
Network Working Group T. Sung
Request for Comments: 1791 Novell, Inc.
Category: Experimental April 1995

 TCP And UDP Over IPX Networks With Fixed Path MTU

Status of this Memo

 This document defines an Experimental Protocol for the Internet
 community. This does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

IESG Note:

 Internet Engineering Steering Group comment from the Area Director
 for Transport Services: Please note well that this memo is an
 individual product of the author. Implementation experience,
 particularly on the effectiveness of the protocols in dual-stack
 environments, is needed.

1. Introduction

 Most of network applications run on some sort of transports. And, if
 one is to let such applications to run over a foreign network
 protocol, the simplest way would be to allow the applications’
 transports to run over that network protocol. For TCP/IP
 applications, that transport is TCP or UDP. Hence, to let TCP/IP
 applications run over IPX, we would need to have TCP and UDP run
 over IPX. And, once TCP and UDP are allowed to run over IPX, all TCP
 and UDP based applications, such as HTTP for WWW, or NFS, can easily
 be made to work over IPX networks.

 DLsw is another example of such applications. As it is a TCP
 application (and TCP requires IP), the administrator is forced to run
 IP on his network in order to support DLsw. If the site was an IPX
 shop, it means that he now must manage IP protocol/addresses in
 addition to IPX. If TCP could be made to run on IPX, then he would
 not have to add IP to his repertoire of network protocols to manage.

 TCP/IPX allows TCP/IP applications to run over IPX networks by
 letting TCP and UDP run over IPX. And this memo specifies the packet
 format and operational procedures for running TCP and UDP over IPX.

Sung [Page 1]

RFC 1791 TCP And UDP Over IPX April 1995

2. Running UDP Over IPX

 Since UDP datagrams can be up to 64K octets long, and the size of IPX
 packet is limited to that of the path MTU, large UDP datagrams must
 be fragmented. And, since IPX does not support fragmentation, large
 UDP datagrams must be fragmented before they are passed to IPX. For
 that purpose, a new protocol called IPXF (IPX Fragmentation layer),
 is invented. UDP must run on IPXF rather than directly on IPX. IPXF
 layer is described in section 4.

 To IPXF service users, IPXF behaves just like IPX except that IPXF
 accepts datagram larger than the IPX path MTU. As such, we describe
 UDP in this section as if it is running on IPX.

 UDP must send and receive the packets on IPX/IPXF socket 0x9092.
 Though it may be possible to send a packet from sockets other than
 0x9092, such sockets cannot receive UDP datagram destined to a well
 known socket 0x9092. Hence, the bidirectional communcation may not
 be established if a socket other than 0x9092 is used to send UDP
 datagram. For that reason. UDP/IPX does not allow source sockets
 other than 0x9092. If a datagram with source socket number other
 than 0x9092 is received, UDP/IPX should discard the packet silently.
 (And increment udpInDatagramErr MIB counter if it is instrumented.)

 UDP over IPX uses the IPX packet type 4, a normal IPX packet type.
 The IPX packet type has no meaning to TCP/IPX protocol. It simply is
 a number required by IPX for general IPX packets.

 See Appendix B.1 and B.2 for UDP over IPX packet format.

 The UDP/IPX checksum uses a pseudo header similar to UDP/IP pseudo
 header. The only difference is that IP addresses and protocol ID are
 replaced by IPX addresses and socket numbers.

 See Appendix B.3 for the UDP/IPX pseudo header format.

3. Running TCP Over IPX

 Unlike UDP, TCP runs directly over IPX. Since IPX does not support
 fragmentation, no TCP segment sent over IPX can be larger than the
 path MTU for the connection. The discovery of the path MTU is
 outside of scope of this paper. If the implementation does not have
 a way to dynamically determine the path MTU for each connection, it
 should at least allow a way to statically configure a reasonable
 value for all connections. For example, if the internetwork made of
 ethernets only, the user may configure the segment size to be 1470
 including the TCP header. If the configuration of the segment size
 is not possible, the implementation should assume that the IPX path

Sung [Page 2]

RFC 1791 TCP And UDP Over IPX April 1995

 MTU is 576 octects, and not send any TCP segment larger than 546
 octets including TCP header. That will result in IPX packet of 576
 octets which is the minimum path MTU for IPX. The implementation is
 then advised to comunicate the configured/default segment size to the
 peer TCP by exchanging MSS option.

 Note that this memo does not preclude the possibility of running TCP
 over IPXF instead of IPX. Running on IPXF can be done in the same
 manner as running UDP over IPXF. However, in general, TCP should
 refrain from sending large segments that may result in fragmentation.
 Hence, running TCP over IPXF is not recommended.

 The IPX socket number 0x9091 is reserved for the TCP. All TCP packets
 must be sent from and received on the socket 0x9091. If the received
 TCP/IPX packet has the source IPX socket number other than 0x9091,
 the packet should be discarded silently. (And increment tcpInErrs MIB
 counter if it is instrumented.)

 TCP, like UDP, uses IPX packet type 4. The IPX packet type has no
 meaning to TCP/IPX protocol. It is packet type required by IPX for
 general IPX packets.

 See appendix A.1 for TCP/IPX packet format.

 The TCP pseudo header, used in checksuming for TCP over IPX, is
 similar to TCP pseudo header for TCP over IP. Again, the difference
 is that IPX addresses and IPX socket number are substituted in place
 of IP addresses and IP protocol number.

 See Appendix A.2 for the TCP/IPX pseudo header format.

4. IPXF Layer

 A large UDP datagram cannot be sent directly over IPX as IPX does not
 support datagrams larger than the path MTU. Hence, large UDP
 datagrams must be fragmented before it can be sent over IPX. To have
 large UDP datagrams fragmented, UDP runs over IPXF layer instead of
 running directly IPX.

 IPXF users treats IPXF as if it is IPX layer. That is, they pass
 datagrams to IPXF specifying the destination IPX address/socket along
 with the packet. They also must set the source socket number of the
 datagram to its actual IPX socket number, as it would when sending
 packets to IPX layer. (For UDP, both source and destination sockets
 are 0x9092.)

 Datagrams passed to IPXF can be upto 64K octets long.

Sung [Page 3]

RFC 1791 TCP And UDP Over IPX April 1995

 IPXF fragments a datagram as necessary, prepends each fragment with
 the IPXF header and send them to the IPX socket 0x9093 in the
 destination IPX address. The actual destination socket number
 (0x9092 for UDP) in the orignal IPX datagram is preserved in IPXF
 header. Refer to Appendix B.2 for UDP/IPXF/IPX packet format.

 The largest possible IPX datagram that can be sent over the IPX path
 is limited by the path MTU size. The mechanism to discover the path
 MTU is outside of the scope of the paper. If an IPXF implementation
 does not have a mean to determine the path MTU, it should assume that
 the largest IPX packet size is 576. In that case, any UDP datagram
 larger than 546 octects will have to be fragmented.

 If the datagram does not require fragmentation, IPXF acts as a null
 layer. That is, the whole packet is directly sent to the actual IPX
 destination socket without the IPXF fragmentation header. Refer to
 Appendix B.1 for UDP/IPX packet format without the IPXF header.

 An IPXF user receives datagrams by opening a socket with IPXF just as
 it would with IPX. For example, UDP opens the socket 0x9092 with
 IPXF to receive UDP datagrams. IPXF, in turn, opens IPX socket of
 the same number with IPX, so that unfragmented packets directed to
 that socket will be delivered by IPX directly to the IPXF user.

 IPXF fragments are received by IPXF on the IPX socket 0x9093. The
 receiving IPXF then reassembles the fragments into a complete IPX
 datagram, restores the actual detination IPX socket number from the
 IPXF header and delivers the reassembled IPX datagram to its actual
 recipient designated by the restored socket number.

 Upon receiving a fragment, IPXF must ignore the source socket number
 in the IPX header of the fragment. The source IPX socket field in
 IPX header contains the actual source of the IPX datagram. As such,
 the source IPX socket number in IPX header usually is not 0x9093, and
 it is meaningful only to the actual recepient of the assembled
 datagram.

 The fragmentation/reassembly algorithm used by IPXF is identical to
 that of IP, except for the following exceptions: 1) the offset of
 fragments are measured in units of octets rather than in units of 8
 octets. 2) if the receiving IPXF does not have sufficient resource
 for the reassembly, it should discard fragments immediately. The
 receiving IPXF can determine if it has sufficient resources by
 looking at the length of the original datagram included in every
 fragment.

 Note that, though it is required only for UDP in this memo, IPXF can
 also be used by any protocol that requires IPX fragmentation support.

Sung [Page 4]

RFC 1791 TCP And UDP Over IPX April 1995

5. TCP/IPX Checksuming

 TCP/IPX is checksummed in exactly same manner as TCP/IP. It uses 16
 bit 1’s complement of 1’s compliment sum of all 16 bit words in the
 pseudo header and text. See Appendix A.2 and B.3 for the pseudo
 header format for TCP and UDP.

6. Multiplexing

 TCP and UDP data over IPX are delivered to the application in the
 same manner as in TCP/IP. That is, they are delivered to the most
 specific matching endpoint, with the match made on local port, remote
 port, local IPX address and remote IPX address.

 When TCP or UDP is running over both IPX and IP, the connection
 endpoint also identifies the network layer on which the endpoint is.
 Hence, the triplet of network address, network address family, and
 the port number forms the socket. And, the endpoint match must be
 made on the the network address familty as well.

 For exmple, an endpoint bound to IPX network layer would be
 identified by AF_IPX, IPX address and TCP port number. On the other
 hand, endpoints bound to IP network layer would be identified by
 AF_IP, IP address, and TCP port. Finally, endpoints not bound to any
 network layer would be identified by AF_UNSPEC and TCP port.

 First, an attempt is made to deliver the data to the most specific
 endpoint that is bound to the network layer that the packet arrived
 from. If there is no such endpoint, then the packet is delivered to
 the best matching endpoint that is not bound to any network layer at
 all. For example, if the packet arrived over IPX network, then the
 packet is delivered to the most specific matching endpoint that is
 bound to IPX. If there is no matching endpoint over IPX, then it is
 delivered to an endpoint that did not specify any network layer.

 The use of endpoints not bound to any network layer is similar to
 TCP/IP endpoints with no IP address bound to it. Such endpoints are
 usually used for listening for connection requests from any of the
 interfaces within the host. Similarly, endpoints with no network
 layer bound to it are used to field the connection requests from any
 of the network layers.

Acknowledgement

 The author wishes to thank following folks, in alphabetical order,
 and others for their helpful comments and contributions to the work:
 Lester Bird, Doug Kogan, Greg Minshall and Don Provan.

Sung [Page 5]

RFC 1791 TCP And UDP Over IPX April 1995

Security Considerations

 Security issues are not discussed in this memo.

Author’s Address

 Tae Sung
 Novell, Inc.
 2180 Fortune Drive
 San Jose, California, 95131

 Phone: (408)577-8439
 EMail: tae@novell.Com

Sung [Page 6]

RFC 1791 TCP And UDP Over IPX April 1995

Appendix A.1 - TCP/IPX Packet Format

 A TCP/IPX Packet has following format:

 +-------+-------+-------+-------+
 | IPX Checksum | IPX Pkt Len |
 +-------+-------+-------+-------+
 | Zero |IPX PT | IPX Dest -
 +-------+-------+-------+-------+
 Network | IPX Dest -
 +-------+-------+-------+-------+
 Node |
 +-------+-------+-------+-------+
 | IPX Dest Skt | IPX Src -
 +-------+-------+-------+-------+
 Network | IPX Src -
 +-------+-------+-------+-------+
 Node |
 +-------+-------+-------+-------+
 | IPX Src Skt | TCP Header and
 +---------------+-------+-------+
 Data...
 +----...

 IPX PT field contains the IPX packet type. It is set to 4 for
 TCP/IPX packet.

 Both Src Skt and Dest Skt field in IPX header must be set to 0x9091
 for TCP/IPX packet. If the Src Skt is not set to 0x9091, the
 receiving TCP/IPX should discard the packet silently. (And increment
 tcpInErrs mib object if it is instrumented.)

Sung [Page 7]

RFC 1791 TCP And UDP Over IPX April 1995

Appendix A.2 - TCP/IPX Pseudo Header Format

 TCP/IPX uses following pseudo header to compute checksum:

 +-------+-------+-------+-------+
 | IPX Src Network |
 +-------+-------+-------+-------+
 | IPX Src Node
 +-------+-------+-------+-------+
 | IPX Src Skt |
 +-------+-------+-------+-------+
 | IPX Dest Network |
 +-------+-------+-------+-------+
 | IPX Dest Node
 +-------+-------+-------+-------+
 | IPX Dest Skt |
 +-------+-------+-------+-------+
 | Zero | TCP Length |
 +---------------+---------------+

 IPX Src/Dest Network/Node/Skt are the fields from the IPX header.
 TCP Length is the IPX Pkt Len minus the IPX header length in octets.

 Note that IPX Src Skt is expected to be 0x9091 for TCP. As such, one
 may insert 0x9091 in IPX Src Skt field rather than getting the value
 from IPX header. Then the implementation will not have to check the
 IPX Src Skt field in the fast path since the checksum failure will
 also cover the unexpected value. In that case, the implementation
 may want to examine if the checksum failure was due to the IPX Src
 Skt value other than 0x9091, so that it can increment appropriate
 counter, if proprietary counters other than tcpInErrs are used.

Sung [Page 8]

RFC 1791 TCP And UDP Over IPX April 1995

Appendix B.1 - UDP/IPX Packet Format without Fragmentation

 IPXF transmits UDP packets over IPX in this format if the UDP
 datagram does not have to be fragmented:

 +-------+-------+-------+-------+
 | IPX Checksum | IPX Pkt Len |
 +-------+-------+-------+-------+
 | Zero |IPX PT | IPX Dest -
 +-------+-------+-------+-------+
 Network | IPX Dest -
 +-------+-------+-------+-------+
 Node |
 +-------+-------+-------+-------+
 | IPX Dest Skt | IPX Src -
 +-------+-------+-------+-------+
 Network | IPX Src -
 +-------+-------+-------+-------+
 Node |
 +-------+-------+-------+-------+
 | IPX Src Skt | UDP Header and
 +---------------+-------+-------+
 Data...
 +----...

 The IPX PT field contains IPX packet type. It should be set to 4 for
 all UDP/IPX packets.

 Both IPX Src Skt and IPX Dest Skt field must be set 0x9092. The
 receiving UDP/IPX should discard the packet silently if the IPX Src
 Skt field is not set to 0x9092. (And increment udpInErrors mib
 object if it is instrumented.)

Sung [Page 9]

RFC 1791 TCP And UDP Over IPX April 1995

Appendix B.2 - UDP/IPX Packet Format With Fragmentation

 IPXF transmits fragmented datagrams over IPX in the following format:

 +-------+-------+-------+-------+
 | IPX Checksum | IPX Pkt Len |
 +-------+-------+-------+-------+
 | Zero |IPX PT | IPX Dest -
 +-------+-------+-------+-------+
 Network | IPX Dest -
 +-------+-------+-------+-------+
 Node |
 +-------+-------+-------+-------+
 IPX Dest Skt | IPX Src -
 +-------+-------+-------+-------+
 Network | IPX Src -
 +-------+-------+-------+-------+
 Node |
 +-------+-------+-------+-------+
 | IPX Src Skt | IPXF Offset |
 +---------------+-------+-------+
 | IPXF Frag Identification |
 +-------------------------------+
 | IPXF Dest Skt | IPXF DG Len |
 +-------------------------------+
 | UDP Header and Data ...
 +--------...

 The IPX PT field contains IPX packet type. It is set to the value
 set by the IPXF user in the IPX packet passed to IPXF. (UDP sets it
 to 4.)

 IPX Dest Skt field must be set to 0x9093 for all IPXF Packets.

 The value for IPX Src Skt field is variable, and must be set to the
 actual IPX socket number of the IPXF user. (For example, it must be
 set to 0x9092 for UDP.)

 IPXF Offset field indicates where the fragment belongs in the
 datagram. The offset is measured is octet from the begining of the
 UDP datagram. The first fragment has the offset of 0.

 IPXF Frag Identification field is assigned a same value by the sender
 for all fragements belonging to the same datagram. The receiver then
 uses this field to reassemble all fragments with same ID into a
 datagram.

Sung [Page 10]

RFC 1791 TCP And UDP Over IPX April 1995

 IPXF Dest Skt field contains the IPX socket number of the actual
 recipient that the reassembled datagram will be delivered to. (It is
 0x9092 for UDP.) All fragments of a datagram must have the same
 value in this field.

 IPXF DG Len field is the total length of the IPX datagram before the
 fragmentation. The sender should set it to the value of IPX Pkt Len
 of the original IPX datagram. All fragments of a IPX datagram must
 have the same value in this field.

Sung [Page 11]

RFC 1791 TCP And UDP Over IPX April 1995

Appendix B.3 - UDP/IPX Pseudo Header Format

 UDP/IPX uses following pseudo header for computing the checksum:

 +-------+-------+-------+-------+
 | IPX Src Network |
 +-------+-------+-------+-------+
 | IPX Src Node
 +-------+-------+-------+-------+
 | IPX Src Skt |
 +-------+-------+-------+-------+
 | IPX Dest Network |
 +-------+-------+-------+-------+
 | IPX Dest Node
 +-------+-------+-------+-------+
 | IPX Dest Skt |
 +-------+-------+-------+-------+
 | Zero | UDP Length |
 +---------------+---------------+

 IPX Src/Dest Network/Node/Skt fields are from the IPX packet. Note
 that, if UDP is running over IPXF, the IPX Dest Skt field in IPX
 packet header is copied over from IPXF header before the reassembled
 IPX packet is delivered to UDP, Hence, the pseudo header must be
 derived from the reassembled IPX header.

 UDP Length is from UDP header.

 Note that IPX Src Skt is expected to be 0x9092 for UDP. As such, one
 may insert 0x9092 in IPX Src Skt field rather than getting the value
 from IPX header. Then the implementation will not have to check the
 IPX Src Skt field in the fast path since the checksum failure will
 also cover the unexpected value. In that case, the implementation
 may want to examine if the checksum failure was due to the IPX Src
 Skt value other than 0x9092, so that it can increment appropriate
 counter, if proprietary counters other than udpInDatagramErr are
 Datagr

Sung [Page 12]

