
Network Working Group G. Mansfield
Request for Comments: 1804 AIC Laboratories
Category: Experimental P. Rajeev
 Hughes Software Systems
 S. Raghavan
 Indian Institute of Technology, Madras
 T. Howes
 University of Michigan
 June 1995

 Schema Publishing in X.500 Directory

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. This memo does not specify an Internet standard of any
 kind. Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Abstract

 The X.500 directory provides a powerful mechanism for storing and
 retrieving information about objects of interest. To interpret the
 information stored in the directory, the schema must be known to all
 the components of the directory. Presently, there are no means other
 than ftp to distribute schema information across the Internet. This
 is proving to be a severe constraint as the Directory is growing.
 This document presents a solution to the schema distribution problem
 using the existing mechanisms of the directory. A naming scheme for
 naming schema objects and a meta-schema for storing schema objects is
 presented. The procedures for fetching unknown schema from the
 directory at runtime are described.

Table of Contents

 1. Introduction 2
 2. Schema Management 2
 3. Storage of Schema Information in the Directory 3
 4. Retrieval of Schema from the Directory 5
 5. The Meta-Schema 6
 6. References 9
 7. Security Considerations 9
 8. Authors’ Addresses 10

Mansfield, et al Experimental [Page 1]

RFC 1804 Schema Publishing in X.500 Directory June 1995

1. Introduction

 The X.500 Directory [1] is now used for a wide range of applications
 from name/address lookup to network management, from restaurant
 information to bibliographic information services. This information
 is distributed and managed across a network of many autonomous sites.
 In order to interpret the information stored in the directory, the
 components of the directory must have knowledge about the structure
 and representation (schema) of the information held within the
 directory.

 The distributed nature of the network and the relatively slow process
 of standardization have given rise to the challenging task of making
 accessible the information about the schema rules themselves. A
 mechanism for making the schema accessible to the functional
 components of the directory is urgently required.

 The 1993 X.500 Directory Standard [2] has attempted to address the
 problem of schema management and distribution. The 1993 framework
 does provide the means for storing and retrieving schema information
 in the directory. However, the resolution of unknown OIDs will
 require both the DUA and the DSA to be compliant with [2].

 In this document we propose a solution using the existing mechanisms
 of the directory [1] itself. We present a naming scheme for naming
 schema objects and a meta-schema for storing schema objects in the
 directory. The proposal allows the algorithmic resolution of unknown
 objects in the directory and in the absence of 1993 X.500 Directory
 Standard implementations provides an interim solution to the schema
 publishing problem.

2. Schema Management

 The storage and retrieval mechanism provided by the directory is
 powerful and flexible. However, the key to the directory is the
 knowledge of the schema rules defined for the objects represented in
 the directory. To facilitate the diffusion of this knowledge
 appropriate schema management mechanisms need to be designed. Schema
 management involves:

 o Storage of schema information in the directory
 o Algorithmic access to and retrieval of schema information
 in the directory
 o Definition of rules for schema modification
 o Propagation of schema information from one component of the
 directory to other components of directory

Mansfield, et al Experimental [Page 2]

RFC 1804 Schema Publishing in X.500 Directory June 1995

 In this document we concentrate on the aspect of schema
 access/retrieval from the directory. Since schema objects are defined
 and employed, the modification , addition and deletion of schema
 objects can be carried out using existing directory mechanisms. But
 the operational issue of synchronizing the schema with the DIB will
 require further attention. Similarly the issue of schema propagation
 requires further work and is outside the scope of this document. The
 strategy proposed in this document has a very simple and workable
 approach. No added DAP/DSP functionality is envisaged. At the same
 time by using the directory’s distributed framework scalability
 problems are avoided. In essence, it allows the distributed storage
 of schema objects and proposes a naming scheme which allows
 algorithmic schema retrieval. Of course, on the down side, more than
 one directory read operation may be required to retrieve the
 information about an object and its attributes, as objects and
 attributes are stored as separate entries in the directory.

 As schema information of all objects in a naming context are stored
 below the root entry of that naming context, the same DSA will be
 able to supply the schema information stored in that DSA. Thus there
 is no need to contact another DSA for resolving the schema of an
 object stored in the local DSA.

3. Storage of Schema Information in the Directory

 The schema information may be stored and distributed using mechanisms
 external to the X.500 directory standard [5]. This document proposes
 storing schema information in the directory. It has the following
 advantages:

 o The components of the directory can access the schema
 information using the standard directory protocols.

 o The nature of the directory naturally allows the schema
 to be distributed. Schema used locally can be kept in the
 local DSA itself whereas schema for general objects like
 person, organization etc can be made available to all
 components of the directory by publishing it.

 In the operational model, the schema information in the directory is
 expected to complement the schema information held in central
 repositories.

Mansfield, et al Experimental [Page 3]

RFC 1804 Schema Publishing in X.500 Directory June 1995

3.1 Naming Scheme for the Schema

 The schema information is stored in a distributed manner. We propose
 a model in which each naming context stores the schema relevant to
 it.

 Root
 \
 \
 +-------------\----------------------+
 | C=IN DSA-1 |
 | / \ |
 | / \ |
 | / \ |
 | / \ |
 | / cn=subschema |
 | / / / | \ \ \ |
 | / / / | \ \ \ |
 | / oid= oid= |
 +--/---------------------------------+
 /
 +----------------------/----------------------+
 | o=IIT, Madras DSA-2 |
 | / \ |
 | / \ |
 | / \ |
 | / \ |
 | ou=CSE cn=subschema |
 | / \ / /| \ \ \ |
 | / \ / / | \ \ \ |
 |ipni=spark cn=Rajeev oid=ipni oid= |
 +---+

 Figure 1: DIT with schema objects

 To store the schema information, an object called subschema object is
 defined. This object can come anywhere in the Directory Information
 Tree (DIT). The subschema is defined as a subclass of Top. The
 subschema entry is stored below the root entry of a naming context.
 The root entry of a naming context must contain a subschema subentry,
 named {CN= Subschema}. This standard naming methodology is necessary
 so that the components of the directory can easily and
 algorithmically locate the schema entries. All schema information
 relevant to that naming context is stored below the subschema entry.
 Children of the subschema entry store information about objects,
 attribute types, attribute syntaxes or matching rules. The DIT

Mansfield, et al Experimental [Page 4]

RFC 1804 Schema Publishing in X.500 Directory June 1995

 structure for storing schema information is shown in Figure 1.
 Schema for these objects are given in section 5.

4. Retrieval of Schema from the Directory

 When an unknown object is encountered by any component of directory
 during a directory operation, it proceeds the following way to
 resolve the schema.

 The RDN component at the leaf-end of the name of the object whose
 schema is to be resolved is replaced by the RDNs "oid=<object
 identifier of the new object>, CN=subschema" and a read request is
 initiated for the newly formed name. If the entry is not found, two
 RDN components from the leaf-end of the name of the object are
 replaced by the RDNs "oid=<object identifier of the new object>,
 CN=subschema" and another read is attempted. The process continues
 until the read succeeds. For example, while resolving the schema of
 the object "IPNI=spark, OU=Department of Computer Science, O=Indian
 Institute of Technology, Madras , C=IN", if the schema of the object
 IPNI (IP Node Image) is not known to a component of the directory,
 the following procedure will be adopted.

 Let the object id for the object IPNI be ipni. The RDN "IPNI=spark"
 is removed from the distinguished name of the entry and the RDNs
 "oid=ipni, CN= Subschema" is appended. The name thus formed is
 "oid=ipni, CN=subschema, OU=Department of Computer Science, O=Indian
 Institute of Technology, Madras, C=IN" A read request is initiated on
 this name. If the distinguished name "OU= Department of Computer
 Science, O=Indian Institute of Technology, Madras, C=IN" is the
 context prefix of a naming context, this read request will result in
 the directory returning the schema for the object IPNI. If it is not,
 the read operation will fail. In that case, a read operation is
 initiated with distinguished name "oid=ipni, CN= subschema, O=Indian
 Institute of Technology, Madras, C=IN". For the DIT structure shown
 in Figure-1, this query will succeed and the schema information will
 be returned. The schema for the requested object will always be
 located below the starting entry of the naming context in which the
 entry is located.

Mansfield, et al Experimental [Page 5]

RFC 1804 Schema Publishing in X.500 Directory June 1995

5. The Meta-Schema

experimental = 1.3.6.1.3

schema OBJECT IDENTIFIER
 ::= {experimental 65}

schemaObjectClass OBJECT IDENTIFIER
 ::= {schema.1}

schemaAttribute OBJECT IDENTIFIER
 ::= {schema.2}

subschema OBJECT CLASS
 Subclass of TOP
 MUST CONTAIN {
 commonName
 - - For naming
 }
 ::= {schemaObjectClass.1}

objectClass OBJECT CLASS
 Subclass of TOP
 MUST CONTAIN {
 objectIdentifier
 - - This field stores the object identifier of object
 - - represented by an object class entry. This attribute
 - - is used for naming an object class entry.
 }
 MAY CONTAIN {
 commonName,
 - - This field is used to store the name of the object
 mandatoryNamingAttributes,
 mandatoryAttributes,
 optionalNamingAttibutes,
 optionalAttributes,
 obsolete,
 description,
 subClassOf
 }
 ::= {schemaObjectClass.2}

attributeType OBJECT CLASS
 Subclass of Top
 MUST CONTAIN {
 objectIdentifier
 }
 MAY CONTAIN {

Mansfield, et al Experimental [Page 6]

RFC 1804 Schema Publishing in X.500 Directory June 1995

 commonName,
 - - used to store the name of the attribute type
 constraint,
 attributeSyntax,
 multivalued,
 obsolete,
 matchRules,
 description
 }
 ::= {schemaObjectClass.3}

matchingRule OBJECT CLASS
 Subclass of Top
 MUST CONTAIN {
 objectIdentifier
 }
 MAY CONTAIN {
 commonName,
 matchtype,
 description,
 obsolete
 }
 ::= {schemaObjectClass.4}

objectIdentifier ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX
 objectIdentifierSyntax
 ::= {schemaAttribute.1}

mandatoryNamingAttributes ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX
 SET OF OBJECT IDENTIFIER
 ::= {schemaAttribute.2}

mandatoryAttributes ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX
 SET OF OBJECT IDENTIFIER
 ::= {schemaAttribute.3}

optionalNamingAttibutes ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX
 SET OF OBJECT IDENTIFIER
 ::= {schemaAttribute.4}

optionalAttibutes ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX
 SET OF OBJECT IDENTIFIER
 ::= {schemaAttribute.5}

Mansfield, et al Experimental [Page 7]

RFC 1804 Schema Publishing in X.500 Directory June 1995

obsolete ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX
 BOOLEAN
 -- DEFAULT FALSE
 ::= {schemaAttribute.6}

subClassOf ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX
 SET OF OBJECT IDENTIFIER
 ::= {schemaAttribute.7}

constraint ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX
 Constraint
 ::= {schemaAttribute.8}

Constraint ::=Choice {
 StringConstraint,
 IntegerConstraint
 }

StringConstraint ::= SEQUENCE {
 shortest INTEGER,
 longest INTEGER
 }

IntegerConstraint ::= SEQUENCE {
 lowerbound INTEGER,
 upperbound INTEGER OPTIONAL
 }

attributeSyntax ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX
 ASN1DataType
 ::= {schemaAttribute.9}

multivalued ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX
 BOOLEAN -- DEFAULT FALSE
 ::= {schemaAttribute.10}

matchRules ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX
 SET OF OBJECT IDENTIFIER
 ::= {schemaAttribute.11}

matchtype ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX

Mansfield, et al Experimental [Page 8]

RFC 1804 Schema Publishing in X.500 Directory June 1995

 INTEGER {
 PRESENT (0),
 EQUALITY (1),
 ORDERING (2),
 CASESENSITIVEMATCH (3),
 CASEINSENSITIVEMATCH (4)
 }
 ::= {schemaAttribute.12}

6. References

 [1] CCITT. "Data Communication Networks: Directory", Recommendations
 X.500 - X.521 1988.

 [2] CCITT. "Data Communication Networks: Directory", Recommendations
 X.500 - X.525 1993.

 [3] Barker, P., and S. Kille, "The COSINE and Internet X.500 Schema",
 RFC 1274, University College London, November 1991.

 [4] Howes, T., "Schema Information in the X.500 Directory", Work in
 Progress, University of Michigan, July 1992.

 [5] Howes, T., Rossen, K., Sataluri, S., and R. Wright, "Procedures
 for Formalization, Evolution, and Maintenance of the Internet
 X.500 Directory Schema", Work in Progress, June 1995.

7. Security Considerations

 Security issues are not discussed in this memo.

Mansfield, et al Experimental [Page 9]

RFC 1804 Schema Publishing in X.500 Directory June 1995

8. Authors’ Addresses

 Glenn Mansfield
 AIC Systems Laboratories,
 6-6-3, Minami Yoshinari, Aoba-Ku, Sendai,
 Japan

 Phone: +81 (22) 279-3310
 Fax: +81 (22) 279-3640
 EMail: glenn@aic.co.jp

 P. V. Rajeev
 Hughes Software Systems,
 2nd Floor, International Trade Tower,
 Nehru Place, New Delhi,
 India

 EMail: rajeev%hss@lando.hns.com

 S. V. Raghavan
 Department of Computer Science and Engineering,
 Indian Institute of Technology, Madras 600 036,
 India

 EMail: svr@iitm.ernet.in

 Tim Howes
 University of Michigan
 ITD Research Systems
 535 W William St.
 Ann Arbor, MI 48103-4943, USA

 Phone: +1 (313) 747-4454
 EMail: tim@umich.edu

Mansfield, et al Experimental [Page 10]

