pixel value indexes a colormap to produce
 independent RGB values; the RGB values can be changed dynamically.
 GrayScale is treated the same as PseudoColor, except which primary
 drives the screen is undefined, so the client should always store
 the same value for red, green, and blue in colormaps. For
 DirectColor, a pixel value is decomposed into separate RGB
 subfields, and each subfield separately indexes the colormap for
 the corresponding value; The RGB values can be changed dynamically.
 TrueColor is treated the same as DirectColor, except the colormap
 has predefined read-only RGB values, which are server-dependent,
 but provide (near-)linear ramps in each primary. StaticColor is
 treated the same as PseudoColor, except the colormap has
 predefined read-only RGB values, which are server-dependent.
 StaticGray is treated the same as StaticColor, except the red,

M.I.T. [Page 24]

RFC 1013 June 1987

 green, and blue values are equal for any single pixel value,
 resulting in shades of gray. StaticGray with a two-entry colormap
 can be thought of as "monochrome".

 The red-mask, green-mask, and blue-mask are only defined for
 DirectColor and TrueColor; each has one contiguous set of bits, with
 no intersections.

 The bits-per-rgb-value specifies the log base 2 of the approximate
 number of distinct color values (individually) of red, green, and
 blue. Actual RGB values are always passed in the protocol within a
 16-bit spectrum.

 The colormap-entries defines the number of available colormap entries
 in a newly created colormap. For DirectColor and TrueColor, this
 will usually be the size of an individual pixel subfield.

SECTION 10. REQUESTS

CreateWindow
 wid, parent: WINDOW
 class: {InputOutput, InputOnly, CopyFromParent}
 depth: CARD8
 visual: VISUALID or CopyFromParent
 x, y: INT16
 width, height, border-width: CARD16
 value-mask: BITMASK
 value-list: LISTofVALUE

 Errors: IDChoice, Window, Pixmap, Colormap, Cursor, Match,
 Value, Alloc

 Creates an unmapped window, and assigns the identifier wid
 to it.

 A class of CopyFromParent means the class is taken from the
 parent. A depth of zero for class InputOutput or
 CopyFromParent means the depth is taken from the parent.
 A visual of CopyFromParent means the visual type is taken
 from the parent. For class InputOutput, the visual type
 and depth must be a combination supported for the screen
 (else a Match error); the depth need not be the same as the
 parent, but the parent must not be of class InputOnly (else
 a Match error). For class InputOnly, the depth must be
 zero (else a Match error), and the visual must be one
 supported for the screen (else a Match error), but the
 parent may have any depth and class.

 The server essentially acts as if InputOnly windows do not
 exist for the purposes of graphics requests, exposure

M.I.T. [Page 25]

RFC 1013 June 1987

 processing, and VisibilityNotify events. An InputOnly window
 cannot be used as a drawable (as a source or destination for
 graphics requests). InputOnly and InputOutput windows act
 identically in other respects (properties, grabs, input
 control, and so on).

 The window is placed on top in the stacking order with
 respect to siblings. The x and y coordinates are relative
 to the parent’s origin, and specify the position of the upper
 left outer corner of the window (not the origin). The width
 and height specify the inside size, not including the border,
 and must be non-zero. The border-width for an InputOnly
 window must be zero (else a Match error).

 The value-mask and value-list specify attributes of the
 window that are to be explicitly initialized. The possible
 values are:

 background-pixmap: PIXMAP or None or ParentRelative
 background-pixel: CARD32
 border-pixmap: PIXMAP or CopyFromParent
 border-pixel: CARD32
 bit-gravity: BITGRAVITY
 win-gravity: WINGRAVITY
 backing-store: {NotUseful, WhenMapped, Always}
 backing-bit-planes: CARD32
 backing-pixel: CARD32
 save-under: BOOL
 event-mask: SETofEVENT
 do-not-propagate-mask: SETofDEVICEEVENT
 override-redirect: BOOL
 colormap: COLORMAP or CopyFromParent
 cursor: CURSOR or None

 The default values, when attributes are not explicitly
 initialized, are:

 background-pixmap: None
 border-pixmap: CopyFromParent
 bit-gravity: Forget
 win-gravity: NorthWest
 backing-store: NotUseful
 backing-bit-planes: all ones
 backing-pixel: zero
 save-under: False
 event-mask: {} (empty set)
 do-not-propagate-mask: {} (empty set)
 override-redirect: False
 colormap: CopyFromParent
 cursor: None

M.I.T. [Page 26]

RFC 1013 June 1987

 Only the following attributes are defined for InputOnly
 windows: win-gravity, event-mask, do-not-propagate-mask,
 and cursor. It is a Match error to specify any other
 attributes for InputOnly windows.

 If background-pixmap is given, it overrides the default
 background-pixel. The background pixmap and the window must
 have the same root and the same depth (else a Match error).
 Any size pixmap can be used, although some sizes may be
 faster than others. If background None is specifed, the
 window has no defined background. If background
 ParentRelative is specified, the parent’s background is
 used, but the window must have the same depth as the parent
 (else a Match error); if the parent has background None,
 then the window will also have background None. A copy
 of the parent’s background is not made; the parent’s
 background is reexamined each time the window background is
 required. If background-pixel is given, it overrides the
 default and any background-pixmap given, and a pixmap of
 undefined size filled with background-pixel is used for the
 background. For a ParentRelative background, the
 background tile origin always aligns with the parent’s
 background tile origin; otherwise the background tile
 origin is always the window origin.

 When regions of the window are exposed and the server has
 not retained the contents, the server automatically tiles
 the regions with the window’s background unless the window
 has a background of None, in which case the previous screen
 contents are simply left in place. Exposure events are then
 generated for the regions, even if the background is None.

 The border tile origin is always the same as the background
 tile origin. If border-pixmap is given, it overrides the
 default border-pixel. The border pixmap and the window must
 have the same root and the same depth (else a Match error).
 Any size pixmap can be used, although some sizes may faster
 than others. If CopyFromParent is given, the parent’s border
 pixmap is copied (subsequent changes to the parent do not
 affect the child), but the window must have the same depth
 as the parent (else a Match error). If border-pixel is
 given, it overrides the default and any border-pixmap given,
 and a pixmap of undefined size filled with border-pixel is
 used for the border.

 Output to a window is always clipped to the inside of the
 window, so that the border is never affected.

 The bit-gravity defines which region of the window should be
 retained if the window is resized, and win-gravity defines
 how the window should be repositioned if the parent is

M.I.T. [Page 27]

RFC 1013 June 1987

 resized; see ConfigureWindow.

 A backing-store of WhenMapped advises the server that
 maintaining contents of obscured regions when the window
 is mapped would be beneficial. A backing-store of Always
 advises the server that maintaining contents even when the
 window is unmapped would be beneficial. Note that, even if
 the window is larger than its parent, the server should
 maintain complete contents, not just the region within the
 parent boundaries. If the server maintains contents,
 Exposure events will not be generated, but the server may
 stop maintaining contents at any time. A value of NotUseful
 advises the server that maintaining contents is unnecessary,
 although a server may still choose to maintain contents.

 Backing-bit-planes indicates (with one bits) which bit
 planes of the window hold dynamic data that must be preserved
 in backing-stores. Backing-pixel specifies what value to use
 in planes not covered by backing-bit-planes. The server is
 free to only save the specified bit planes in the
 backing-store, and regenerate the remaining planes with the
 specified pixel value.

 If save-under is True, the server is advised that, when
 this window is mapped, saving the contents of windows it
 obscures would be beneficial.

 The event-mask defines which events the client is interested
 in for this window (or, for some event types, inferiors of
 the window). The do-not-propagate-mask defines which events
 should not be propagated to ancestor windows when no client
 has the event type selected in this window.

 Override-redirect specifies whether map and configure
 request on this window should override a SubstructureRedirect
 on the parent, typically to inform a window manager not to
 tamper with the window.

 The colormap specifies the colormap, that best reflects the
 "true" colors of the window. Servers capable of supporting
 hardware colormaps may use this information, and window
 managers may use it for InstallColormap requests. The
 colormap must have the same visual type as the window
 (else a match error). If CopyFromParent is specified, the
 parents’s colormap is copied (subsequent changes to the
 parent do not affect the child), but the window must have
 the same visual type as the parent (else a Match error) an
 the parent must not have a colormap of None (else a Match
 error).

M.I.T. [Page 28]

RFC 1013 June 1987

 If a cursor is specified, it will be used whenever the
 pointer is in the window. If None is specified, the
 parent’s cursor will be used when the pointer is in the
 window, and any change in the parent’s cursor will
 cause an immediate change in the display cursor.

 This request generates a CreateNotify event.

 The background and border pixmaps and the cursor may be
 freed immediately if no further explicit references to
 them are to be made.

 Subsequent drawing into the background or border pixmap has
 an undefined effect on the window state; the server might or
 might not make a copy of the pixmap.

ChangeWindowAttributes
 window: WINDOW
 value-mask: BITMASK
 value-list: LISTofVALUE

 Errors: Window, Pixmap, Colormap, Cursor, Match, Value,
 Access

 The value-mask and value-list specify which attributes are
 to be changed. The values and restrictions are the same
 as for CreateWindow.

 Changing the background does not cause the window contents
 to be changed. Setting the border, or changing the
 background such that border tile origin changes, causes the
 border to be repainted. Changing the background of a root
 window to None or ParentRelative restores the default
 background pixmap. Changing the border of a root window to
 CopyFromParent restores the default border pixmap.

 Changing the back-store of an obsecured window to
 WhenMapped or Always, or changing the backing-bit-planes,
 backing-pixel, or save-under of a mapped window, may have
 no immediate effect.

 Multiple clients can select input on the same window; their
 event-masks are disjoint. When an event is generated it
 will be reported to all interested clients. However, at
 most one client at a time can select for
 SubstructureRedirect, at most one client at a time can
 select for ResizeRedirectr, and at most one client at a
 time can select for ButtonPress.

 There is only one do-not-propagate-mask for a window, not
 one per client.

M.I.T. [Page 29]

RFC 1013 June 1987

 Changing the colormap of a window (i.e., defining a new map,
 not changing the contents of the existing map) generates a
 ColormapNorify event. Changing the colormap os a visible
 window may have no immediate effect on the screen; see
 InstallColormap.

 Changing the cursor of a root window to None restores the
 default cursor.

 The order in which attributes are verified and altered is
 server dependent. If an error is generated, a subset of
 the attributes may have been altered.

GetWindowAttributes
 window: WINDOW
 =>
 visual: VISUALID
 class: {InputOutput, InputOnly}
 bit-gravity: BITGRAVITY
 win-gravity: WINGRAVITY
 backing-store: {NotUseful, WhenMapped, Always}
 backing-bit-planes: CARD32
 backing-pixel: CARD32
 save-under: BOOL
 colormap: COLORMAP or None
 map-is-installed: BOOL
 map-state: {Unmapped, Unviewable, Viewable}
 all-event-masks, your-event-mask: SETofEVENT
 do-not-propagate-mask: SETofDEVICEEVENT
 override-redirect: BOOL

 Errors: Window

 Returns current attributes of the window. All-event-masks
 is the inclusive-OR of all event masks selected on the
 window by clients. Your-event-mask is the event mask
 selected by the querying client.

DestroyWindow
 window: WINDOW

 Errors: Window

 If the argument window is mapped, an UnmapWindow request is
 performed automatically. The window and all inferiors are
 then destroyed, and a DestroyNotify event is generated for
 each window, in order from the argument window downwards,
 with unspecified order among siblings at each level.

 Normal exposure processing on formerly obscured windows is
 performed.

M.I.T. [Page 30]

RFC 1013 June 1987

 If the window is a root window, this request has no effect.

DestroySubwindows
 window: WINDOW

 Errors: Window

 Performs a DestroyWindow on all children of the window, in
 bottom to top stacking order.

ChangeSaveSet
 window: WINDOW
 mode: {Insert, Delete}

 Errors: Window, Match, Value

 Adds or removes the specified window from the client’s
 "save-set". The window must have been created by some other
 client (else a Match error). The use of the save-set is
 described in Section 11.

 Windows are removed automatically from the save-set by the
 server when they are destroyed.

ReparentWindow
 window, parent: WINDOW
 x, y: INT16

 Errors: Window, Match

 If the window is mapped, an UnmapWindow request is
 performed automatically first. The window is then removed
 from its current position in the hierarchy, and is inserted
 as a child of the specified parent. The x and y coordinates
 are relative to the parent’s origin, and specify the new
 position of the upper left outer corner of the window. The
 window is placed on top in the stacking order with respect
 to siblings. A ReparentNotify event is then generated. The
 override-redirect attribute of the window is passed on in
 this event; a value of True indicates that a window manager
 should not tamper with this window. Finally, if the window
 was originally mapped, a MapWindow request is performed
 automatically.

 Normal exposure processing on formerly obscured windows is
 performed. The server might not generate exposure events for
 regions from the initial unmap that are immediately obscured
 by the final map.

 A Match error is generated if the new parent is not on the
 same screen as the old parent, or if the new parent is the

M.I.T. [Page 31]

RFC 1013 June 1987

 window itself or an inferior of the window, or if the window
 has a ParentRelative background and the new parent is not
 the same depth as the window.

MapWindow
 window: WINDOW

 Errors: Window

 If the window is already mapped, this request has no effect.

 If the override-redirect attribute of the window is False and
 some other client has selected SubstructureRedirect on the
 parent, then a MapRequest event is generated, but the window
 remains unmapped. Otherwise, the window is mapped and a
 MapNotify event is generated.

 If the window is now viewable and its contents had been
 discarded, then the window is tiled with its background (if
 no background is defined the existing screen contents are not
 altered) and one or more exposure events are generated. If a
 backing-store has been maintained while the window was
 unmapped, no exposure events are generated. If a
 backing-store will now be maintained, a full-window exposure
 is always generated; otherwise only visible regions may be
 reported. Similar tiling and exposure take place for any
 newly viewable inferiors.

MapSubwindows
 window: WINDOW

 Errors: Window

 Performs a MapWindow request on all unmapped children of the
 window, in top to bottom stacking order.

UnmapWindow
 window: WINDOW

 Errors: Window

 If the window is already unmapped, this request has no
 effect. Otherwise, the window is unmapped and an UnmapNotify
 event is generated. Normal exposure processing on formerly
 obscured windows is performed.

UnmapSubwindows
 window: WINDOW

 Errors: Window

M.I.T. [Page 32]

RFC 1013 June 1987

 Performs an UnmapWindow request on all mapped children of the
 window, in bottom to top stacking order.

ConfigureWindow
 window: WINDOW
 value-mask: BITMASK
 value-list: LISTofVALUE

 Errors: Window, Match, Value

 Changes the configuration of the window. The value-mask and
 value-list specify which values are to be given. The
 possible values are:

 x: INT16
 y: INT16
 width: CARD16
 height: CARD16
 border-width: CARD16
 sibling: WINDOW
 stack-mode: {Above, Below, TopIf, BottomIf, Opposite}

 The x and y coordinates are relative to the parent’s origin,
 and specify the position of the upper left outer corner of
 the window. The width and height specify the inside size,
 not including the border, and must be non-zero. It is a
 Match error to attempt to make the border-width of an
 InputOnly window non-zero.

 If the override-redirect attribute of the window is False
 and some other client has selected SubstructureRedirect on
 the parent, then a ConfigureRequest event is generated, and
 no further processing is performed. Otherwise, the following
 is performed.

 If some other client has selected ResizeRedirect on the
 window and the width or height of the window is being
 changed, then a ResizeRequest event is generated, and the
 current width and height are used instead in the following.

 The geometry of the window is changed as specified and the
 window is restacked among siblings as described below, and a
 ConfigureNotify event is generated. If the width or height
 of the window has actually changed, then children of the
 window are affected as described below.

 Exposure processing is performed on formerly obscured
 windows.

 Changing the width or height of the window causes its
 contents to be moved or lost, depending on the bit-gravity of

M.I.T. [Page 33]

RFC 1013 June 1987

 the window, and causes children to be reconfigured, depending
 on their win-gravity. For a change of width and height of W
 and H, we define the [x, y] pairs:

 NorthWest: [0, 0]
 North: [W/2, 0]
 NorthEast: [W, 0]
 West: [0, H/2]
 Center: [W/2, H/2]
 East: [W, H/2]
 SouthWest: [0, H]
 South: [W/2, H]
 SouthEast: [W, H]

 When a window with one of these bit-gravities is resized, the
 corresponding pair defines the change in position of each
 pixel in the window. When a window with one of these
 win-gravities has its parent window resized, the
 corresponding pair defines the change in position of the
 window within the parent. When a window is so repositioned,
 a GravityNotify event is generated.

 A gravity of Static indicates that the contents or origin
 should not move relative to the origin of the root window. If
 the change in size of the window is coupled with a change in
 position of [X, Y], then for bit-gravity the change in
 position of each pixel is [-X, -Y], and for win-gravity the
 change in position of a child when its parent is so resized
 is [-X, -Y]. Note that Static gravity still only takes
 effect when the width or height of the window is changed, not
 when the window is simply moved.

 A bit-gravity of Forget indicates that the window contents
 are always discarded after a size change; the window is tiled
 with its background (if no background is defined, the
 existing screen contents are not altered) and one or more
 exposure events are generated. A server may also ignore the
 specified bit-gravity and use Forget instead.

 A win-gravity of Unmap is like NorthWest, but the child is
 also unmapped when the parent is resized, and an UnmapNotify
 event is generated.

 If a sibling and a stack-mode is specified, the window is
 restacked as follows:

 Above: window is placed just above sibling
 Below: window is placed just below sibling
 TopIf: if sibling occludes window, then window is placed
 at the top of the stack
 BottomIf: if window occludes sibling, then window is

M.I.T. [Page 34]

RFC 1013 June 1987

 placed at the bottom of the stack
 Opposite: if sibling occludes window, then window is
 placed at the top of the stack, else if window
 occludes sibling, then window is placed at the
 bottom of the stack

 If a stack-mode is specified but no sibling is specified, the
 window is restacked as follows:

 Above: window is placed at the top of the stack
 Below: window is placed at the bottom of the stack
 TopIf: if any sibling occludes window, then window is
 placed at the top of the stack
 BottomIf: if window occludes any sibling, then window is
 placed at the bottom of the stack
 Opposite: if any sibling occludes window, then window is
 placed at the top of the stack, else if window
 occludes any sibling, then window is placed at
 the bottom of the stack

 It is a Match error if a sibling is specified without a
 stack-mode, or if the window is not actually a sibling.

 Note that the computations for BottomIf, TopIf, and Opposite
 are performed with respect to the window’s final geometry
 (as controlled by the other arguments to the request), not
 its initial geometry.

CirculateWindow
 window: WINDOW
 direction: {RaiseLowest, LowerHighest}

 Errors: Window, Value

 If some other client has selected SubstructureRedirect on the
 window, then a CirculateRequest event is generated, and no
 further processing is performed. Otherwise, the following is
 performed, and then a CirculateNotify event is generated if
 the window is actually restacked.

 For RaiseLowest, raises the lowest mapped child (if any) that
 is occluded by another child to the top of the stack. For
 LowerHighest, lowers the highest mapped child (if any) that
 occludes another child to the bottom of the stack. Exposure
 processing is performed on formerly obscured windows.

GetGeometry
 drawable: DRAWABLE
 =>
 root: WINDOW
 depth: CARD8

M.I.T. [Page 35]

RFC 1013 June 1987

 x, y: INT16
 width, height, border-width: CARD16

 Errors: Drawable

 Returns the root and (current) geometry of the drawable.
 Depth is the number of bits per pixel for the object.
 X, y, and border-width will always be zero for pixmaps.
 For a window, the x and y coordinates specify the upper
 left outer corner of the window relative to its parent’s
 origin, and the width and height specify the inside size
 (not including the border).

 It is legal to pass an InputOnly window as a drawable to
 this request.

QueryTree
 window: WINDOW
 =>
 root: WINDOW
 parent: WINDOW or None
 children: LISTofWINDOW

 Errors: Window

 Returns the root, the parent, and children of the window.
 The children are listed in bottom-to-top stacking order.

InternAtom
 name: STRING8
 only-if-exists: BOOL
 =>
 atom: ATOM or None

 Errors: Value, Alloc

 Returns the atom for the given name. If only-if-exists is
 False, then the atom is created if it does not exist. The
 string should use the ASCII encoding, and upper/lower case
 matters.

 The lifetime of an atom is not tied to the interning client.
 Atoms remained defined until server reset (see Section 11).

GetAtomName
 atom: ATOM
 =>
 name: STRING8

 Errors: Atom

M.I.T. [Page 36]

RFC 1013 June 1987

 Returns the name for the given atom.

ChangeProperty
 window: WINDOW
 property, type: ATOM
 format: {8, 16, 32}
 mode: {Replace, Prepend, Append}
 data: LISTofINT8 or LISTofINT16 or LISTofINT32

 Errors: Window, Atom, Value, Match, Alloc

 Alters the property for the specified window. The type is
 uninterpreted by the server. The format specifies whether
 the data should be viewed as a list of 8-bit, 16-bit, or
 32-bit quantities, so that the server can correctly
 byte-swap as necessary.

 If mode is Replace, the previous property value is discarded.
 If the mode is Prepend or Append, then the type and format
 must match the existing property value (else a Match error);
 if the property is undefined, it is treated as defined with
 the correct type and format with zero-length data. For
 Prepend, the data is tacked on to the beginning of the
 existing data, and for Append it is tacked on to the
 end of the existing data.

 Generates a PropertyNotify event on the window.

 The lifetime of a property is not tied to the storing client.
 Properties remain until explicitly deleted, or the window is
 destroyed, or until server reset (see Section 11).

 The maximum size of a property is server dependent.

DeleteProperty
 window: WINDOW
 property: ATOM

 Errors: Window, Atom

 Deletes the property from the specified window if the
 property exists. Generates a PropertyNotify event on the
 window unless the property does not exist.

GetProperty
 window: WINDOW
 property: ATOM
 type: ATOM or AnyPropertyType
 long-offset, long-length: CARD32
 delete: BOOL
 =>

M.I.T. [Page 37]

RFC 1013 June 1987

 type: ATOM
 format: {8, 16, 32}
 bytes-after: CARD32
 value: LISTofINT8 or LISTofINT16 or LISTofINT32

 Errors: Window, Atom, Property, Match, Value

 If the specified property does not exist for the specifed
 window, a Property error is generated. Otherwise, if type
 AnyPropertyType is specified, (part of) the property is
 returned regardless of its type; if a type is specified,
 (part of) the property is returned only if its type equals
 the specified type (else a Match error). The actual type
 and format of the property are returned.

 Define the following values:
 N = actual length of the stored property in bytes
 (even if the format is 16 or 32)
 I = 4 * long-offset
 T = N - I
 L = MINIMUM(T, 4 * long-length)
 A = N - (I + L)
 The returned value starts at byte index I in the property
 (indexing from 0), and its length in bytes is L. It is a
 Value error if long-offset is given such that L is negative.
 The value of bytes-after is A, giving the number of trailing
 unread bytes in the stored property.

 If delete is True and bytes-after is zero, the property is
 also deleted from the window and a PropertyNotify event is
 generated on the window.

RotateProperties
 window: WINDOW
 delta: INT8
 properties: LISTofATOM

 Errors: Window, Atom, Match

 If the property names in the list are viewed as being
 numbered starting from zero, and there are N property names
 in the list, then the value associated with property name I
 becomes the value associated with property name (I + delta)
 mod N, for all I from zero to N - 1. The effect is to rotate
 the states by delta places around the virtual ring of
 property names (right for positive delta, left for negative
 delta).

 A PropertyNotify event is generated for each property, in the
 order listed.

M.I.T. [Page 38]

RFC 1013 June 1987

 If an atom occurs more than once in the list or no property
 with that name is defined for the window, a Match error is
 generated. If an Atom or Match error is generated, no
 properties are changed.

ListProperties
 window: WINDOW
 =>
 atoms: LISTofATOM

 Errors: Window

 Returns the atoms of properties currently defined on the
 window.

SetSelectionOwner
 selection: ATOM
 owner: WINDOW or None
 time: TIMESTAMP or CurrentTime

 Error: Atom, Window

 Changes the owner and last-change time of the specifed
 selection. The request has no effect if the specified time
 is earlier than the current last-change time of the specified
 selection or is later than the current server time;
 otherwise, the last-change time is set to the specified time,
 with CurrentTime replaced by the current server time.
 If the new owner is not the same as the current owner of the
 selection, and the current owner is a window, then the
 current owner is sent a SelectClear event.

 If the owner of a selection is a window, and the window is
 later destroyed, the owner of the selection automatically
 reverts to None, but the last-change time is not affected.

 The selection atom is uninterpreted by the server.

 Selections are global to the server.

GetSelectionOwner
 selection: ATOM
 =>
 owner: WINDOW or None

 Errors: Atom

 Returns the current owner of the specified selection, if any.

ConvertSelection
 selection, target: ATOM

M.I.T. [Page 39]

RFC 1013 June 1987

 property: ATOM or None
 requestor: WINDOW
 time: TIMESTAMP or CurrentTime

 Error: Atom, Window

 If the specified selection is owned by a window, the server
 sends a SelectionRequest event to the owner. If no owner for
 the specified selection exists, the server generates a
 SelectionNotify event to the requestor with property None.
 The arguments are passed on unchanged in either event.

SendEvent
 destination: WINDOW or PointerWindow or InputFocus
 propagate: BOOL
 event-mask: SETofEVENT
 event: <normal-event-format>

 Errors: Window, Value

 If PointerWindow is specified, destination is replaced with
 the window that the pointer is in. If InputFocus is
 specified, then if the focus window contains the pointer,
 destination is replaced with the window that the pointer is
 in, and otherwise destination is replaced with the focus
 window.

 If propagate is False, then the event is sent to every client
 selecting on destination any of the event types in
 event-mask.

 If propagate is True and no clients have selected on
 destination any of the event types in event-mask, then
 destination is replaced with the closest ancestor of
 destination for which some client has selected a type in
 event-mask and no intervening window has that type in its
 do-not-propagate-mask. If no such window exists, or if the
 window is an ancestor of the focus window and InputFocus was
 originally specified sent to any clients. Otherwise, the
 event is reported to every client selecting on the final
 destination any of the types specified in event-mask.

 The event code must be one of the core events, or one of
 the events defined by an extension, so that the server can
 correctly byte swap the contents as necessary. The
 contents of the event are otherwise unaltered and unchecked
 by the server except to force on the most significant bit
 of the event code.

M.I.T. [Page 40]

RFC 1013 June 1987

 Active grabs are ignored for this request.

GrabPointer
 grab-window: WINDOW
 owner-events: BOOL
 event-mask: SETofPOINTEREVENT
 pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
 confine-to: WINDOW or None
 cursor: CURSOR or None
 time: TIMESTAMP or CurrentTime
 =>
 status: {Success, AlreadyGrabbed, Frozen, InvalidTime,
 NotViewable}

 Errors: Cursor, Window, Value

 Actively grabs control of the pointer. Further pointer
 events are only reported to the grabbing client. The
 request overrides any active pointer grab by this client.

 Event-mask is always augmented to include ButtonPress and
 ButtonRelease. If owner-events is False, all generated
 pointer events are reported with respect to grab-window,
 and are only reported if selected by event-mask. If
 owner-events is True, then if a generated pointer event
 would normally be reported to this client, it is reported
 normally; otherwise the event is reported with respect to
 the grab-window, and is only reported if selected by
 event-mask. For either value of owner-events, unreported
 events are simply discarded.

 Pointer-mode controls further processing of pointer events,
 and keyboard-mode controls further processing of keyboard
 events. If the mode is Asynchronous, event processing
 continues normally; if the device is currently frozen by
 this client, then processing of events for the device is
 resumed. If the mode is Synchronous, the device (as seen
 via the protocol) appears to freeze, and no further events
 for that device are generated by the server until the
 grabbing client issues a releasing AllowEvents request.
 Actual device changes are not lost while the device is
 frozen; they are simply queued for later processing.

 If a cursor is specified, then it is displayed regardless
 of what window the pointer is in. If no cursor is
 specified, then when the pointer is in grab-window or one
 of its subwindows, the normal cursor for that window is
 displayed, and otherwise the cursor for grab-window is
 displayed.

M.I.T. [Page 41]

RFC 1013 June 1987

 If a confine-to window is specified, then the pointer
 will be restricted to stay contained in that window.
 The confine-to window need have no relationship to the
 grab-window. If the pointer is not initially in the
 confine-to window, then it is warped automatically to
 the closest edge (and enter/leave events generated
 normally) just before the grab activates. If the
 confine-to window is subsequently reconfigured, the
 pointer will be warped automatically as necessary to keep
 it contained in the window.

 This request generates EnterNotify and LeaveNotify events.

 The request fails with status AlreadyGrabbed if the
 pointer is actively grabbed by some other client. The
 request fails with status Frozen if the pointer is frozen
 by an active grab of another client. The request fails
 with status NotViewable if grab-window or
 confine-to window is not viewable. The request fails with
 status InvalidTime if the specified time is earlier than
 the last-pointer-grab time or later than the current
 server time; otherwise the last-pointer-grab time is set
 to the specified time, with CurrentTime replaced by the
 current server time.

UngrabPointer
 time: TIMESTAMP or CurrentTime

 Releases the pointer if this client has it actively
 grabbed (from either GrabPointer or GrabButton or from a
 normal button press), and releases any queued events. The
 request has no effect if the specified time is earlier
 than the last-pointer-grab time or is later than the
 current server time.

 This request generates EnterNotify and LeaveNotify events.

 An UngrabPointer is performed automatically if the event
 window or confine-to window for an active pointer grab
 becomes not viewable.

GrabButton
 modifiers: SETofKEYMASK or AnyModifier
 button: BUTTON or AnyButton
 grab-window: WINDOW
 owner-events: BOOL
 event-mask: SETofPOINTEREVENT
 pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
 confine-to: WINDOW or None
 cursor: CURSOR or None

M.I.T. [Page 42]

RFC 1013 June 1987

 Errors: Cursor, Window, Value, Access

 This request establishes a passive grab. In the future,
 if the specified button is pressed when the specified
 modifier keys are down (and no other buttons or modifier
 keys are down), and grab-window contains the pointer,
 and the confine-to window (if any) is viewable, and these
 constraints are not satisfied for any ancestor, then the
 pointer is actively grabbed as described in GrabPointer,
 the last-pointer-grab time is set to the time at which
 the button was pressed (as transmitted in the ButtonPress
 event), and the ButtonPress event is reported. The
 interpretation of the remaining arguments is as for
 GrabPointer. The active grab is terminated automatically
 when all buttons are released (independent of the state
 of modifier keys).

 A modifiers of AnyModifier is equivalent to issuing the
 request for all possible modifier combinations. A
 button of AnyButton is equivalent to issuing the request
 for all possible buttons.

 An Access error is generated if some other client has
 already issued a GrabButton with the same button/key
 combination on the same window. When using AnyModifier
 or AnyButton, the request fails completely (no grabs are
 established) if there is a combination. The request has
 no effect on an active grab.

UngrabButton
 modifiers: SETofKEYMASK or AnyModifier
 button: BUTTON or AnyButton
 grab-window: WINDOW

 Errors: Window

 Releases the passive button/key combination on the
 specified window if it was grabbed by this client. A
 modifiers of AnyModifier is equivalent to issuing the
 request for all possible modifier combinations. A
 button of AnyButton is equivalent to issuing the request
 for all possible buttons. Has no effect on an active
 grab.

ChangeActivePointerGrab
 event-mask: SETofPOINTEREVENT
 cursor: CURSOR or None
 time: TIMESTAMP or CurrentTime

 Errors: Cursor

M.I.T. [Page 43]

RFC 1013 June 1987

 Changes the specified dynamic parameters if the pointer
 is actively grabbed by the client and the specified time
 is no earlier than the last-pointer-grab time and no
 later than the current server time. The interpretation
 of event-mask and cursor are as in GrabPointer. The
 event-mask is always augmented to include ButtonPress
 and ButtonRelease. Has no effect on the passive
 parameters of a GrabButton.

GrabKeyboard
 grab-window: WINDOW
 owner-events: BOOL
 pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
 time: TIMESTAMP or CurrentTime
 =>
 status: {Success, AlreadyGrabbed, Frozen, InvalidTime,
 NotViewable}

 Errors: Window, Value

 Actively grabs control of the keyboard. Further key
 events are reported only to the grabbing client. The
 request overrides any active keyboard grab by this
 client.

 If owner-events is False, all generated key events are
 reported with respect to grab-window. If owner-events is
 True, then if a generated key event would normally be
 reported to this client, it is reported normally;
 otherwise the event is reported with respect to the
 grab-window. Both KeyPress and KeyRelease events are
 always reported, independent of any event selection made
 by the client.

 Pointer-mode controls further processing of pointer
 events, and keyboard-mode controls further processing of
 keyboard events. If the mode is Asynchronous, event
 processing continues normally; if the device is currently
 frozen by this client, then processing of events for the
 device is resumed. If the mode is Synchronous, the
 device (as seen via the protocol) appears to freeze, and
 no further events for that device are generated by the
 server until the grabbing client issues a releasing
 AllowEvents request. Actual device changes are not lost
 while the device is frozen; they are simply queued for
 later processing.

 This request generates FocusIn and FocusOut events.

 The request fails with status AlreadyGrabbed if the
 keyboard is actively grabbed by some other client. The

M.I.T. [Page 44]

RFC 1013 June 1987

 request fails with status Frozen if the keyboard is
 frozen by an active grab of another client. The request
 fails with status NotViewable if grab-window is not
 viewable. The request fails with status InvalidTime if
 the specified time is earlier than the last-keyboard-grab
 time or later than the current server time; otherwise the
 last-keyboard-grab time is set to the specified time,
 with CurrentTime replaced by the current server time.

UngrabKeyboard
 time: TIMESTAMP or CurrentTime

 Releases the keyboard if this client has it actively
 grabbed (from either GrabKeyboard or GrabKey), and
 releases any queued events. The request has no effect
 if the specified time is earlier than the
 last-keyboard-grab time or is later than the current
 server time.

 This request generates FocusIn and FocusOut events.

 An UngrabKeyboard is performed automatically if the event
 window for an active keyboard grab becomes not viewable.

GrabKey
 key: KEYCODE or AnyNonModifier
 modifiers: SETofKEYMASK or AnyModifier
 grab-window: WINDOW
 owner-events: BOOL
 pointer-mode, keyboard-mode: {Synchronous, Asynchronous}

 Errors: Window, Value, Access

 This request establishes a passive grab on the keyboard.
 In the future, if the specified key (which can itself be a
 modifier key) is pressed when the specified modifier keys
 are down (and no other modifier keys are down), and the
 KeyPress event would be generated in grab-window or one of
 its inferiors, and these constraints are not satisfied for
 any ancestor, then the keyboard is actively grabbed as
 described in GrabKeyboard, the last-keyboard-grab time is
 transmitted in set to the time at which the key was
 pressed (as in the KeyPress event), and the KeyPress
 event is reported. The interpretation of the remaining
 arguments is as for GrabKeyboard. The active grab is
 terminated automatically when the specified key has been
 released (independent of the state of the modifier keys).

 A modifiers of AnyModifier is equivalent to issuing the
 request for all possible modifier combinations. A key of
 AnyNonModifier is equivalent to issuing the request for

M.I.T. [Page 45]

RFC 1013 June 1987

 all possible non-modifier key codes.

 An Access error is generated if some other client has
 issued a GrabKey with the same key combination on the
 same window. When using AnyModifier or AnyNonModifier,
 the request fails completely (no grabs are established)
 if there is a conflicting grab for any combination.

UngrabKey
 key: KEYCODE or AnyNonModifier
 modifiers: SETofKEYMASK or AnyModifier
 grab-window: WINDOW

 Errors: Window

 Releases the key combination on the specified window if it
 was grabbed by this client. A modifiers of AnyModifier is
 equivalent to issuing the request for all possible
 modifier combinations. A key of AnyNonModifier is
 equivalent to issuing the request for all possible
 non-modifier key codes. Has no effect on an active grab.

AllowEvents
 mode: {AsyncPointer, SyncPointer, ReplayPointer,
 AsyncKeyboard, SyncKeyboard, ReplayKeyboard}
 time: TIMESTAMP or CurrentTime

 Errors: Value

 Releases some queued events if the client has caused a
 device to freeze. The request has no effect if the
 specified time is earlier than the last-grab time of the
 most recent active grab for the client, or if the
 specified time is later than the current server time.

 For AsyncPointer, if the pointer is frozen by the client,
 pointer event processing continues normally. If the
 pointer is frozen twice by the client on behalf of two
 separate grabs, AsyncPointer "thaws" for both.
 AsyncPointer has no effect if the pointer is not frozen
 by the client, but the pointer need not be grabbed by
 the client.

 For SyncPointer, if the pointer is frozen and actively
 grabbed by the client, pointer event processing continues
 normally until the next ButtonPress or ButtonRelease event
 is reported to the client, at which time the pointer again
 appears to freeze. However if the reported event causes
 the pointer grab to be released, then the pointer does not
 freeze. SyncPointer has no effect if the pointer is not
 frozen by the client, or if the pointer is not grabbed by

M.I.T. [Page 46]

RFC 1013 June 1987

 the client.

 For ReplayPointer, if the pointer is actively grabbed by
 the client and is frozen as the result of an event having
 been sent to the client (either from the activation of a
 GrabButton, or from a previous AllowEvents with mode
 SyncPointer, but not from a GrabPointer), then the pointer
 grab is released and that event is completely reprocessed,
 but this time ignoring any passive grabs at or above
 (towards the root) the grab-window of the grab just
 released. The request has no effect if the pointer is
 not grabbed by the client, or if the pointer is not
 frozen as the result of an event.

 For AsyncKeyboard, if the keyboard is frozen by the
 client, keyboard event processing continues normally. If
 the pointer is frozen twice by the client on behalf of
 two separate grabs, AsyncPointer "thaws" for both.
 AsyncKeyboard has no effect if the keyboard is not
 frozen by the client, but the keyboard need not be
 grabbed by the client.

 For SyncKeyboard, if the keyboard is frozen and actively
 grabbed by the client, keyboard event processing
 continues normally until the next KeyPress or KeyRelease
 event is reported to the client, at which time the
 keyboard again appears to freeze. However if the
 reported event causes the keyboard grab to be released,
 then the keyboard does not freeze. SyncKeyboard has no
 effect if the keyboard is not frozen by the client, or
 if the keyboard is not grabbed by the client.

 For ReplayKeyboard, if the keyboard is actively grabbed
 by the client and is frozen as the result of an event
 having been sent to the client (either from the
 activation of a GrabKey, or from a previous AllowEvents
 with mode SyncKeyboard, but not from a GrabKeyboard),
 then the keyboard grab is released and that event is
 completely reprocessed, but this time ignoring any passive
 grabs at or above (towards the root) the grab-window of
 the grab just released. The request has no effect if the
 keyboard is not grabbed by the client, or if the keyboard
 is notfrozen as the result of an event.

 AsyncPointer, SyncPointer, and Replay Pointer have no
 effect on processing of keyboard events. AsyncKeyboard,
 SyncKeyboard, and ReplayKeyboard have no effect on
 processing of pointer events.

 It is possible for both a pointer grab and a keyboard grab
 to be active simultaneously (by the same or different

M.I.T. [Page 47]

RFC 1013 June 1987

 clients). If a device is frozen on behalf of either grab,
 no event processing is performed for the device. It is
 possible for a single device to be frozen due to both
 grabs. In this case, the freeze must be released on
 behalf of both grabs before events can again be
 processed.

GrabServer
 Disables processing of requests and close-downs on all
 other connections (than the one this request arrived on).

UngrabServer
 Restarts processing of requests and close-downs on other
 connections.

QueryPointer
 window: WINDOW
 =>
 root: WINDOW
 child: WINDOW or None
 same-screen: BOOL
 root-x, root-y, win-x, win-y: INT16
 mask: SETofKEYBUTMASK

 Errors: Window

 The root window the pointer is currently on, and pointer
 coordinates relative to the root’s origin, are returned.
 If same-screen is False, then the pointer is not on the
 same screen as the argument window, and child is None and
 win-x and win-y are zero. If same-screen is True, then
 win-x and win-y are the pointer coordinates relative to
 the argument window’s origin, and child is the child
 containing the pointer, if any. The current state of the
 modifier keys and the buttons are also returned.

GetMotionEvents
 start, stop: TIMESTAMP or CurrentTime
 window: WINDOW
 =>
 events: LISTofTIMECOORD

 where
 TIMECOORD: {x, y: CARD16
 time: TIMESTAMP}

 Error: Window

 Returns all events in the motion history buffer that fall
 between the specified start and stop times (inclusive)
 and that have coordinates that lie within (including

M.I.T. [Page 48]

RFC 1013 June 1987

 borders) the specified window at its present placement.
 The x and y coordinates are reported relative to the
 origin of the window.

TranslateCoordinates
 src-window, dst-window: WINDOW
 src-x, src-y: INT16
 =>
 same-screen: BOOL
 child: WINDOW or None
 dst-x, dst-y: INT16

 Errors: Window

 The src-x and src-y coordinates are taken relative to
 src-window’s origin, and returned as dst-x and dst-y
 coordinates relative to dst-window’s origin. If
 same-screen is False, then src-window and dst-window are
 on different screens, and dst-x and dst-y are zero. If
 the coordinates are contained in a mapped child of
 dst-window, then that child is returned.

WarpPointer
 src-window: WINDOW or None
 dst-window: WINDOW
 src-x, src-y: INT16
 src-width, src-height: CARD16
 dst-x, dst-y: INT16

 Errors: Window

 Moves the pointer to [dst-x, dst-y] relative to
 dst-window’s origin. If src-window is None, the move is
 independent of the current pointer position, but if a
 window is specified, the move only takes place if the
 pointer is currently contained in a visible portion of
 the specified rectangle of the src-window.

 The src-x and src-y coordinates are relative to
 src-window’s origin. If src-height is zero, it is
 replaced with the current height of src-window minus
 src-y. If src-width is zero, it is replaced with the
 current width of src-window minus src-x.

 This request cannot be used to move the pointer outside
 the confine-to window of an active pointer grab; an
 attempt will only move the pointer as far as the closest
 edge of the confine-to window.

M.I.T. [Page 49]

RFC 1013 June 1987

SetInputFocus
 focus: WINDOW or PointerRoot or None
 revert-to: {Parent, PointerRoot, None}
 time: TIMESTAMP or CurrentTime

 Errors: Window, Value

 Changes the input focus and the last-focus-change time.
 The request has no effect if the specified time is earlier
 than the current last-focus-change time or is later than
 the current server time; otherwise, the last-focus-change
 time is set to the specified time, with CurrentTime
 replaced by the current server time.

 If None is specified as the focus, all keyboard events are
 discarded until a new focus window is set. In this case,
 therevert-to argument is ignored.

 If a window is specified as the focus, it becomes the
 keyboard’s focus window. If a generated keyboard event
 would normally be reported to this window or one of its
 inferiors, the event is reported normally; otherwise, the
 event is reported with respect to the focus window.

 If PointerRoot is specified as the focus, the focus
 window is dynamically taken to be the root window of
 whatever screen the pointer is on at each keyboard event.
 In this case, the revert-to argument is ignored.

 This request generates FocusIn and FocusOut events.

 If the focus window becomes not viewable, the new focus
 window depends on the revert-to argument. If revert-to
 is Parent, the focus reverts to the parent (or the
 closest viewable ancestor) and the new revert-to value is
 take to be None. If revert-to is PointerRoot or None,
 the focus reverts to that value. When the focus reverts,
 FocusIn and FocusOut events are generated, but the
 last-focus-change time is not affected.

GetInputFocus
 =>
 focus: WINDOW or PointerRoot or None
 revert-to: {Parent, PointerRoot, None}

 Returns the current focus state.

QueryKeymap
 =>
 keys: LISTofCARD8

M.I.T. [Page 50]

RFC 1013 June 1987

 Returns a bit vector for the keyboard; each one bit
 indicates that the corresponding key is currently pressed.
 The vector is represented as 32 bytes. Byte N (from 0)
 contains the bits for keys 8N to 8N+7, with the least
 significant bit in the byte representing key 8N.

OpenFont
 fid: FONT
 name: STRING8

 Errors: IDChoice, Name, Alloc

 Loads the specified font, if necessary, and associates
 identifier fid with it. The font can be used as a source
 for any drawable. The font name should use the ASCII
 encoding, and upper/lower case does not matter.

CloseFont
 font: FONT

 Errors: Font

 Deletes the association between the resource id and the
 font. The font itself will be freed when no other
 resource references it.

QueryFont
 font: FONT or GCONTEXT
 =>
 font-info: FONTINFO
 char-infos: LISTofCHARINFO

 where
 FONTINFO: [draw-direction: {LeftToRight, RightToLeft}
 min-char-or-byte2,max-char-or-byte2:CARD16
 min-byte1, max-byte1: CARD8
 all-chars-exist: BOOL
 default-char: CARD16
 min-bounds: CHARINFO
 max-bounds: CHARINFO
 font-ascent: INT16
 font-descent: INT16
 properties: LISTofFONTPROP]
 FONTPROP: [name: ATOM
 value: INT32 or CARD32]
 CHARINFO: [left-side-bearing: INT16
 right-side-bearing: INT16
 character-width: INT16
 ascent: INT16
 descent: INT16
 attributes: CARD16]

M.I.T. [Page 51]

RFC 1013 June 1987

 Errors: Font

 Returns logical information about a font.

 The draw-direction is essentially just a hint, indicating
 whether most char-infos have a positive (LeftToRight) or a
 negative (RightToLeft) character-width metric. The core
 protocol defines no support for vertical text.

 If min-byte1 and max-byte1 are both zero, then
 min-char-or-byte2 specifies the linear character index
 corresponding to the first elementb of char-infos, and
 max-char-or-byte2 specifies the linear character index of
 the last element. If either min-byte1 or max-byte1 are
 non-zero, then both min-char-or-byte2 and
 max-char-or-byte2 will be less than 256, and the two-byte
 character index values corresponding to char-infos element
 N (counting from 0) are
 byte1 = N/D + min-byte1
 byte2 = N\D + min-char-or-byte2
 where
 D = max-char-or-byte2 - min-char-or-byte2 + 1
 / = integer division
 \ = integer modulus

 If char-infos has length zero, then min-bounds and
 max-bounds will be identical, and the effective
 char-infos is one filled with this char-info, of length
 L = D * (max-byte1 - min-byte1 + 1)
 That is, all glyphs in the specified linear or matrix
 range have the same information, as given by min-bounds
 (and max-bounds). If all-chars-exist is True, then all
 characters in char-infos have non-zero bounding boxes.

 The default-char specifies the character that will be
 used when an undefined or non-existent character is used.
 Note that default-char is a CARD16 (not CHAR2B); for a
 font using two-byte matrix format, the default-char has
 byte1 in the most significant byte, and byte2 in the
 least significant byte. If the default-char itself
 specifies an undefined or non-existent character, then
 no printing is performed for an undefined or non-existent
 character.

 The min-bounds and max-bounds contain the minimum and
 maximum values of each individual CHARINFO component over
 all char-infos (ignoring non-existent characters). The
 bounding box of the font, i.e., the smallest rectangle
 enclosing the shape obtained by superimposing all
 characters at the same origin [x,y], has its upper left
 coordinate at

M.I.T. [Page 52]

RFC 1013 June 1987

 [x + min-bounds.left-side-bearing, y - max-bounds.
 ascent] with a width of
 max-bounds.right-side-bearing - min-bounds.
 left-side-bearing and a height of
 max-bounds.ascent + max-bounds.descent

 The font-ascent is the logical extent of the font above
 the baseline, for determining line spacing. Specific
 characters may extend beyond this. The font-descent is
 the logical extent of the font at or below the baseline,
 for determining line spacing. Specific characters may
 extend beyond this. If the baseline is at Y-coordinate
 y, then the logical extent of the font is inclusive
 between the Y-coordinate values (y - font-ascent) and
 (y + font-descent - 1).

 A font is not guaranteed to have any properties. Whether
 a property value is signed or unsigned must be derived
 from a prior knowledge of the property. When possible,
 fonts should have at least the following properties (note
 that the trailing colon is not part of the name, and that
 upper/lower case matters).

 MIN_SPACE: CARD32
 The minimum interword spacing, in pixels.
 NORM_SPACE: CARD32
 The normal interword spacing, in pixels.
 MAX_SPACE: CARD32
 The maximum interword spacing, in pixels
 SUBSCRIPT_X: INT32
 SUBSCRIPT_Y: INT32
 Offsets from the character origin where subscripts
 should begin, in pixels. If the origin is at [x,y],
 then subscripts should begin at [x + SubscriptX,
 y + SubscriptY].
 UNDERLINE_POSITION: INT32
 Y offset from the baseline to the top of an underline,
 in pixels. If the baseline is Y-coordinate y, then
 the top of the underline is at (y +
 UnderlinePosition).
 UNDERLINE_THICKNESS: CARD32
 Thickness of the underline, in pixels.
 STRIKEOUT_ASCENT: INT32
 STRIKEOUT_DESCENT: INT32
 Vertical extents for boxing or voiding characters, in
 pixels. If the baseline is at Y-coordinate y, then
 the top of the strikeout box is at (y -
 StrikeoutAscent), and the height of the box is
 (StrikeoutAscent + StrikeoutDescent).
 ITALIC_ANGLE: INT32
 The angle of characters in the font, in degrees

M.I.T. [Page 53]

RFC 1013 June 1987

 scaled by 64, relative to the three-oclock position
 from the character origin, with positive indicating
 counterclockwise motion (as in Arc requests).
 X_HEIGHT: INT32
 "1 ex" as in TeX, but expressed in units of pixels.
 Often the height of lowercase x.
 QUAD_WIDTH: INT32
 "1 em" as in TeX, but expressed in units of pixels.
 Often the width of the digits 0-9.
 WEIGHT: CARD32
 The weight or boldness of the font, expressed as a
 value between 0 and 1000.
 POINT_SIZE: CARD32
 The point size, expressed in 1/10ths, of this font at
 the ideal resolution. There are 72.27 points to the
 inch.
 RESOLUTION: CARD32
 The number of pixels per point, expressed in 1/100ths,
 at which this font was created.

 For a character origin at [x,y], the bounding box of a
 character,i.e., the smallest rectangle enclosing the
 character’s shape, described in terms of CHARINFO
 components, is a rectangle with its upper left corner at
 [x + left-side-bearing, y - ascent]
 with a width of
 right-side-bearing - left-side-bearing
 and a height of
 ascent + descent
 and the origin for the next character is defined to be
 [x + character-width, y]
 Note that the baseline is logically viewed as being just
 below non-descending characters (when descent is zero,
 only pixels with Y-coordinates less than y are drawn),
 and that the origin is logically viewed as being
 coincident with the left edge of a non-kerned character
 (when left-side-bearing is zero, no pixels with
 X-coordinate less than x are drawn).

 Note that CHARINFO metric values can be negative.

 A non-existent character is represented with all CHARINFO
 components zero.

 The interpretation of the per-character attributes field
 is undefined by the core protocol.

QueryTextExtents
 font: FONT or GCONTEXT
 items: STRING16
 =>

M.I.T. [Page 54]

RFC 1013 June 1987

 draw-direction: {LeftToRight, RightToLeft}
 font-ascent: INT16
 font-descent: INT16
 overall-ascent: INT16
 overall-descent: INT16
 overall-width: INT32
 overall-left: INT32
 overall-right: INT32

 Errors: Font

 Returns the logical extents of the specified string of
 characters in the specified font. Draw-direction,
 font-ascent, and font-descent are as described in
 QueryFont. Overall-ascent is the maximum of the ascent
 metrics of all characters in the string, and
 overall-descent is the maximum of the descent metrics.
 Overall-width is the sum of the character-width metrics
 of all characters in the string. For each character in
 the string, let W be the sum of the character-width
 metrics of all characters preceding it in the string,
 let L be the left-side-bearing metric of the character
 plus W, and let R be the right-side-bearing metric of
 the character plus W. Overall-left is the minimum L of
 all characters in the string, and overall-right is the
 maximum R.

 For fonts defined with linear indexing rather than
 two-byte matrix indexing, the server will interpret each
 CHAR2B as a 16-bit number that has been transmitted most
 significant byte first (i.e., byte1 of the CHAR2B is
 taken as the most significant byte).

 If the font has no defined default-char, then undefined
 characters in the string are taken to have all zero
 metrics.
ListFonts
 pattern: STRING8
 max-names: CARD16
 =>
 names: LISTofSTRING8

 Returns a list of length at most max-names, of names of
 fonts matching the pattern. The pattern should use the
 ASCII encoding, and upper/lower case does not matter.
 In the pattern, the ’?’ character (octal value 77) will
 match any single character, and the character ’*’ (octal
 value 52) will match any number of characters. The
 returned names are in lower case.

M.I.T. [Page 55]

RFC 1013 June 1987

ListFontsWithInfo
 pattern: STRING8
 max-names: CARD16
 =>
 fonts: LISTofFONTDATA

 where
 FONTDATA: [name: STRING8
 info: FONTINFO]
 FONTINFO: <same type definition as in QueryFont>

 Like ListFonts, but also returns information about each
 font. The information returned for each font is
 identical to what QueryFont would return (except that the
 per-character metrics are not returned).

SetFontPath
 path: LISTofSTRING8

 Errors: Value

 Defines the search path for font lookup. There is only one
 search path per server, not one per client. The
 interpretation of the strings is operating system dependent,
 but they are intended to specify directories to be
 searched in the order listed.

 Setting the path to the empty list restores the default
 path defined for the server.

 As a side-effect of executing this request, the server
 is guaranteed to flush all cached information about fonts
 for which there currently are no explicit resource ids
 allocated.

 The meaning of an error from this request is system
 specific.

GetFontPath
 =>
 path: LISTofSTRING8

 Returns the current search path for fonts.

CreatePixmap
 pid: PIXMAP
 drawable: DRAWABLE
 depth: CARD8
 width, height: CARD16

 Errors: IDChoice, Drawable, Value, Alloc

M.I.T. [Page 56]

RFC 1013 June 1987

 Creates a pixmap, and assigns the identifier pid to it.
 Width and height must be non-zero. Depth must be one of
 the depths supported by root of the specified drawable.
 The initial contents of the pixmap are undefined.

 It is legal to pass an InputOnly window as a drawable to
 this request.

FreePixmap
 pixmap: PIXMAP

 Errors: Pixmap

 Deletes the association between the resource id and the
 pixmap. The pixmap storage will be freed when no other
 resource references it.

CreateGC
 cid: GCONTEXT
 drawable: DRAWABLE
 value-mask: BITMASK
 value-list: LISTofVALUE

 Errors: IDChoice, Drawable, Pixmap, Font, Match, Value, Alloc

 Creates a graphics context, and assigns the identifier cid to
 it. The gcontext can be used with any destination drawable
 having the same root and depth as the specified drawable.

 The value-mask and value-list specify which components are to
 be explicitly initialized. The context components are:

 alu-function: {Clear, And, AndReverse, Copy, AndInverted,
 Noop, Xor, Or, Nor, Equiv, Invert,
 OrReverse, CopyInverted, OrInverted,
 Nand, Set}
 plane-mask: CARD32
 foreground: CARD32
 background: CARD32
 line-width: CARD16
 line-style: {Solid, OnOffDash, DoubleDash}
 cap-style: {NotLast, Butt, Round, Projecting}
 join-style: {Miter, Round, Bevel}
 fill-style: {Solid, Tiled, OpaqueStippled, Stippled}
 fill-rule: {EvenOdd, Winding}
 arc-mode: {Chord, PieSlice}
 tile: PIXMAP
 stipple: PIXMAP
 tile-stipple-x-origin: INT16
 tile-stipple-y-origin: INT16
 font: FONT

M.I.T. [Page 57]

RFC 1013 June 1987

 subwindow-mode: {ClipByChildren, IncludeInferiors}
 graphics-exposures: BOOL
 clip-x-origin: INT16
 clip-y-origin: INT16
 clip-mask: PIXMAP or None
 dash-offset: CARD16
 dash-list: CARD8

 In graphics operations, given a source and destination pixel,
 the result is computed bitwise on corresponding bits of the
 pixels. That is, a boolean operation is performed in each
 bit plane. The plane-mask restricts the operation to a subset
 of planes. That is, the result is

 ((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

 Range checking is not performed on the values for foreground,
 background, or plane-mask; they are simply truncated to the
 appropriate number of bits.

 The meanings of the alu-functions are:

 Clear 0
 And src AND dst
 AndReverse src AND (NOT dst)
 Copy src
 AndInverted (NOT src) AND dst
 NoOp dst
 Xor src XOR dst
 Or src OR dst
 Nor (NOT src) AND (NOT dst)
 Equiv (NOT src) XOR dst
 Invert NOT dst
 OrReverse src OR (NOT dst)
 CopyInverted NOT src
 OrInverted (NOT src) OR dst
 NAnd (NOT src) OR (NOT dst)
 Set 1

 Line-width is measured in pixels and can be greater than or
 equal to one (a "wide" line) or the special value zero (a
 "thin" line).

 Wide lines are drawn centered on the path described by the
 graphics request. Unless otherwise specified by the join or
 cap style, the bounding box of a wide line with endpoints
 [x1, y1], [x2, y2], and width w is a rectangle with vertices
 at the following real coordinates:

 [x1-(w*sn/2), y1+(w*cs/2)], [x1+(w*sn/2), y1-(w*cs/2)],
 [x2-(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]

M.I.T. [Page 58]

RFC 1013 June 1987

 where sn is the sine of the angle of the line and cs is the
 cosine of the angle of the line. A pixel is part of the line
 (and hence drawn) if the center of the pixel is fully inside
 the bounding box (which is viewed as having infinitely thin
 edges). If the center of the pixel is exactly on the
 bounding box, it is part of the line if and only if the
 interior is immediately to its right (x increasing
 direction). Pixels with centers on a horizontal edge are a
 special case and are part of the line if and only if the
 interior is immediately below (y increasing direction).
 Note that this description is a mathematical model
 describing the pixels that are drawn for a wide line and
 does not imply that trigonometry is required to implement
 such a model. Real or fixed point arithmetic is
 recommended for computing the corners of the line endpoints
 for lines greater than one pixel in width.

 Thin lines (zero line-width) are "one pixel wide" lines drawn
 using an unspecified, device dependent algorithm (for
 example, Bresenham). There are only two constraints on this
 algorithm. First, if a line is drawn unclipped from [x1,y1]
 to [x2,y2] and another line is drawn unclipped from [x1+dx,
 y1+dy] to [x2+dx,y2+dy], then a point [x,y] is touched by
 drawing the first line if and only if the point [x+dx,y+dy]
 is touched by drawing the second line. Second, the effective
 set of points comprising a line cannot be affected by
 clipping; that is, a point is touched in a clipped line if
 and only if the point lies inside the clipping region and
 the point would be touched by the line when drawn unclipped.

 Note that a wide line drawn from [x1,y1] to [x2,y2] always
 draws the same pixels as a wide line drawn from [x2,y2] to
 [x1,y1], not counting cap and join styles, but this property
 is not guaranteed for thin lines. Also note that "jags" in
 adjacent wide lines will always line up properly, but this
 property is not guaranteed for thin lines. A line-width of
 zero differs from a line-width of one in which pixels are
 drawn. In general, drawing a thin line will be faster than
 drawing a wide line of width one, but thin lines may not mix
 well aesthetically desirable to obtain precise and uniform
 results across all displays, a client should always use a
 line-width of one, rather than a line-width of zero.

 The line-style defines which segments of a line are drawn:
 Solid: the full path of the line is drawn
 DoubleDash: the full path of the line is drawn, but the
 segments defined by the even dashes are
 filled differently than the segments defined
 by the odd dashes (see fill-style)
 OnOffDash: only the segments defined by the even dashes
 are drawn, and cap-style applies to each

M.I.T. [Page 59]

RFC 1013 June 1987

 individual segment (except NotLast is treated
 as Butt for internal caps)

 The cap-style defines how the endpoints of a path are drawn:
 NotLast: equivalent to Butt, except that for a
 line-width of zero or one the final endpoint is
 not drawn
 Butt: square at the endpoint, with no projection beyond
 Round: a circular arc with diameter equal to the
 line-width, centered on the endpoint; equivalent
 to Butt for line-width zero or one
 Projecting: square at the end, but the path continues
 beyond the endpoint for a distance equal to
 half the line-width; equivalent to Butt for
 line-width zero or one

 The join-style defines how corners are drawn for wide lines:
 Miter: the outer edges of the two lines extend to meet at
 an angle
 Round: a circular arc with diameter equal to the
 line-width, centered on the joinpoint
 Bevel: Butt endpoint styles, and then the triangular
 "notch" filled

 The tile/stipple and clip origins are interpreted relative to
 the origin of whatever destination drawable is specified in a
 graphics request.

 The tile pixmap must have the same root and depth as the
 gcontext (else a Match error). The stipple pixmap must have
 depth one, and must have the same root as the gcontext (else
 a Match error). For stipple operations, the stipple pattern
 is tiled in a single plane, and acts as an additional clip
 mask to be ANDed with the clip-mask. Any size pixmap can be
 used for tiling or stippling, although some sizes may be
 faster to use than others.

 The fill-style defines the contents of the source for line,
 text, and fill requests. For all text and fill requests
 (PolyText8, PolyText16, PolyFillRectangle, FillPoly,
 PolyFillArc), for line requests (PolyLine, PolySegment,
 PolyRectangle, PolyArc) with line-style Solid, and for the
 even dashes for line requests with line-style OnOffDash or
 DoubleDash:
 Solid: foreground
 Tiled: tile
 OpaqueStippled: a tile with the same width and height as
 stipple, but with background everywhere
 stipple has a zero and with foreground
 everywhere stipple has a one
 Stippled: foreground masked by stipple

M.I.T. [Page 60]

RFC 1013 June 1987

 For the odd dashes for line requests with line-style
 DoubleDash:
 Solid: background
 Tiled: same as for even dashes
 OpaqueStippled: same as for even dashes
 Stippled: background masked by stipple

 The dash-list value allowed here is actually a simplified
 form of the more general patterns that can be set with
 SetDashes.Specifying a value of N here is equivalent to
 specifying the two element list [N, N] in SetDashes. The
 value must be non-zero. The meaning of dash-offset and
 dash-list are explained in the SetDashes request.

 The clip-mask restricts writes to the destination drawable;
 only pixels where the clip-mask has a one bit are drawn. It
 affects all graphics requests. The clip-mask does not clip
 sources. The clip-mask origin is interpreted relative to the
 origin of whatever destination drawable is specified in a
 graphics request. If a pixmap is specified as the clip-mask,
 it must have depth one and have the same root as the gcontext
 (else a Match error). The clip-mask can also be set with the
 SetClipRectangles request.

 For ClipByChildren, both source and destination windows are
 additionally clipped by all viewable InputOutput children.
 For IncludeInferiors, neither source nor destination window
 is clipped by inferiors; this will result in drawing through
 subwindow boundaries. The use of IncludeInferiors on a window
 of one depth with mapped inferiors of differing depth is not
 illegal, but the semantics isundefined by the core protocol.

 The fill-rule defines what pixels are inside (i.e., are
 drawn) for paths given in FillPoly requests. EvenOdd means
 a point is inside if an infinite ray with the point as origin
 crosses the path an odd number of times. For Winding, a
 point is inside if an infinite ray with the point as origin
 crosses an unequal number of clockwise and counterclockwise
 directed path segments. For both rules, a "point" is
 infinitely small, and the path is an infinitely thin line.
 A pixel is inside if the center point of the pixel is inside
 and the center point is not on the boundary. If the center
 point is on the boundary, the pixel is inside if and only if
 the polygon interior is immediately to its right (x
 increasing direction). Pixels with centers along a
 horizontal edge are a special case and are inside if and
 only if the polygon interior is immediately below (y
 increasing direction).

 The arc-mode controls filling in the PolyFillArc request.

M.I.T. [Page 61]

RFC 1013 June 1987

 The graphics-exposures flag controls GraphicsExposure event
 generation for CopyArea and CopyPlane requests (and any
 similar requests defined by extensions).

 The default component values are:
 function: Copy
 plane-mask: all ones
 foreground: 0
 background: 1
 line-width: 0
 line-style: Solid
 cap-style: Butt
 join-style: Miter
 fill-style: Solid
 full-rule: EvenOdd
 arc-mode: PieSlice
 tile: pixmap of unspecified size filled with forground
 pixell (i.e., client specified pixel if any,
 else 0)
 stipple: pixmap of unspecified size filled with ones
 tile-stipple-x-origin: 0
 tile-stipple-y-origin: 0
 font: <implementation dependent>
 subwindow-mode: ClipByChildren
 graphics-exposures: True
 clip-x-origin: 0
 clip-y-origin: 0
 clip-mask: None
 dash-offset: 0
 dash-list: 4 (i.e., the list [4, 4])

 Storing a pixmap in a gcontext might or might not result in a
 copy being made. If the pixmap is later used as the
 destination for a graphics request, the change might or might
 not be reflected in the gcontext. If the pixmap is used
 simultaneously in a graphics request as both a destination
 and as a tile or stipple. the results are not defined.

 It is quite likely that some amount of gcontext information
 will be cached in display hardware, and that such hardware
 can only cache a small number of gcontexts. Given the number
 and complexity of components, clients should view switching
 between gcontexts with nearly identical state as
 significantly more expensive than making minor changes to a
 single gcontext.

ChangeGC
 gc: GCONTEXT
 value-mask: BITMASK
 value-list: LISTofVALUE

M.I.T. [Page 62]

RFC 1013 June 1987

 Errors: GContext, Pixmap, Font, Match, Value, Alloc

 Changes components in gc. The value-mask and value-list
 specify which components are to be changed. The values and
 restrictions are the same as for CreateGC.

 Changing the clip-mask also overrides any previous
 SetClipRectangles request on the context. Changing the
 dash-offset or dash-list overrides any previous SetDashes
 request on the context.

 The order in which components are verified and altered is
 server dependent. If an error is generated, a subset of the
 components may have been altered.

CopyGC
 src-gc, dst-gc: GCONTEXT
 value-mask: BITMASK

 Errors: GContext, Value, Match, Alloc

 Copies components from src-gc to dst-gc. The value-mask
 specifies which components to copy, as for CreateGC. The
 two gcontexts must have the same root and the same depth
 (else a Match error).

SetDashes
 gc: GCONTEXT
 dash-offset: CARD16
 dash-list: LISTofCARD8

 Errors: GContext, Value, Alloc

 Sets the dash-offset and dash-list in gc for dashed line
 styles. The initial and alternating elements of the
 dash-list are the "even" dashes, the others are the
 "odd" dashes. All of the elements must be non-zero.
 The dash-offset defines the phase of the pattern,
 specifying how many pixels into the dash-list the pattern
 should actually begin in any single graphics request.
 Dashing is continuous through path segments combined with
 a join-style, but is reset to the dash-offset each time a
 cap-style is applied.

SetClipRectangles
 gc: GCONTEXT
 clip-x-origin, clip-y-origin: INT16
 rectangles: LISTofRECTANGLE
 ordering: {UnSorted, YSorted, YXSorted, YXBanded}

 Errors: GContext, Value, Alloc, Match

M.I.T. [Page 63]

RFC 1013 June 1987

 Changes clip-mask in gc to the specified list of rectangles
 and sets the clip origin. Output will be clipped to remain
 contained within the rectangles. The clip origin is
 interpreted relative to the origin of whatever destination
 drawable is specified in a graphics request. The rectangle
 coordinates are interpreted relative to the clip origin.
 The rectangles should be non-intersecting, or graphics
 results will be undefined.

 If known by the client, ordering relations on the rectangles
 can be specified with the ordering argument; this may provide
 faster operation by the server. If an incorrect ordering is
 specified, the server may generate a Match error, but is not
 required to do so; if no error is generated, the graphics
 results are undefined. UnSorted means the rectangles are in
 arbitrary order. YSorted means that the rectangles are
 non-decreasing in their Y origin. YXSorted additionally
 constrains YSorted order in that all rectangles with an equal
 Y origin are non-decreasing in their X origin. YXBanded
 additionally constrains YXSorted by requiring that for every
 possible Y scanline, all rectangles that include that
 scanline have identical Y origins and Y extents.

FreeGC
 gc: GCONTEXT

 Errors: GContext

 Deletes the association between the resource id and the
 gcontext, and destroys the gcontext.

ClearToBackground
 window: WINDOW
 x, y: INT16
 width, height: CARD16
 exposures: BOOL

 Errors: Window, Value, Match

 The x and y coordinates are relative to the window’s origin,
 and specify the upper left corner of the rectangle. If width
 is zero, it is replaced with the current width of the window
 minus x. If height is zero, it is replaced with the current
 height of the window minus y. If the window has a defined
 background tile, the rectangle is tiled with a plane-mask of
 all ones and alu-function of Copy. If the window has
 background None, the contents of the window are not changed.
 In eithercase, if exposures is True, then one or more
 exposure events are generated for regions of the rectangle
 that are eithervisible or are being retained in a backing
 store.

M.I.T. [Page 64]

RFC 1013 June 1987

 It is a Match error to use an InputOnly window in this
 request.
CopyArea
 src-drawable, dst-drawable: DRAWABLE
 gc: GCONTEXT
 src-x, src-y: INT16
 width, height: CARD16
 dst-x, dst-y: INT16

 Errors: Drawable, GContext, Match

 Combines the specified rectangle of src-drawable with the
 specified rectangle of dst-drawable. The src-x and src-y
 coordinates are relative to src-drawable’s origin, dst-x and
 dst-y are relative to dst-drawable’s origin, each pair
 specifying the upper left corner of the rectangle.
 Src-drawable must have the same root and the same depth as
 dst-drawable (else a Match error).

 If regions of the source rectangle are obscured and have not
 been retained by the server, or if regions outside the
 boundaries of the source drawable are specified, then the
 following occurs. If the dst-drawable is a window with a
 background of other than None, the corresponding regions of
 the destination are tiled (with plane-mask of ones and
 alu-function Copy) with that background. Regardless, if
 graphics-exposures in gc is True, GraphicsExposure events
 for the corresponding desitnation regions are generated.

 If graphics-exposures if True but no regions are exposed,
 then a NoExposure event is generated.

 GC components: alu-function, plane-mask, foreground,
 subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

CopyPlane
 scr-drawable, dst-drawable: DRAWABLE
 GC:Gcontext
 src-x, src-y: INT16
 width, height: CARD16
 dst-x, dst-y: INT16
 bit-plane: CARD32

 Errors: Drawable, GContext, Value, Match

 Src-drawable must have the same root as dst-srawable (else
 a match error), but need not have the same depth.
 Bit-plane must have exactly one bit set. Effectively, that
 plane of the src-drawable and the fore-ground/background
 pixels in gc are combined to form a pixmap of the same
 depth as dst-drawable, and the equivalent of a CopyArea is

M.I.T. [Page 65]

RFC 1013 June 1987

 performed, with all the same exposure semantics.

 GC components: alu-function, plan-mask, foreground,
 background, subwindow-mode, graphics-exposures,
 clip-x-origin, clip-y-origin, clip-mask

PolyPoint
 drawable: DRAWABLE
 gc: GCONTEXT
 coordinate-mode: {Origin, Previous}
 points: LISTofPOINT

 Errors: Drawable, GContext, Value, Match

 Combines the foreground pixel in gc with the pixel at each
 point in the drawable. The points are drawn in the order
 listed.

 The first point is always relative to the drawable’s origin;
 the rest are relative either to that origin or the previous
 point, depending on the coordinate-mode.

 GCcomponents: alu-function, plane-mask, foreground,
 subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

PolyLine
 drawable: DRAWABLE
 gc: GCONTEXT
 coordinate-mode: {Origin, Previous}
 points: LISTofPOINT

 Errors: Drawable, GContext, Value, Match

 Draws lines between each pair of points (point[i], point
 [i+1]). The lines are drawn in the order listed. The lines
 join correctly at all intermediate points, and if the first
 and last points coincide, the first and last lines also join
 correctly.

 For any given line, no pixel is drawn more than once. If
 thin (zero line-width) lines intersect, the intersecting
 pixels are drawn multiple times. If wide lines intersect,
 the intersecting pixels are drawn only once, as though the
 entire PolyLine were a single filled shape.

 The first point is always relative to the drawable’s origin;
 the rest are relative either to that origin or the previous
 point, depending on the coordinate-mode.

 GC components: alu-function, plane-mask, line-width,
 line-style, cap-style, join-style, fill-style,

M.I.T. [Page 66]

RFC 1013 June 1987

 subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

 GC mode-dependent components: foreground, background, tile,
 stipple, tile-stipple-x-origin, tile-stipple-y-origin,
 dash-offset,dash-list

PolySegment
 drawable: DRAWABLE
 gc: GCONTEXT
 segments: LISTofSEGMENT

 where SEGMENT: [x1, y1, x2, y2: INT16]

 Errors: Drawable, GContext, Match

 For each segment, draws a line between [x1, y1] and [x2, y2].
 The lines are drawn in the order listed. No joining is
 performed at coincident end points. For any given line, no
 pixel is drawn more than once. If lines intersect, the
 intersecting pixels are drawn multiple times.

 GC components: alu-function, plane-mask, line-width,
 line-style, cap-style, fill-style, subwindow-mode,
 clip-x-origin, clip-y-origin,clip-mask

 GC mode-dependent components: foreground, background, tile,
 stipple,tile-stipple-x-origin, tile-stipple-y-origin,
 dash-offset, dash-list

PolyRectangle
 drawable: DRAWABLE
 gc: GCONTEXT
 rectangles: LISTofRECTANGLE

 Errors: Drawable, GContext, Match

 Draws the outlines of the specified rectangles, as if a
 five-point PolyLine were specified for each rectangle. The x
 and y coordinates of each rectangle are relative to the
 drawable’s origin, and define the upper left corner of the
 rectangle.

 The rectangles are drawn in the order listed. For any given
 rectangle, no pixel is drawn more than once. If rectangles
 intersect, the intersecting pixels are drawn multiple times.

 GC components: alu-function, plane-mask, line-width,
 line-style, join-style, fill-style, subwindow-mode,
 clip-x-origin, clip-y-origin, clip-mask

 GC mode-dependent components: foreground, background, tile,

M.I.T. [Page 67]

RFC 1013 June 1987

 stipple, tile-stipple-x-origin, tile-stipple-y-origin,
 dash-offset, dash-list

PolyArc
 drawable: DRAWABLE
 gc: GCONTEXT
 arcs: LISTofARC

 Errors: Drawable, GContext, Match

 Draws circular or elliptical arcs. Each arc is specified by
 a rectangle and two angles. The x and y coordinates are
 relative to the origin of the drawable, and define the upper
 left corner of the rectangle. The center of the circle or
 ellipse is the center of the rectangle, and the major and
 minor axes are specified by the width and height,
 respectively. The angles are signed integers in degrees
 scaled by 64, with positive indicating counterclockwise
 motion and negative indicating clockwise motion. The start
 of the arc is specified by angle1 relative to the
 three-oclock position from the center, and the path and
 extent of the arc is specified by angle2 relative to the
 start of the arc. If the magnitude of angle2 is greater
 than 360 degrees, it is truncated to 360 degrees.

 The arcs are drawn in the order listed. If the last point in
 one arc coincides with the first point in the following arc,
 the two arcs will join correctly. If the first point in the
 first arc coincides with the last point in the last arc, the
 two arcs will join correctly. For any given arc, no pixel is
 drawn more than once. If two arcs join correctly and the
 line-width is greater than zero and the arcs intersect, no
 pixel is drawn more than once. Otherwise, the intersecting
 pixels of intersecting arcs are drawn multiple times.
 Specifying an arc with one endpoint and a clockwise extent
 draws the same pixels as specifying the other endpoint and an
 equivalent counterclockwise extent, except as it affects
 joins.

 By specifying one axis to be zero, a horizontal or vertical
 line can be drawn.

 Angles are computed based solely on the coordinate system,
 ignoring the aspect ratio.

 GC components: alu-function, plane-mask, line-width,
 line-style, cap-style, join-style, fill-style,
 subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

 GC mode-dependent components: foreground, background, tile,
 stipple,tile-stipple-x-origin, tile-stipple-y-origin,

M.I.T. [Page 68]

RFC 1013 June 1987

 dash-offset, dash-list
FillPoly
 drawable: DRAWABLE
 gc: GCONTEXT
 shape: {Complex, Nonconvex, Convex}
 coordinate-mode: {Origin, Previous}
 points: LISTofPOINT

 Errors: Drawable, GContext, Match, Value

 Fills the region closed by the specified path. The path is
 closed automatically if the last point in the list does not
 coincide with the first point. No pixel of the region is
 drawn more than once.

 The first point is always relative to the drawable’s origin;
 the rest are relative either to that origin or the previous
 point, depending on the coordinate-mode.

 The shape parameter may be used by the server to improve
 performance. Complex means the path may self-intersect.

 Nonconvex means the path does not self-intersect, but the
 shape is not wholly convex. If known by the client,
 specifying Nonconvex over Complex may improve performance. If
 Nonconvex is specified for a self-intersecting path, the
 graphics results are undefined.

 Convex means the path is wholly convex. If known by the
 client, specifying Convex can improve performance. If Convex
 is specified for a path that is not convex, the graphics
 results are undefined.

 GC components: alu-function, plane-mask, fill-style,
 fill-rule, subwindow-mode, clip-x-origin, clip-y-origin,
 clip-mask

 GC mode-dependent components: foreground, tile, stipple,
 tile-stipple-x-origin, tile-stipple-y-origin

PolyFillRectangle
 drawable: DRAWABLE
 gc: GCONTEXT
 rectangles: LISTofRECTANGLE

 Errors: Drawable, GContext, Match

 Fills the specified rectangles. The x and y coordinates of
 each rectangle are relative to the drawable’s origin, and
 define the upper left corner of the rectangle.

M.I.T. [Page 69]

RFC 1013 June 1987

 The rectangles are drawn in the order listed. For any given
 rectangle, no pixel is drawn more than once. If rectangles
 intersect, the intersecting pixels are drawn multiple times.

 GC components: alu-function, plane-mask, fill-style,
 fill-rule, subwindow-mode, clip-x-origin, clip-y-origin,
 clip-mask

 GC mode-dependent components: foreground, tile, stipple,
 tile-stipple-x-origin, tile-stipple-y-origin

PolyFillArc
 drawable: DRAWABLE
 gc: GCONTEXT
 arcs: LISTofARC

 Errors: Drawable, GContext, Match

 For each arc, fills the region closed by the specified arc
 and one or two line segments, depending on the arc-mode. For
 Chord, the single line segment joining the endpoints of the
 arc is used. For PieSlice, the two line segments joining the
 endpoints of the arc with the center point are used. The
 arcs are as specified in the PolyArc request.

 The arcs are filled in the order listed. For any given arc,
 no pixel is drawn more than once. If regions intersect, the
 intersecting pixels are drawn multiple times.

 GC components: alu-function, plane-mask, fill-style,
 fill-rule, arc-mode, subwindow-mode, clip-x-origin,
 clip-y-origin, clip-mask

 GC mode-dependent components: foreground, tile, stipple,
 tile-stipple-x-origin, tile-stipple-y-origin

PutImage
 drawable: DRAWABLE
 gc: GCONTEXT
 depth: CARD8
 width, height: CARD16
 dst-x, dst-y: INT16
 left-pad: CARD8
 format: {Bitmap, XYPixmap, ZPixmap}
 bits: <bits>

 Errors: Drawable, GContext, Match, Value, Alloc

 Combines an image with a rectangle of the drawable. The
 dst-x and dst-y coordinates are relative to the drawable’s
 origin.

M.I.T. [Page 70]

RFC 1013 June 1987

 If Bitmap format is used, then depth must be one (else a
 Match error) and the image must be in XYFormat. The
 foreground pixel in gc defines the source for one bits in the
 image, and the background pixel defines the source for the
 zero bits.

 For XYPixmap and ZPixmap, depth must match the depth of
 drawable (else a Match error). For XYPixmap, the image must
 be sent in XYFormat. For ZPixmap, the image must be sent in
 the ZFormat defined for the given depth.

 The left-pad must be zero for ZPixmap format. For Bitmap and
 XYPixmap format, left-pad must be less than
 bitmap-format-scanline-pad (as given in the server connection
 setup info). The first left-pad bits in every scanline are
 to be ignored by the server; the actual image begins that
 many bits into the data. The width argument defines the width
 of the actual image, and does not include left-pad.

 GC components: alu-function, plane-mask, subwindow-mode,
 clip-x-origin, clip-y-origin, clip-mask

 GC mode-dependent components: foreground, background

GetImage
 drawable: DRAWABLE
 x, y: INT16
 width, height: CARD16
 plane-mask: CARD32
 format: {XYFormat, ZFormat}
 =>
 depth: CARD8
 visual: VISUALID or None
 bits: <bits>

 Errors: Drawable, Value, Match

 Returns the contents of the given rectangle of the drawable
 in the given format. The x and y coordinates are relative to
 the drawable’s origin, and define the upper left corner of
 the rectangle. If XYFormat is specified, only the bit planes
 specified in plane-mask are transmitted. If ZFormat is
 specified, then bits in all planes not specified in
 plane-mask transmitted as zero. The returned depth specifies
 the number of bits per pixel of the image. If the drawable
 is a window, its visual type is returned; if the drawable
 is a pixmap,the visual is None.

 If the drawable is a window, the window must be mapped, and
 it must be the case that, if there were no inferiors or
 overlapping windows, the specified rectangle of the window

M.I.T. [Page 71]

RFC 1013 June 1987

 would be fully visible on the screen will include any
 visible portions of inferiors or overlapping windows
 contained in the rectangle, but if these windows are of
 different depth than the specified window, the contents
 returned for them are not defined by the core protocol.
PolyText8
 drawable: DRAWABLE
 gc: GCONTEXT
 x, y: INT16
 items: LISTofTEXTITEM8

 where
 TEXTITEM8: TEXTELT8 or FONT
 TEXTELT8: [delta: INT8
 string: STRING8]

 Errors: Drawable, GContext, Match, Font

 The x and y coordinates are relative to drawable’s origin,
 and specify the baseline starting position (the initial
 character origin). Each text item is processed in turn. A
 font item causes the font to be stored in gc, and to be
 used for subsequent text; switching among fonts with
 differing draw-directions is permitted. A text element
 delta specifies an additional change in the position along
 the x axis before the string is drawn; the delta is always
 added to the character origin (not added or subtracted based
 on the draw-direction of the current font). Each character
 image, as defined by the a font in gc, is treated as an
 additional mask for a fill operation on the drawable.

 All contained FONTs are always transmitted most significant
 byte first.

 If a Font error is generated for an item, the previous items
 may have been drawn.

 For fonts defined with two-byte matrix indexing, each STRING8
 byte is interpreted as a byte2 value of a CHAR2B with a byte1
 value of zero.

 GC components: alu-function, plane-mask, fill-style, font,
 subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

 GC mode-dependent components: foreground, tile, stipple,
 tile-stipple-x-origin, tile-stipple-y-origin

PolyText16
 drawable: DRAWABLE
 gc: GCONTEXT
 x, y: INT16

M.I.T. [Page 72]

RFC 1013 June 1987

 items: LISTofTEXTITEM16

 where
 TEXTITEM16: TEXTELT16 or FONT
 TEXTELT16: [delta-x: INT8
 string: STRING16]

 Errors: Drawable, GContext, Match, Font

 Just like PolyText8, except two-byte (or 16-bit) characters
 are used. For fonts defined with linear indexing rather than
 two-byte matrix indexing, the server will interpret each
 CHAR2B as a 16-bit number that has been transmitted most
 significant byte first (i.e., byte1 of the CHAR2B is taken
 as the most significant byte).

ImageText8
 drawable: DRAWABLE
 gc: GCONTEXT
 x, y: INT16
 string: STRING8

 Errors: Drawable, GContext, Match

 The x and y coordinates are relative to drawable’s origin,
 and specify the baseline starting position (the initial
 character origin). The effect is to first fill a
 destination rectangle with the background pixel defined in
 gc, and then paint the text with the foreground pixel.
 The upper left corner of the filled rectangle is at
 [x + overall-left, y - font-ascent]
 the width is
 overall-right - overall-left
 and the height is
 font-ascent + font-descent
 where overall-left, overall-right, font-ascent, and
 as font-descent are would be returned by a QueryTextExtents
 call using gc and string.

 The alu-function and fill-style defined in gc are ignored for
 this request; the effective alu-function is Copy and the
 effective fill-style Solid.

 For fonts defined with two-byte matrix indexing, each STRING8
 byte is interpreted as a byte2 value of a CHAR2B with a byte1
 value of zero.

 GC components: plane-mask, foreground, background, font,
 subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

M.I.T. [Page 73]

RFC 1013 June 1987

ImageText16
 drawable: DRAWABLE
 gc: GCONTEXT
 x, y: INT16
 string: STRING16

 Errors: Drawable, GContext, Match

 Just like ImageText8, except two-byte (or 16-bit) characters
 are used. For fonts defined with linear indexing rather than
 two-byte matrix indexing, the server will interpret each
 CHAR2B as a 16-bit number that has been transmitted most
 significant byte first (i.e., byte1 of the CHAR2B is taken as
 the most significant byte).

CreateColormap
 mid: COLORMAP
 visual: VISUALID
 window: WINDOW
 alloc: {None, All}

 Errors: IDChoice, Window, Value, Match, Alloc

 Creates a colormap of the specified visual type for the
 screen on which the window resides, and associates the
 identifier mid with it. The visual type must be one
 supported by the screen, and cannot be of class TrueColor
 (else a Match error). The initial values of the colormap
 entries are undefined for classes GrayScale, PseudoColor,
 and DirectColor; for StaticGray, StaticColor, and
 TrueColor, the entries will have defined values, but those
 values are specific to the visual and are not defined by
 the core protocol. For StaticGray, StaticColor, and
 TrueColor, alloc must be specified as None (else a Match
 error). For the other classes, if alloc is None, the
 colormap initially has no allocated entries, and clients
 can allocate entries. If alloc is All, then the entire
 colormap is "allocated" writable, but entries cannot be
 freed with FreeColors, and no relationships among entries
 is defined; the client must understand whether the colormap
 is GrayScale, PseudoColor, or DirectColor to know how to
 store into entries.

FreeColormap
 cmap: COLORMAP

 Errors: Colormap

 Deletes the association between the resource id and the
 colormap. If the colormap is an installed map for a screen,
 it is uninstalled (see UninstallColormap). If the colormap

M.I.T. [Page 74]

RFC 1013 June 1987

 is defined as the colormap for a window (via CreateWindow or
 ChangeWindowAttributes), the colormap for the window is
 changed to None, and a ColormapNotify event is generated.The
 colors displayed for a window with a colormap of None are not
 defined by the protocol.

 Has no effect on a default colormap for a screen.

CopyColormapAndFree
 mid, src-cmap: COLORMAP

 Errors: Colormap, Alloc

 Creates a colormap for the same screen as src-cmap, and
 associates identifier mid with it. Moves all of the client’s
 existing allocations from src-cmap to the new colormap, and
 frees those entries in src-cmap. Values in other entries in
 the new colormap are undefined.

InstallColormap
 cmap: COLORMAP

 Errors: Colormap

 Makes this colormap an installed map for its screen. All
 windows associated with this colormap immediately display
 with true colors. As a side-effect, previously installed
 colormaps may be uninstalled, and other windows may display
 with false colors. Which colormaps get uninstalled is
 server dependent, except that it is guaranteed that the
 M-1 most recently client-installed colormaps will not be
 uninstalled, where M is the min-installed-maps specified
 for the screen in the connection setup.

 If cmap is not already an installed map, a ColormapNotify
 event is generated on every window having cmap as an
 attribute. If a colormap is uninstalled as a result of
 the install, a ColormapNotify event is generated on every
 window having that colormap as an attribute.

 Initially only the default colormap for a screen is
 installed.

UninstallColormap
 cmap: COLORMAP

 Errors: Colormap

 If cmap is an installed map for its screen, one or more
 colormaps are installed in its place; the choice is server

M.I.T. [Page 75]

RFC 1013 June 1987

 dependent, pexcept that if the screen’s default colormap is
 not installed and can be installed (without forcing other
 colormaps out), then the default colormap is used.

 If cmap is an installed map, a ColormapNotify event is
 generated on every window having this colormap as an
 attribute. If a colormap is installed as a result of the
 uninstall, a ColormapNotify event is generated on every
 window having that colormap as an attribute.

ListInstalledColormaps
 window: WINDOW
 =>
 cmaps: LISTofCOLORMAP

 Errors: Window

 Returns a list of the currently installed colormaps for the
 screen of the specified window.

AllocColor
 cmap: COLORMAP
 red, green, blue: CARD16
 =>
 pixel: CARD32
 red, green, blue: CARD16

 Errors: Colormap, Alloc

 Allocates a read-only colormap entry corresponding to the
 closest RGB values provided by the hardware. Returns the
 pixel and the RGB values actually used.

AllocNamedColor
 cmap: COLORMAP
 name: STRING8
 =>
 pixel: CARD32
 exact-red, exact-green, exact-blue: CARD16
 screen-red, screen-green, screen-blue: CARD16

 Errors: Colormap, Name, Alloc

 Looks up the named color with respect to the screen
 associated with the colormap, then does an AllocColor on
 cmap. The name should use the ASCII encoding, and
 upper/lower case does not matter. The exact RGB values
 specify the "true" values for the color, and the screen
 values specify the values actually used in the colormap.

M.I.T. [Page 76]

RFC 1013 June 1987

AllocColorCells
 cmap: COLORMAP
 colors, planes: CARD16
 contiguous: BOOL
 =>
 pixels, masks: LISTofCARD32

 Errors: Colormap, Value, Alloc

 The number of colors must be positive, the number of planes
 non-negative. If C colors and P planes are requested, then C
 pixels and P masks are returned. No mask will have any bits
 in common with any other mask, or with any of the pixels. By
 ORing together masks and pixels, C*(2^P) distinct pixels can
 be produced; all of these are allocated writable by the
 request. For GrayScale or PseudoColor, each mask will have
 exactly one bit, and for DirectColor each will have exactly
 three bits. If contiguous is True, then if all masks are
 ORed together, a single contiguous set of bits will be formed
 for GrayScale or PseudoColor, and three contiguous sets of
 bits (one within each pixel subfield) for DirectColor. The
 RGB values of the allocated entries are undefined.

AllocColorPlanes
 cmap: COLORMAP
 colors, reds, greens, blues: CARD16
 contiguous: BOOL
 =>
 pixels: LISTofCARD32
 red-mask, green-mask, blue-mask: CARD32

 Errors; Colormap, Value, Alloc

 The number of colors must be positive, the reds, greens, and
 blues non-negative. If C colors, R reds, G greens, and B
 blues are requested, then C pixels are returned, and the
 masks have R, G, and B bits set respectively. If contiguous
 is True, then each mask will have a contiguous set of bits.
 No mask will have any bits in common with any other mask, or
 with any of the pixels. For DirectColor, each mask will lie
 within the corresponding pixel subfield. By ORing together
 subsets of masks with pixels, C*(2^(R+G+B)) distinct pixels
 can be produced; all of these are allocated by the request.
 The initial RGB values of the allocated entries are
 undefined. In the colormap there are only C*(2^R)
 independent red entries, C*(2^G) independent green entries,
 and C*(2^B) independent blue entries. This is true even for
 PseudoColor. When the colormap entry for a pixel value is
 changed using StoreColors or StoreNamedColor, the pixel is
 decomposed according to the masks and the corresponding
 independent entries are updated.

M.I.T. [Page 77]

RFC 1013 June 1987

FreeColors
 cmap: COLORMAP
 pixels: LISTofCARD32
 plane-mask: CARD32

 Errors: Colormap, Access, Value

 The plane-mask should not have any bits in common with any of
 the pixels. The set of all pixels is produced by ORing
 together subsets of plane-mask with the pixels. The request
 frees all of these pixels. Note that freeing an individual
 pixel obtained from AllocColorPlanes may not actually allow
 it to be reused until all of its "related" pixels are also
 freed.

 All specified pixels that are allocated by the client in
 cmap are freed, even if one or more pixels produce an error.
 A Value error is generated if a specified pixel is not a
 valid index into cmap, and an Access error is generated if a
 specified pixel is not allocated by the client (i.e., is
 unallocated or is only allocated by another client). If more
 than one pixel is in error, which one is reported is
 arbitrary.

StoreColors
 cmap: COLORMAP
 items: LISTofCOLORITEM

 where
 COLORITEM: [pixel: CARD32
 do-red, do-green, do-blue: BOOL
 red, green, blue: CARD16]

 Errors: Colormap, Access, Value

 Changes the colormap entries of the specified pixels. The
 do-red, do-green, and do-blue fields indicate which
 components should actually be changed. If the colormap is an
 installed map for its screen, the changes are visible
 immediately.

 All specified pixels that are allocated writable in cmap (by
 any client) are changed, even if one or more pixels produce
 an error. A Value error is generated if a specified pixel is
 not a valid index into cmap, and an Access error is generated
 if a specified pixel is unallocated or is allocated
 read-only. If more than one pixel is in error, which one is
 reported is arbitrary.

StoreNamedColor
 cmap: COLORMAP

M.I.T. [Page 78]

RFC 1013 June 1987

 pixel: CARD32
 name: STRING8
 do-red, do-green, do-blue: BOOL

 Errors: Colormap, Name, Access, Value

 Looks up the named color with respect to the screen
 associated with cmap, then does a StoreColors in cmap. The
 name should use the ASCII encoding, and upper/lower case
 does not matter.

QueryColors
 cmap: COLORMAP
 pixels: LISTofCARD32
 =>
 colors: LISTofRGB

 where
 RGB: [red, green, blue: CARD16]

 Errors: Colormap, Value

 Returns the color values stored in cmap for the specified
 pixels. The values returned for an unallocated entry are
 undefined. A Value error is generated if a pixel is not a
 valid index into cmap. If more than one pixel is in error,
 which one is reported is arbitrary.

LookupColor
 cmap: COLORMAP
 name: STRING8
 =>
 exact-red, exact-green, exact-blue: CARD16
 screen-red, screen-green, screen-blue: CARD16

 Errors: Colormap, Name

 Looks up the string name of a color with respect to the
 screen associated with cmap, and returns both the exact the
 color values and the closest values provided by the hardware.
 The name should use the ASCII encoding, and upper/lower
 case does not matter.

CreateCursor
 cid: CURSOR
 source: PIXMAP
 mask: PIXMAP or None
 fore-red, fore-green, fore-blue: CARD16
 back-red, back-green, back-blue: CARD16
 x, y: CARD16

M.I.T. [Page 79]

RFC 1013 June 1987

 Errors: IDChoice, Bitmap, Match, Value, Alloc

 Creates a cursor and associates identifier cid with it.
 Foreground and background RGB values must be specified, even
 if the server only has a monochrome screen. The foreground
 is used for the one bits in the source, and the background is
 used for the zero bits. Both source and mask (if specified)
 must have depth one (else a Match error), but can have any
 root. The mask pixmap defines the shape of the cursor; that
 is, the one bits in the mask define which source pixels will
 be displayed. If no mask is given, all pixels of the source
 are displayed. The mask, if present, must be the same size
 as source (else a Match error). The x and y coordinates
 define the hotspot, relative to the source’s origin, and must
 be a point within the source (else a Match error).

 The components of the cursor may be transformed arbitrarily
 to meet display limitations.

 The pixmaps can be freed immediately if no further explicit
 references to them are to be made.

 Subsequent drawing in the source or mask pixmap has an
 undefined effect on the cursor; the server might or might
 not make a copy of the pixmap.

CreateGlyphCursor
 cid: CURSOR
 source-font: FONT
 mask-font: FONT or None
 source-char, mask-char: CARD16
 fore-red, fore-green, fore-blue: CARD16
 back-red, back-green, back-blue: CARD16

 Errors: IDChoice, Font, Value, Alloc

 Similar to CreateCursor, but the source and mask bitmaps are
 obtained from the specified font glyphs. The mask font and
 character are optional. The origin of the source glyph
 defines the hotspot, and the mask is positioned such that
 the origins are coincident. The source and mask need not
 have the same bounding box metrics. If no mask is given,
 all pixels of the source are displayed. Note that
 source-char and mask-char are CARD16 (not CHAR2B); for
 two-byte matrix fonts, the 16-bit value should be formed
 with byte1 in the most significant byte and byte2 in the
 least significant byte.

FreeCursor
 cursor: CURSOR

M.I.T. [Page 80]

RFC 1013 June 1987

 Errors: Cursor

 Deletes the association between the resource id and the
 cursor. The cursor storage will be freed when no other
 resource references it.

RecolorCursor
 cursor: CURSOR
 fore-red, fore-green, fore-blue: CARD16
 back-red, back-green, back-blue: CARD16

 Errors: Cursor

 Changes the color of a cursor. If the cursor is being
 displayed on a screen, the change is visible immediately.

QueryBestSize
 class: {Cursor, Tile, Stipple}
 drawable: DRAWABLE
 width, height: CARD16
 =>
 width, height: CARD16

 Errors: Drawable, Value, Match

 Returns the "best" size that is "closest" to the argument
 size. For Cursor, this is the largest size that can be
 fully displayed. For Tile, this is the size that can be
 tiled "fastest". For Stipple, this is the size that can
 be stippled "fastest".

 For Cursor, the drawable indicates the desired screen. For
 Tile and Stipple, the drawable indicates screen, and also
 possibly window class and depth; an InputOnly window cannot
 be used as the drawable for Tile or Stipple (else a Match
 error).

QueryExtension
 name: STRING8
 =>
 present: BOOL
 major-opcode: CARD8
 first-event: CARD8
 first-error: CARD8

 Determines if the named extension is present. If so, the
 major opcode for the extension is returned, if it has one,
 otherwise zero is returned. Any minor opcode and the request
 formats are specific to the extension. If the extension
 involves additional event types, the base event type code is
 returned, otherwise zero is returned. The format of the

M.I.T. [Page 81]

RFC 1013 June 1987

 events is specific to the extension. If the extension
 involves additional error codes, the base error code is
 returned, otherwise zero is returned. The format of
 additional data in the errors is specific to the extension.

 The extension name should be in the ASCII encoding, and
 upper/lower case matters.

ListExtensions
 =>
 names: LISTofSTRING8

 Returns a list of all extensions supported by the server.

SetKeyboardMapping
 map: LISTofCARD8
 =>
 status: {Success, Busy}

 Errors: Value

 Sets the mapping of the keyboard. Elements of the list are
 indexed starting from one. The list must be of length 255.
 The index is a "core" keycode, and the element of the list
 defines the "effective" keycode.

 A zero element disables a key, no elements can have values 1
 through 7, and no two elements (with index larger than 7) can
 have the same non-zero value. If the keyboard does not
 really generate a given keycode, specifying a non-zero value
 for that core keycode has no effect.

 Elements 6 and 7 of the map must always be zero. The first
 five elements are special: they specify the keycodes (if
 any) that correspond to the Mod1 through Mod5 modifiers.
 Setting one of these entries to zero disables use of that
 modifier bit. No two of the firstfive elements can have the
 same non-zero value.

 A server can impose restrictions on how keyboards get
 remapped, e.g., if certain keys do not generate up
 transitions in hardware.

 If any of the keys or modifiers to be altered are currently
 in the down state, the status reply is Busy and the mapping
 is not changed.

GetKeyboardMapping
 =>
 map: LISTofCARD8

M.I.T. [Page 82]

RFC 1013 June 1987

 Errors: Value

 Returns the current mapping of the keyboard. Elements of the
 list are indexed starting from one. The length of the list
 is 255.

 The nominal mapping for a keyboard is almost the identity
 mapping, except that map[i]=0 for keycodes that have no
 corresponding physical key, and the first five entries
 indicate the keycodes (if any) corresponding to the Mod1
 through Mod5 modifier bits.

ChangeKeyboardControl
 value-mask: BITMASK
 value-list: LISTofVALUE

 Errors: Match Value

 Controls various aspects of the keyboard. The value-mask and
 value-list specify which controls are to be changed. The
 possible values are:

 key-click-percent: INT8
 bell-percent: INT8
 bell-pitch: INT16
 bell-duration: INT16
 led: CARD8
 led-mode: {On, Off}
 key: KEYCODE
 auto-repeat-mode: {On, Off, Default}

 Key-click-percent sets the volume for key clicks between 0
 (off) and 100 (loud) inclusive, if possible. Setting to -1
 restores the default. Other negative values generate a Value
 error.

 Bell-percent sets the base volume for the bell between 0
 (off) and 100 (loud) inclusive, if possible. Setting to -1
 restores the default. Other negative values generate a Value
 error.

 Bell-pitch sets the pitch (specified in Hz) of the bell, if
 possible. Setting to -1 restores the default. Other
 negative values generate a Value error.

 Bell-duration sets the duration (specified in milliseconds)
 of the bell, if possible. Setting to -1 restores the
 default. Other negative values generate a Value error.

 If both led-mode and led are specified, then the state of
 that LED is changed, if possible. If only led-mode is

M.I.T. [Page 83]

RFC 1013 June 1987

 specified, then the state of all LEDs are changed, if
 possible. At most 32 LEDs are supported, numbered from one.
 It is a Match error if an led is specified without an
 led-mode.

 If both auto-repeat-mode and key are specified, then the
 auto-repeat mode of that key is changed, if possible. If
 only auto-repeat-mode is specified, then the global
 auto-repeat mode for the entire keyboard is changed, if
 possible, without affecting the per-key settings. It is
 a Match error if a key is specified without an
 auto-repeat-mode.

 A bell generator connected with the console but not directly
 on the keyboard is treated as if it were part of the
 keyboard.

 The order in which controls are verified and altered is
 server dependent. If an error is generated, a subset of the
 controls may have been altered.

GetKeyboardControl
 =>
 key-click-percent: CARD8
 bell-percent: CARD8
 bell-pitch: CARD16
 bell-duration: CARD16
 led-mask: CARD32
 global-auto-repeat: {On, Off}
 auto-repeats: LISTofCARD8

 Errors: Match

 Returns the current control values for the keyboard. For the
 LEDs, the least significant bit of led-mask corresponds to
 LED one, and each one bit in led-mask indicates an LED that
 is lit. Auto-repeats is a bit vector; each one bit indicates
 that auto-repeat is enabled for the corresponding key. The
 vector is represented as 32 bytes. Byte N (from 0) contains
 the bits for keys 8N to 8N+7, with the least significant bit
 in the byte representing key 8N.

Bell
 percent: INT8

 Errors: Match, Value

 Rings the bell on the keyboard at the specified volume
 relative to the base volume for the keyboard, if possible.
 Percent, which can range from -100 to 100 inclusive, is added
 to the base volume, and the sum limited to the range 0 to 100

M.I.T. [Page 84]

RFC 1013 June 1987

 inclusive.

SetPointerMapping
 map: LISTofCARD8
 =>
 status: {Success, Busy}

 Errors: Value

 Sets the mapping of the pointer. Elements of the list are
 indexed starting from one. The length of the list must be
 the same as GetPointerMapping would return. The index is a
 "core" button number, and the element of the list defines
 the "effective" number.

 A zero element disables a button, and elements are not
 restricted in value by the number of physical buttons, but
 no two elements can have the same non-zero value.

 If any of the buttons to be altered are currently in the
 down state,the status reply is Busy and the mapping is not
 changed.

GetPointerMapping
 =>
 map: LISTofCARD8

 Errors: Value

 Returns the current mapping of the pointer. Elements of the
 list are indexed starting from one. The length of the list
 indicates the number of physical buttons.

 The nominal mapping for a pointer is the identity mapping;
 map[i]=i.

ChangePointerControl
 do-acceleration, do-threshold: BOOL
 acceleration-numerator, acceleration-denominator: INT16
 threshold: INT16

 Errors: Match, Value

 Defines how the pointer moves. The acceleration is a
 multiplier for movement, expressed as a fraction. For
 example, specifying 3/1 means the pointer moves three times
 as fast as normal. The fraction may be rounded arbitrarily
 by the server. Acceleration only takes effect if the
 pointer moves more than threshold pixels at once, and only
 applies to the amount beyond the threshold. Setting a
 value to -1 restores the default. Other negative values

M.I.T. [Page 85]

RFC 1013 June 1987

 generate a Value error, as does a zero value for
 acceleration-denominator.

GetPointerControl
 =>
 acceleration-numerator, acceleration-denominator: CARD16
 threshold: CARD16

 Errors: Match

 Returns the current acceleration and threshold for the
 pointer.

SetScreenSaver
 timeout, interval: INT16
 prefer-blanking: {Yes, No, Default}
 allow-exposures: {Yes, No, Default}

 Errors: Value

 Timeout and interval are specified in minutes; setting a
 value to -1 restores the default. Other negative values
 generate a Value error. If the timeout value is zero,
 screen-saver is disabled. If the timeout value is
 non-zero, screen-saver is enabled. Once screen-saver
 is enabled, if no input from the keyboard or pointer is
 generated for timeout minutes, screen-saver is activated.
 For each screen, if blanking is preferred and the hardware
 supports video blanking, the screen will simply go blank.
 Otherwise, if either exposures are allowed or the screen
 can be regenerated without sending exposure events to
 clients, the screen is tiled with the root window
 background tile, randomly re-origined each interval
 minutes if the interval value is non-zero. Otherwise, the
 state of the screen does not change and screen-saver is not
 activated. Screen-saver is deactivated, and all screen
 states are restored, at the next keyboard or pointer input
 or at the next ForceScreenSaver with mode Reset.

GetScreenSaver
 =>
 timeout, interval: CARD16
 prefer-blanking: {Yes, No}
 allow-exposures: {Yes, No}

 Returns the current screen-saver control values.

ForceScreenSaver
 mode: {Activate, Reset}

 If the mode is Activate and screen-saver is currently

M.I.T. [Page 86]

RFC 1013 June 1987

 deactivated, then screen-saver is activated (even if
 screen-saver has been disabled with a timeout value of zero).
 If the mode is Reset and screen-saver is currently enabled,
 then screen-saver is deactivated (if it was activated), and
 then the activation timer is reset to its initial state, as
 if device input had just been received.

ChangeHosts
 mode: {Insert, Delete}
 host: HOST

 Errors: Access, Value

 Adds or removes the specified host from the access control
 list. When the access control mechanism is enabled and a
 host attempts to establish a connection to the server, the
 host must be in this list or the server will refuse the
 connection.

 The client must reside on the same host as the server, and/or
 have been granted permission in the initial authorization at
 connection setup.

 An initial access control list can be specified, typically
 by naming a file that the server reads at startup and reset.

ListHosts
 =>
 mode: {Enabled, Disabled}
 hosts: LISTofHOST

 Returns the hosts on the access control list, and whether use
 of the list at connection setup is currently enabled or
 disabled.

 Each HOST is padded to a multiple of four bytes.

ChangeAccessControl
 mode: {Enable, Disable}

 Errors: Value, Access

 Enables or disables the use of the access control list at
 connection setups.

 The client must reside on the same host as the server, and/or
 have been granted permission in the initial authorization at
 connection setup.

ChangeCloseDownMode
 mode: {Destroy, RetainPermanent, RetainTemporary}

M.I.T. [Page 87]

RFC 1013 June 1987

 Errors: Value

 Defines what will happen to the client’s resources at
 connection close. A connection starts in Destroy mode. The
 meaning of the close-down mode is described in Section 11.

KillClient
 resource: CARD32 or AllTemporary

 Errors: Value

 If a valid resource is specified, forces a close-down of the
 client that created the resource. If the client has already
 terminated in either RetainPermanent or RetainTemporary mode,
 all of the client’s resources are destroyed (see Section 11).
 If AllTemporary is specified, then the resources of all
 clients that have terminated in RetainTemporary are
 destroyed.

NoOperation
 This request has no arguments and no results, but the request
 length field can be non-zero, allowing the request to be any
 multiple of 4 bytes in length. The bytes contained in the
 request are uninterpreted by the server.

 This request can be used in its minimum 4 byte form as
 "padding" where necessary by client libraries that find it
 convenient to force requests to begin on 64-bit boundaries.

SECTION 11. CONNECTION CLOSE

What happens at connection close:

 All event selections made by the client are discarded. If
 the client has the pointer actively grabbed, an
 UngrabPointer is performed. If the client has the keyboard
 actively grabbed, an UngrabKeyboard is performed. All
 passive grabs by the client are eleased. If the client has
 the server grabbed, and UngrabServer is performed. If
 close-down mode (see ChangeCloseDownMode) is
 RetainPermanent or RetainTemporary, then all resources
 (including colormap entries) allocated by the client are
 marked as "permanent" or "temporary", respectively (but
 this does not prevent other clients from explicitly
 destroying them). If the mode is Destroy, then all of the
 client’s resources are destroyed as described below.

What happens when a client’s resources are destroyed:

 For each window in the client’s save-set, if the window

M.I.T. [Page 88]

RFC 1013 June 1987

 created by the client, that save-set window is reparented to
 the closest ancestor such that the save-set window is not an
 inferior of a window created by the client. If the save-set
 window is unmaped, a MapWindow request is performed on it.
 After save-set processing, all windows created by the client
 are destroyed. For each non-window resource created by the
 client, the appropriate Free request is performed. All
 colors and colormap entries allocated by the client are
 freed.

What happens when the last connection to a server closes:

 A server goes through a cycle, of having no connections and
 having some connections. At every transition to the state
 of having no connections, the server "resets" its state, as
 if it had just been started. This starts by destroying all
 lingering resources from clients that have terminated in
 RetainPermanent or RetainTemporary mode. It additionally
 includes deleting all but the predefined atom identifiers,
 deleting all properties on all root windows, resetting all
 device maps and attributes (key click, bell volume,
 acceleration), resetting the access control list, restoring
 the standard root tiles and cursors, restoring the default
 font path, and restoring the input focus to state
 PointerRoot.

SECTION 12. EVENTS

 When a button is pressed with the pointer in some window W, and
 no active pointer grab is in progress, then the ancestors if W are
 searched from the root down, looking for a passive grab to
 activate. If no matching passive grab on the button exists, then
 an active grab is started automatically for the client receiving
 the event, and the last-pointer-grab time is set to the current
 server time. The effect is essentially equivalent to a GrabButton
 with arguments:
 event-window: the event window
 event-mask: the client’s selected events on the event window
 pointer-mode and keyboard-mode: Asynchronous
 owner-events: True if the client has OwnerGrabButton selected
 on the event window, else False
 confine-to: None
 cursor: None
 The grab is terminated automatically when all buttons are released.
 UngrabPointer and ChangeActiveGrab can both be used to modify the
 active grab.

 KeyPress
 and
 KeyRelease
 and

M.I.T. [Page 89]

RFC 1013 June 1987

 ButtonPress
 and
 ButtonRelease
 and
 MotionNotify
 root, event: WINDOW
 child: WINDOW or None
 same-screen: BOOL
 root-x, root-y, event-x, event-y: INT16
 detail: <see below>
 state: SETofKEYBUTMASK
 time: TIMESTAMP

 Generated when a key or button changes state, or the pointer
 moves. The "source" of the event is the window the pointer
 is in. The window with respect to which the event is
 normally reported is found by looking up the hierarchy
 (starting with the source window) for the first window on
 which any client has selected interest in the event,
 provided no intervening window prohibits event generation by
 including the event type in its do-not-propagate-mask. The
 actual window used for reporting can be modified by active
 grabs and the focus window. The window the event is reported
 with respect to is called the "event" window.

 Root is the root window of the "source" window, and root-x
 and root-y are the pointer coordinates relative to root’s
 origin at the time of the event. Event is the "event"
 window. If the event window is on the same screen as root,
 then event-x and event-y are the pointer coordinates relative
 to the event window’s origin; otherwise event-x and event-y
 are zero. If the source window is an inferior of the event
 window, then child is set to the child of the event window
 that is an ancestor of the source window. The state
 component gives the state of the buttons and modifier keys
 just before the event. The detailcomponent varies with
 the event type:
 KeyPress, KeyRelease: KEYCODE
 ButtonPress, ButtonRelease: BUTTON
 MotionNotify: {Normal, Hint}

 MotionNotify events are only generated when the motion
 begins and ends in the window. The granularity of motion
 events is not guaranteed, but a client selecting for motion
 events is guaranteed to get at least one event when the
 pointer moves and comes to rest. Selecting PointerMotion
 receives events independent of the state of the pointer
 buttons. By selecting some subset of Button[1-5]Motion
 instead, MotionNotify events will only be received when one
 or more of the specified buttons are pressed. By selecting
 ButtonMotion, MotionNotify events will received only when at

M.I.T. [Page 90]

RFC 1013 June 1987

 least one button is pressed. The events are always of type
 MotionNotify, independent of the selection. If
 PointerMotionHint is selected, the server is free to send
 only one MotionNotify event (with detail Hint) to the client
 for the event window, until either the key or button state
 changes, or the pointer leaves the event window, or the
 client issues a QueryPointer or GetMotionEvents request.

 EnterNotify
 and
 LeaveNotify
 root, event: WINDOW
 child: WINDOW or None
 same-screen: BOOL
 root-x, root-y, event-x, event-y: INT16
 mode: {Normal, Grab, Ungrab}
 detail: {Ancestor, Virtual, Inferior, Nonlinear,
 NonlinearVirtual}
 focus: BOOL
 state: SETofKEYBUTMASK
 time: TIMESTAMP

 If pointer motion causes the pointer to be in a different
 window than before, EnterNotify and LeaveNotify events are
 generated instead of a MotionNotify event. Only clients
 selecting EnterWindow on a window receive EnterNotify events,
 and only clients selection LeaveNotifyreceive LeaveNotify
 events. The pointer position reported in the event is always
 the "final" position, not the "initial" position of the
 pointer. In a LeaveNotify event, if a child of the event
 window contains the "initial" position of the pointer, then
 the child component is set to that child, otherwise it is
 None. For an EnterNotify event, if a child of the event
 window contains the "final" pointer position, then the child
 component is set to that child, otherwise it is None. If
 the the event window is the focus window or an inferior of
 the focus window, then focus is True, and otherwisefocus is
 False.

 Normal pointer motion events have mode Normal; pseudo-motion
 events when a grab actives have mode Grab, and pseudo-motion
 events when a grab deactivates have mode Ungrab.

 Normal events are generated as follows:

 When the pointer moves from window A to window B, and A is an
 inferior of B:
 LeaveNotify with detail Ancestor is generated on A
 LeaveNotify with detail Virtual is generated on each window
 between A and B exclusive (in that order)
 EnterNotify with detail Inferior is generated on B

M.I.T. [Page 91]

RFC 1013 June 1987

 When the pointer moves from window A to window B, and B is an
 inferior of A:
 LeaveNotify with detail Inferior is generated on A
 EnterNotify with detail Virtual is generated on each window
 between A and B exclusive (in that order)
 EnterNotify with detail Ancestor is generated on B

 When the pointer moves from window A to window B, with window C
 being their least common ancestor:
 LeaveNotify with detail Nonlinear is generated on A
 LeaveNotify with detail NonlinearVirtual is generated on each
 window between A and C exclusive (in that order)
 EnterNotify with detail NonlinearVirtual is generated on each
 window between C and B exclusive (in that order)
 EnterNotify with detail Nonlinear is generated on B

 When the pointer moves from window A to window B, on different
 screens:
 LeaveNotify with detail Nonlinear is generated on A
 LeaveNotify with detail NonlinearVirtual is generated on each
 window above A up to and including its root (in
 order)
 EnterNotify with detail NonlinearVirtual is generated on each
 window
 from B’s root down to but not including B (in order)
 EnterNotify with detail Nonlinear is generated on B

 When a pointer grab activates (but after any initial warp into a
 confine-to window), with G the grab-window for the grab and P the
 window the pointer is in:
 EnterNotify and LeaveNotify events with mode Grab are
 generated (as for Normal above) as if the pointer were to
 suddenly warp from its current position in P to some position
 in G.However, the pointer does not warp, and the pointer
 position is used as both the "initial"and "final" positions
 for the events.

 When a pointer grab deactivates, with G the grab-window for the
 grab and P the window the pointer is in:

 EnterNotify and LeaveNotify events with mode Ungrab are
 generated (as for Normal above) as if the pointer were to
 suddenly warp from from some position in G to its current
 position in P. However, the pointer does not warp, and the
 current pointer position is used as both the "initial" and
 "final" positions for the events.

 FocusIn
 and
 FocusOut
 event: WINDOW

M.I.T. [Page 92]

RFC 1013 June 1987

 mode: {Normal, WhileGrabbed, Grab, Ungrab}
 detail: {Ancestor, Virtual, Inferior, Nonlinear,
 NonlinearVirtual, Pointer, PointerRoot, None}

 Generated when the input focus changes. Reported to clients
 selecting FocusChange on the window. Events generated by
 SetInputFocus when the keyboard is not grabbed have mode
 Normal; events generated by SetInputFocus when the keyboard
 is grabbed have mode WhileGrabbed; events generated when a
 keyboard grab actives have mode Grab, and events generated
 when a keyboard grab deactivates have mode Ungrab.

 Normal and WhileGrabbed events are generated as follows:

 When the focus moves from window A to window B, and A is an
 inferior of B, with the pointer in window P:
 FocusOut with detail Ancestor is generated on A
 FocusOut with detail Virtual is generated on each window
 between A and B exclusive (in that order)
 FocusIn with detail Inferior is generated on B
 If P is an inferior of B, but P is not A or an inferior of A
 or an ancestor of A, FocusIn with detail Pointer is
 generated on each window below B down to and
 including P (in order)

 When the focus moves from window A to window B, and B is an
 inferior of A, with the pointer in window P:
 If P is an inferior of A, but P is not A or an inferior of B
 or an ancestor of B, FocusOut with detail Pointer is
 generated on each window from P up to but not
 including A (in order)
 FocusOut with detail Inferior is generated on A
 FocusIn with detail Virtual is generated on each window
 between A and B exclusive (in that order)
 FocusIn with detail Ancestor is generated on B

 When the focus moves from window A to window B, with window C
 being their least common ancestor, and with the pointer in
 window P:
 If P is an inferior of A, FocusOut with detail Pointer is
 generated on each window from P up to but not
 including A (in order)
 FocusOut with detail Nonlinear is generated on A
 FocusOut with detail NonlinearVirtual is generated on each
 window between A and C exclusive (in that order)
 FocusIn with detail NonlinearVirtual is generated on each
 window between C and B exclusive (in that order)
 FocusIn with detail Nonlinear is generated on B
 If P is an inferior of B, FocusIn with detail Pointer is
 generated on each window below B down to and
 including P (in order)

M.I.T. [Page 93]

RFC 1013 June 1987

 When the focus moves from window A to window B, on different
 screens, with the pointer in window P:
 If P is an inferior of A, FocusOut with detail Pointer is
 generated on each window from P up to but not
 including A (in order)
 FocusOut with detail Nonlinear is generated on A
 FocusOut with detail NonlinearVirtual is generated on each
 window above A up to and including its root (in
 order)
 FocusIn with detail NonlinearVirtual is generated on each
 window from B’s root down to but not including B
 (in order)
 FocusIn with detail Nonlinear is generated on B
 If P is an inferior of B, FocusIn with detail Pointer is
 generated on each window below B down to and
 including P (in order)

 When the focus moves from window A to PointerRoot (or None)
 If P is an inferior of A, FocusOut with detail Pointer is
 generated on each window from P up to but not
 including A (in order)
 FocusOut with detail Nonlinear is generated on A
 FocusOut with detail NonlinearVirtual is generated on each
 window above A up to and including its root (in
 order)
 FocusIn with detail PointerRoot (or None) is generated on
 all root windows

 When the focus moves from PointerRoot (or None) to window A:
 FocusOut with detail PointerRoot (or None) is generated on
 all root windows
 FocusIn with detail NonlinearVirtual is generated on each
 window from A’s root down to but not including A
 (in order)
 FocusIn with detail Nonlinear is generated on A
 If P is an inferior of A, FocusIn with detail Pointer is
 generated on each window below A down to and
 including P (in order)

 When the focus moves from PointerRoot to None (or vice versa):
 FocusOut with detail PointerRoot (or None) is generated on
 all root windows
 FocusIn with detail None (or PointerRoot) is generated on
 all root windows

 When a keyboard grab activates, with G the grab-window for the
 grab and F the current focus:
 FocusIn and FocusOut events with mode Grab are generated (as
 for Normal above) as if the focus were to change from F to G

M.I.T. [Page 94]

RFC 1013 June 1987

 When a keyboard grab deactivates, with G the grab-window for the
 grab and F the current focus:
 FocusIn and FocusOut events with mode Ungrab are generated
 (as for Normal above) as if the focus were to change from G
 to F

 KeymapNotify
 keys: LISTofCARD8

 The value is a bit vector, as described in QueryKeymap.
 Reported to clients selecting KeymapState on a window.
 Generated immediately after every EnterNotify and FocusIn.

 Expose
 window: WINDOW
 x, y, width, height: CARD16
 last-in-series: BOOL

 Reported to clients selecting Exposure on the window.
 Possibly generated when a region of the window becomes
 viewable, but might only be generated when a region becomes
 visible. All of the regions exposed by a given "action" are
 guaranteed to be reported contiguously; if last-in-series is
 False then another exposure follows.

 The x and y coordinates are relative to drawable’s origin,
 and specify the upper left corner of a rectangule. The
 width and height specify the extent of the rectangle.

 Expose events are never generated on InputOnly windows.

GraphicsExposure
 drawable: DRAWABLE
 x, y, width, height: CARD16
 last-in-series: BOOL
 major-opcode: CARD8
 minor-opcode: CARD16

 Reported to clients selecting graphics-exposures in a
 graphics context. Generated when a destination region could
 not be computed due to an obscured or out-of-bounds source
 region. All of the regions exposed by a given graphics
 request are guaranteed to be reported contiguously; if
 last-in-series is False then another exposure follows.

 The x and y coordinates are relative to drawable’s origin,
 and specify the upper left corner of a rectangule. The width
 and height specify the extent of the rectangle.

 The major and minor opcodes identify the graphics request
 used. For the core protocol, major-opcode is always

M.I.T. [Page 95]

RFC 1013 June 1987

 CopyArea or CopyPlane and minor-opcode is always zero.

NoExposure
 drawable: DRAWABLE
 major-opcode: CARD8
 minor-opcode: CARD16

 Reported to clients selecting graphics-exposures in a
 graphics context. Generated when a graphics request that
 might produce GraphicsExposure events does not produce any.
 The drawable specifies the destination used for the
 graphics request.

 The major and minor opcodes identify the graphics request
 used. For the core protocol, major-opcode is always CopyArea
 or CopyPlane and minor-opcode is always zero.

VisibilityNotify
 window: WINDOW
 state: {Unobscured, PartiallyObscured, FullyObscured}

 Reported to clients selecting VisibilityChange on the
 window. In the following, the state of the window is
 calculated ignoring all of the window’s subwindows. When
 a window changes state from partially or fully obscured or
 not viewable to viewable and completely unobscured, an
 event with Unobscured is generated. When a window changes
 state from a) viewable and completely unobscured or b) not
 viewable, to viewable and partially obscured, an event with
 PartiallyObscured is generated. When a window changes state
 from a) viewable and completely unobscured or b) viewable and
 partially obscured or c) not viewable, to viewable and fully
 obscured, an event with FullyObscured is generated.

 VisibilityNotify events are never generated on InputOnly
 windows.

CreateNotify
 parent, window: WINDOW
 x, y: INT16
 width, height, border-width: CARD16
 override-redirect: BOOL

 Reported to clients selecting SubstructureNotify on the
 parent. Generated when the window is created. The arguments
 are as in the CreateWindow request.

M.I.T. [Page 96]

RFC 1013 June 1987

DestroyNotify
 event, window: WINDOW

 Reported to clients selecting StructureNotify on the window,
 and to clients selecting SubstructureNotify on the parent.
 Generated when the window is destroyed. "Event" is the
 window on which the event was generated, and "window" is
 the window that is destroyed.

UnmapNotify
 event, window: WINDOW
 from-configure: BOOL

 Reported to clients selecting StructureNotify on the window,
 and to clients selecting SubstructureNotify on the parent.
 Generated when the window changes state from mapped to
 unmapped. "Event" is the window on which the event was
 generated, and "window" is the window that is unmapped. The
 from-configure flag is True if the event was generated as a
 result of the window’s parent being resized when the window
 itself had a win-gravity of Unmap.

MapNotify
 event, window: WINDOW
 override-redirect: BOOL

 Reported to clients selecting StructureNotify on the window,
 and to clients selecting SubstructureNotify on the parent.
 Generated when the window changes state from unmapped to
 mapped. "Event" is the window on which the event was
 generated, and "window" is the window that is mapped. The
 override-redirect flag is from the window’s attribute.

MapRequest
 parent, window: WINDOW

 Reported to the client selecting SubstructureRedirect on the
 parent. Generated when a MapWindow request is issued on an
 unmapped window with an override-redirect attribute of False.

ReparentNotify
 event, window, parent: WINDOW
 x, y: INT16
 override-redirect: BOOL

 Reported to clients selecting SubstructureNotify on either
 the old or the new parent, and to clients selecting
 StructureNotify on the window. Generated when the window
 is reparented. "Event" is the window on which the event
 was generated, "window" is the window that has been
 re-rooted, and "parent" specifies the new parent. The x

M.I.T. [Page 97]

RFC 1013 June 1987

 and y coordinates are relative to the new parent’s origin,
 and specify the position of the upper left outer corner of
 the window. The override-redirect flag is from the
 window’s attribute.

ConfigureNotify
 event, window: WINDOW
 x, y: INT16
 width, height, border-width: CARD16
 above-sibling: WINDOW or None
 override-redirect: BOOL

 Reported to clients selecting StructureNotify on the window,
 and to clients selecting SubstructureNotify on the parent.
 Generated when a ConfigureWindow request actually changes the
 state of the window. "Event" is the window on which the event
 was generated, and "window" is the window that is changed.
 If above-sibling is None, then the window is on the bottom of
 the stack with respect to siblings; otherwise, the window is
 immediately on top of the specified sibling. The
 override-redirect flag is from the window’s attribute.

GravityNotify
 event, window: WINDOW
 x, y: INT16

 Reported to clients selecting SubstructureNotify on the
 parent, and to clients selecting StructureNotify on the
 window. Generated when a window is moved because of a
 change in size of the parent. "Event" is the window on
 which the event was generated, and "window" is the
 window that is moved.

ResizeRequest
 window: WINDOW
 width, height: CARD16

 Reported to the client selecting ResizeRedirect on the
 window. Generated when a ConfigureWindow request by some
 other client on the window attempts to change the size of the
 window. The width and height are the inside size, not
 including the border.

ConfigureRequest
 parent, window: WINDOW
 x, y: INT16
 width, height, border-width: CARD16
 above-sibling: WINDOW or None

 Reported to the client selecting SubstructureRedirect on the
 parent. Generated when a ConfigureWindow request is issued on

M.I.T. [Page 98]

RFC 1013 June 1987

 the window by some other client. The geometry is as derived
 from the request. The above-sibling is the sibling the
 window should be placed directly on top of; if None, then the
 window should be placed on the bottom.

CirculateNotify
 event, window: WINDOW
 place: {Top, Bottom}

 Reported to clients selecting StructureNotify on the window,
 and to clients selecting SubstructureNotify on the parent.
 Generated when the window is actually restacked from a
 CirculateWindow request. "Event" is the window on which the
 event was generated, and "window" is the window that is
 restacked. If place is Top, the window is now on top of all
 siblings; otherwise it is below all siblings.

CirculateRequest
 parent, window: WINDOW
 place: {Top, Bottom}

 Reported to the client selecting SubstructureRedirect on the
 parent. Generated when a CirculateWindow request is issued on
 the parent and a window actually needs to be restacked. The
 window specifies the window to be restacked, and place
 specifies what the new position in the stacking order should
 be.

PropertyNotify
 window: WINDOW
 atom: ATOM
 state: {NewValue, Deleted}
 time: TIMESTAMP

 Reported to clients selecting PropertyChange on the window.
 Generated when a property of the window is changed. The
 timestamp indicates the server time when the property was
 changed.

SelectionClear
 owner: WINDOW
 selection: ATOM
 time: TIMESTAMP

 Reported to the current owner of a selection. Generated on
 the window losing ownership when a new owner is being
 defined. The timestamp is the last-change time recorded for
 the selection.

SelectionRequest
 owner: WINDOW

M.I.T. [Page 99]

RFC 1013 June 1987

 selection: ATOM
 target: ATOM
 property: ATOM or None
 requestor: WINDOW
 time: TIMESTAMP or CurrentTime

 Reported to the owner of a selection. Generated when a
 client issues a ConvertSelection request. The arguments are
 as in the request.

 The owner should convert the selection based on the specified
 target type. If a property is specified, the owner should
 store the result as that property on the requestor window,
 and then send a SelectionNotify event to the requestor using
 SendEvent. If the selection cannot be converted as
 requested, the owner should send a SelectionNotify with the
 property set to None.

SelectionNotify
 requestor: WINDOW
 selection, target: ATOM
 property: ATOM or None
 time: TIMESTAMP or CurrentTime

 This event is only generated by clients using SendEvent. The
 owner of a selection should send this event to a requestor
 when a selection has been converted and stored as a property,
 or when a selection conversion could not be performed
 (indicated with property None).

ColormapNotify
 window: WINDOW
 colormap: COLORMAP or None
 new: BOOL
 state: {Installed, Uninstalled}

 Reported to clients selecting ColormapChange on the window.
 Generated with value True for new when the colormap attribute
 of the window is changed. Generated with value False for new
 when the colormap of a window is installed or uninstalled. In
 either case, state indicates whether the colormap is
 currently installed.

ClientMessage
 window: WINDOW
 type: ATOM
 format: {8, 16, 32}
 data: LISTofINT8 or LISTofINT16 or LISTofINT32

 This event is only generated by clients using SendEvent. The
 type specifies how the data is to be interpreted by the

M.I.T. [Page 100]

RFC 1013 June 1987

 receiving client; the server places no interpretation on the
 type or the data. The format specifies whether the data
 should be viewed as a list of 8-bit, 16-bit, or 32-bit
 quantities, so that the server can correctly byte-swap as
 necessary. The data always consists of either 20 8-bit values
 or 10 16-bit values or 5 32-bit values, although particular
 message types might not make use of all of these values.

SECTION 13. FLOW CONTROL AND CONCURRENCY

 Whenever the server is writing to a given connection, it is
 permissible for the server to stop reading from that connection (but
 if the writing would block it must continue to service other
 connections). The server is not required to buffer more than a
 single request per connection at one time. For a given connection
 to the server, a client can block while reading from the connection,
 but should undertake to read (events and errors) when writing would
 block. Failure on the part of a client to obey this rule could
 result in a deadlocked connection, although deadlock is probably
 unlikely unless the transport layer has very little buffering, or
 unless the client attempts to send large numbers of requests without
 ever reading replies or checking for errors and events.

 If a server is implemented with internal concurrency, the overall
 effect must be as if individual requests are executed to completion
 in some serial order, and that requests from a given connection are
 executed in delivery order (i.e., the total execution order is a
 shuffle of the individual streams). The "execution" of a request
 includes validating all arguments, collecting all data for any
 reply, and generating (and queueing) all required events, but does
 not include the actual transmission of the reply and the events.
 In addition, the effect of any other "cause" (e.g., activation of
 a grab, pointer motion) that can generate multiple events must
 effectively generate (and queue) all required events indivisibly
 with respect to all other causes and requests.

M.I.T. [Page 101]

