
Network Working Group ST2 Working Group
Request for Comments: 1819 L. Delgrossi and L. Berger, Editors
Obsoletes: 1190, IEN 119 August 1995
Category: Experimental

 Internet Stream Protocol Version 2 (ST2)
 Protocol Specification - Version ST2+

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. This memo does not specify an Internet standard of any
 kind. Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

IESG NOTE

 This document is a revision of RFC1190. The charter of this effort
 was clarifying, simplifying and removing errors from RFC1190 to
 ensure interoperability of implementations.

 NOTE WELL: Neither the version of the protocol described in this
 document nor the previous version is an Internet Standard or under
 consideration for that status.

 Since the publication of the original version of the protocol, there
 have been significant developments in the state of the art. Readers
 should note that standards and technology addressing alternative
 approaches to the resource reservation problem are currently under
 development within the IETF.

Abstract

 This memo contains a revised specification of the Internet STream
 Protocol Version 2 (ST2). ST2 is an experimental resource reservation
 protocol intended to provide end-to-end real-time guarantees over an
 internet. It allows applications to build multi-destination simplex
 data streams with a desired quality of service. The revised version
 of ST2 specified in this memo is called ST2+.

 This specification is a product of the STream Protocol Working Group
 of the Internet Engineering Task Force.

Delgrossi & Berger, Editors Experimental [Page 1]

RFC 1819 ST2+ Protocol Specification August 1995

Table of Contents

 1 Introduction 6
 1.1 What is ST2? 6
 1.2 ST2 and IP 8
 1.3 Protocol History 8
 1.3.1 RFC1190 ST and ST2+ Major Differences 9
 1.4 Supporting Modules for ST2 10
 1.4.1 Data Transfer Protocol 11
 1.4.2 Setup Protocol 11
 1.4.3 Flow Specification 11
 1.4.4 Routing Function 12
 1.4.5 Local Resource Manager 12
 1.5 ST2 Basic Concepts 15
 1.5.1 Streams 16
 1.5.2 Data Transmission 16
 1.5.3 Flow Specification 17
 1.6 Outline of This Document 19

 2 ST2 User Service Description 19
 2.1 Stream Operations and Primitive Functions 19
 2.2 State Diagrams 21
 2.3 State Transition Tables 25

 3 The ST2 Data Transfer Protocol 26
 3.1 Data Transfer with ST 26
 3.2 ST Protocol Functions 27
 3.2.1 Stream Identification 27
 3.2.2 Packet Discarding based on Data Priority 27

 4 SCMP Functional Description 28
 4.1 Types of Streams 29
 4.1.1 Stream Building 30
 4.1.2 Knowledge of Receivers 30
 4.2 Control PDUs 31
 4.3 SCMP Reliability 32
 4.4 Stream Options 33
 4.4.1 No Recovery 33
 4.4.2 Join Authorization Level 34
 4.4.3 Record Route 34
 4.4.4 User Data 35
 4.5 Stream Setup 35
 4.5.1 Information from the Application 35
 4.5.2 Initial Setup at the Origin 35
 4.5.2.1 Invoking the Routing Function 36
 4.5.2.2 Reserving Resources 36
 4.5.3 Sending CONNECT Messages 37
 4.5.3.1 Empty Target List 37

Delgrossi & Berger, Editors Experimental [Page 2]

RFC 1819 ST2+ Protocol Specification August 1995

 4.5.4 CONNECT Processing by an Intermediate ST agent 37
 4.5.5 CONNECT Processing at the Targets 38
 4.5.6 ACCEPT Processing by an Intermediate ST agent 38
 4.5.7 ACCEPT Processing by the Origin 39
 4.5.8 REFUSE Processing by the Intermediate ST agent 39
 4.5.9 REFUSE Processing by the Origin 39
 4.5.10 Other Functions during Stream Setup 40
 4.6 Modifying an Existing Stream 40
 4.6.1 The Origin Adding New Targets 41
 4.6.2 The Origin Removing a Target 41
 4.6.3 A Target Joining a Stream 42
 4.6.3.1 Intermediate Agent (Router) as Origin 43
 4.6.4 A Target Deleting Itself 43
 4.6.5 Changing a Stream’s FlowSpec 44
 4.7 Stream Tear Down 45

 5 Exceptional Cases 45
 5.1 Long ST Messages 45
 5.1.1 Handling of Long Data Packets 45
 5.1.2 Handling of Long Control Packets 46
 5.2 Timeout Failures 47
 5.2.1 Failure due to ACCEPT Acknowledgment Timeout 47
 5.2.2 Failure due to CHANGE Acknowledgment Timeout 47
 5.2.3 Failure due to CHANGE Response Timeout 48
 5.2.4 Failure due to CONNECT Acknowledgment Timeout 48
 5.2.5 Failure due to CONNECT Response Timeout 48
 5.2.6 Failure due to DISCONNECT Acknowledgment Timeout 48
 5.2.7 Failure due to JOIN Acknowledgment Timeout 48
 5.2.8 Failure due to JOIN Response Timeout 49
 5.2.9 Failure due to JOIN-REJECT Acknowledgment Timeout 49
 5.2.10 Failure due to NOTIFY Acknowledgment Timeout 49
 5.2.11 Failure due to REFUSE Acknowledgment Timeout 49
 5.2.12 Failure due to STATUS Response Timeout 49
 5.3 Setup Failures due to Routing Failures 50
 5.3.1 Path Convergence 50
 5.3.2 Other Cases 51
 5.4 Problems due to Routing Inconsistency 52
 5.5 Problems in Reserving Resources 53
 5.5.1 Mismatched FlowSpecs 53
 5.5.2 Unknown FlowSpec Version 53
 5.5.3 LRM Unable to Process FlowSpec 53
 5.5.4 Insufficient Resources 53
 5.6 Problems Caused by CHANGE Messages 54
 5.7 Unknown Targets in DISCONNECT and CHANGE 55

Delgrossi & Berger, Editors Experimental [Page 3]

RFC 1819 ST2+ Protocol Specification August 1995

 6 Failure Detection and Recovery 55
 6.1 Failure Detection 55
 6.1.1 Network Failures 56
 6.1.2 Detecting ST Agents Failures 56
 6.2 Failure Recovery 58
 6.2.1 Problems in Stream Recovery 60
 6.3 Stream Preemption 62

 7 A Group of Streams 63
 7.1 Basic Group Relationships 63
 7.1.1 Bandwidth Sharing 63
 7.1.2 Fate Sharing 64
 7.1.3 Route Sharing 65
 7.1.4 Subnet Resources Sharing 65
 7.2 Relationships Orthogonality 65

 8 Ancillary Functions 66
 8.1 Stream ID Generation 66
 8.2 Group Name Generator 66
 8.3 Checksum Computation 67
 8.4 Neighbor ST Agent Identification and
 Information Collection 67
 8.5 Round Trip Time Estimation 68
 8.6 Network MTU Discovery 68
 8.7 IP Encapsulation of ST 69
 8.8 IP Multicasting 70

 9 The ST2+ Flow Specification 71
 9.1 FlowSpec Version #0 - (Null FlowSpec) 72
 9.2 FlowSpec Version #7 - ST2+ FlowSpec 72
 9.2.1 QoS Classes 73
 9.2.2 Precedence 74
 9.2.3 Maximum Data Size 74
 9.2.4 Message Rate 74
 9.2.5 Delay and Delay Jitter 74
 9.2.6 ST2+ FlowSpec Format 75

 10 ST2 Protocol Data Units Specification 77
 10.1 Data PDU 77
 10.1.1 ST Data Packets 78
 10.2 Control PDUs 78
 10.3 Common SCMP Elements 80
 10.3.1 FlowSpec 80
 10.3.2 Group 81
 10.3.3 MulticastAddress 82
 10.3.4 Origin 82
 10.3.5 RecordRoute 83
 10.3.6 Target and TargetList 84

Delgrossi & Berger, Editors Experimental [Page 4]

RFC 1819 ST2+ Protocol Specification August 1995

 10.3.7 UserData 85
 10.3.8 Handling of Undefined Parameters 86
 10.4 ST Control Message PDUs 86
 10.4.1 ACCEPT 86
 10.4.2 ACK 88
 10.4.3 CHANGE 89
 10.4.4 CONNECT 89
 10.4.5 DISCONNECT 92
 10.4.6 ERROR 93
 10.4.7 HELLO 94
 10.4.8 JOIN 95
 10.4.9 JOIN-REJECT 96
 10.4.10 NOTIFY 97
 10.4.11 REFUSE 98
 10.4.12 STATUS 100
 10.4.13 STATUS-RESPONSE 100
 10.5 Suggested Protocol Constants 101
 10.5.1 SCMP Messages 102
 10.5.2 SCMP Parameters 102
 10.5.3 ReasonCode 102
 10.5.4 Timeouts and Other Constants 104
 10.6 Data Notations 105
 11 References 106
 12 Security Considerations 108
 13 Acknowledgments and Authors’ Addresses 108

Delgrossi & Berger, Editors Experimental [Page 5]

RFC 1819 ST2+ Protocol Specification August 1995

1. Introduction

1.1 What is ST2?

 The Internet Stream Protocol, Version 2 (ST2) is an experimental
 connection-oriented internetworking protocol that operates at the
 same layer as connectionless IP. It has been developed to support the
 efficient delivery of data streams to single or multiple destinations
 in applications that require guaranteed quality of service. ST2 is
 part of the IP protocol family and serves as an adjunct to, not a
 replacement for, IP. The main application areas of the protocol are
 the real-time transport of multimedia data, e.g., digital audio and
 video packet streams, and distributed simulation/gaming, across
 internets.

 ST2 can be used to reserve bandwidth for real-time streams across
 network routes. This reservation, together with appropriate network
 access and packet scheduling mechanisms in all nodes running the
 protocol, guarantees a well-defined Quality of Service (QoS) to ST2
 applications. It ensures that real-time packets are delivered within
 their deadlines, that is, at the time where they need to be
 presented. This facilitates a smooth delivery of data that is
 essential for time- critical applications, but can typically not be
 provided by best- effort IP communication.

 DATA PATH CONTROL PATH
 ========= ============
 Upper +------------------+ +---------+
 Layer | Application data | | Control |
 +------------------+ +---------+
 | |
 | V
 | +-------------------+
 SCMP | | SCMP | |
 | +-------------------+
 | |
 V V
 +-----------------------+ +------------------------+
 ST | ST | | | ST | | |
 +-----------------------+ +------------------------+
 D-bit=1 D-bit=0

 Figure 1: ST2 Data and Control Path

 Just like IP, ST2 actually consists of two protocols: ST for the data
 transport and SCMP, the Stream Control Message Protocol, for all
 control functions. ST is simple and contains only a single PDU format
 that is designed for fast and efficient data forwarding in order to

Delgrossi & Berger, Editors Experimental [Page 6]

RFC 1819 ST2+ Protocol Specification August 1995

 achieve low communication delays. SCMP, however, is more complex than
 IP’s ICMP. As with ICMP and IP, SCMP packets are transferred within
 ST packets as shown in Figure 1.

 +--------------------+
 | Conference Control |
 +--------------------+
 +-------+ +-------+ |
 | Video | | Voice | | +-----+ +------+ +-----+ +-----+ Application
 | Appl | | Appl | | | SNMP| |Telnet| | FTP | ... | | Layer
 +-------+ +-------+ | +-----+ +------+ +-----+ +-----+
 | | | | | | |
 V V | | | | | ------------
 +-----+ +-----+ | | | | |
 | PVP | | NVP | | | | | |
 +-----+ +-----+ + | | | |
 | \ | \ \ | | | |
 | +-----|--+-----+ | | | |
 | Appl.|control V V V V V
 | ST data | +-----+ +-------+ +-----+
 | & control| | UDP | | TCP | ... | RTP | Transport
 | | +-----+ +-------+ +-----+ Layer
 | /| / | \ / / | / /| |
 |\ / | +------+--|--\-----+-/--|--- ... -+ / |
 | \ / | | | \ / | / |
 | \ / | | | \ +----|--- ... -+ | -----------
 | \ / | | | \ / | |
 | V | | | V | |
 | +------+ | | | +------+ | +------+ |
 | | SCMP | | | | | ICMP | | | IGMP | | Internet
 | +------+ | | | +------+ | +------+ | Layer
 | | | | | | | | |
 V V V V V V V V V
 +-----------------+ +-----------------------------------+
 | STream protocol |->| Internet Protocol |
 +-----------------+ +-----------------------------------+
 | \ / |
 | \ / |
 | X | ------------
 | / \ |
 | / \ |
 VV VV
 +----------------+ +----------------+
 | (Sub-) Network |...| (Sub-) Network | (Sub-)Network
 | Protocol | | Protocol | Layer
 +----------------+ +----------------+

 Figure 2. Protocol Relationships

Delgrossi & Berger, Editors Experimental [Page 7]

RFC 1819 ST2+ Protocol Specification August 1995

1.2 ST2 and IP

 ST2 is designed to coexist with IP on each node. A typical
 distributed multimedia application would use both protocols: IP for
 the transfer of traditional data and control information, and ST2 for
 the transfer of real-time data. Whereas IP typically will be accessed
 from TCP or UDP, ST2 will be accessed via new end-to-end real-time
 protocols. The position of ST2 with respect to the other protocols of
 the Internet family is represented in Figure 2.

 Both ST2 and IP apply the same addressing schemes to identify
 different hosts. ST2 and IP packets differ in the first four bits,
 which contain the internetwork protocol version number: number 5 is
 reserved for ST2 (IP itself has version number 4). As a network layer
 protocol, like IP, ST2 operates independently of its underlying
 subnets. Existing implementations use ARP for address resolution, and
 use the same Layer 2 SAPs as IP.

 As a special function, ST2 messages can be encapsulated in IP
 packets. This is represented in Figure 2 as a link between ST2 and
 IP. This link allows ST2 messages to pass through routers which do
 not run ST2. Resource management is typically not available for
 these IP route segments. IP encapsulation is, therefore, suggested
 only for portions of the network which do not constitute a system
 bottleneck.

 In Figure 2, the RTP protocol is shown as an example of transport
 layer on top of ST2. Others include the Packet Video Protocol (PVP)
 [Cole81], the Network Voice Protocol (NVP) [Cohe81], and others such
 as the Heidelberg Transport Protocol (HeiTP) [DHHS92].

1.3 Protocol History

 The first version of ST was published in the late 1970’s and was used
 throughout the 1980’s for experimental transmission of voice, video,
 and distributed simulation. The experience gained in these
 applications led to the development of the revised protocol version
 ST2. The revision extends the original protocol to make it more
 complete and more applicable to emerging multimedia environments. The
 specification of this protocol version is contained in Internet RFC
 1190 which was published in October 1990 [RFC1190].

 With more and more developments of commercial distributed multimedia
 applications underway and with a growing dissatisfaction at the
 transmission quality for audio and video over IP in the MBONE,
 interest in ST2 has grown over the last years. Companies have
 products available incorporating the protocol. The BERKOM MMTS
 project of the German PTT [DeAl92] uses ST2 as its core protocol for

Delgrossi & Berger, Editors Experimental [Page 8]

RFC 1819 ST2+ Protocol Specification August 1995

 the provision of multimedia teleservices such as conferencing and
 mailing. In addition, implementations of ST2 for Digital Equipment,
 IBM, NeXT, Macintosh, PC, Silicon Graphics, and Sun platforms are
 available.

 In 1993, the IETF started a new working group on ST2 as part of
 ongoing efforts to develop protocols that address resource
 reservation issues. The group’s mission was to clean up the existing
 protocol specification to ensure better interoperability between the
 existing and emerging implementations. It was also the goal to
 produce an updated experimental protocol specification that reflected
 the experiences gained with the existing ST2 implementations and
 applications. Which led to the specification of the ST2+ protocol
 contained in this document.

1.3.1 RFC1190 ST and ST2+ Major Differences

 The protocol changes from RFC1190 were motivated by protocol
 simplification and clarification, and codification of extensions in
 existing implementations. This section provides a list of major
 differences, and is probably of interest only to those who have
 knowledge of RFC1190. The major differences between the versions are:

o Elimination of "Hop IDentifiers" or HIDs. HIDs added much complexity
 to the protocol and was found to be a major impediment to
 interoperability. HIDs have been replaced by globally unique
 identifiers called "Stream IDentifiers" or SIDs.

o Elimination of a number of stream options. A number of options were
 found to not be used by any implementation, or were thought to add
 more complexity than value. These options were removed. Removed
 options include: point-to-point, full-duplex, reverse charge, and
 source route.

o Elimination of the concept of "subset" implementations. RFC1190
 permitted subset implementations, to allow for easy implementation
 and experimentation. This led to interoperability problems. Agents
 implementing the protocol specified in this document, MUST implement
 the full protocol. A number of the protocol functions are best-
 effort. It is expected that some implementations will make more
 effort than others in satisfying particular protocol requests.

o Clarification of the capability of targets to request to join a
 steam. RFC1190 can be interpreted to support target requests, but
 most implementors did not understand this and did not add support
 for this capability. The lack of this capability was found to be a
 significant limitation in the ability to scale the number of
 participants in a single ST stream. This clarification is based on

Delgrossi & Berger, Editors Experimental [Page 9]

RFC 1819 ST2+ Protocol Specification August 1995

 work done by IBM Heidelberg.

o Separation of functions between ST and supporting modules. An effort
 was made to improve the separation of functions provided by ST and
 those provided by other modules. This is reflected in reorganization
 of some text and some PDU formats. ST was also made FlowSpec
 independent, although it does define a FlowSpec for testing and
 interoperability purposes.

o General reorganization and re-write of the specification. This
 document has been organized with the goal of improved readability
 and clarity. Some sections have been added, and an effort was made
 to improve the introduction of concepts.

1.4 Supporting Modules for ST2

 ST2 is one piece of a larger mosaic. This section presents the
 overall communication architecture and clarifies the role of ST2 with
 respect to its supporting modules.

 ST2 proposes a two-step communication model. In the first step, the
 real-time channels for the subsequent data transfer are built. This
 is called stream setup. It includes selecting the routes to the
 destinations and reserving the correspondent resources. In the second
 step, the data is transmitted over the previously established
 streams. This is called data transfer. While stream setup does not
 have to be completed in real-time, data transfer has stringent real-
 time requirements. The architecture used to describe the ST2
 communication model includes:

o a data transfer protocol for the transmission of real-time data
 over the established streams,

o a setup protocol to establish real-time streams based on the flow
 specification,

o a flow specification to express user real-time requirements,

o a routing function to select routes in the Internet,

o a local resource manager to appropriately handle resources involved
 in the communication.

 This document defines a data protocol (ST), a setup protocol (SCMP),
 and a flow specification (ST2+ FlowSpec). It does not define a
 routing function and a local resource manager. However, ST2 assumes
 their existence.

Delgrossi & Berger, Editors Experimental [Page 10]

RFC 1819 ST2+ Protocol Specification August 1995

 Alternative architectures are possible, see [RFC1633] for an example
 alternative architecture that could be used when implementing ST2.

1.4.1 Data Transfer Protocol

 The data transfer protocol defines the format of the data packets
 belonging to the stream. Data packets are delivered to the targets
 along the stream paths previously established by the setup protocol.
 Data packets are delivered with the quality of service associated
 with the stream.

 Data packets contain a globally unique stream identifier that
 indicates which stream they belong to. The stream identifier is also
 known by the setup protocol, which uses it during stream
 establishment. The data transfer protocol for ST2, known simply as
 ST, is completely defined by this document.

1.4.2 Setup Protocol

 The setup protocol is responsible for establishing, maintaining, and
 releasing real-time streams. It relies on the routing function to
 select the paths from the source to the destinations. At each
 host/router on these paths, it presents the flow specification
 associated with the stream to the local resource manager. This causes
 the resource managers to reserve appropriate resources for the
 stream. The setup protocol for ST2 is called Stream Control Message
 Protocol, or SCMP, and is completely defined by this document.

1.4.3 Flow Specification

 The flow specification is a data structure including the ST2
 applications’ QoS requirements. At each host/router, it is used by
 the local resource manager to appropriately handle resources so that
 such requirements are met. Distributing the flow specification to all
 resource managers along the communication paths is the task of the
 setup protocol. However, the contents of the flow specification are
 transparent to the setup protocol, which simply carries the flow
 specification. Any operations on the flow specification, including
 updating internal fields and comparing flow specifications are
 performed by the resource managers.

 This document defines a specific flow specification format that
 allows for interoperability among ST2 implementations. This flow
 specification is intended to support a flow with a single
 transmission rate for all destinations in the stream. Implementations
 may support more than one flow specification format and the means are
 provided to add new formats as they are defined in the future.
 However, the flow specification format has to be consistent

Delgrossi & Berger, Editors Experimental [Page 11]

RFC 1819 ST2+ Protocol Specification August 1995

 throughout the stream, i.e., it is not possible to use different flow
 specification formats for different parts of the same stream.

1.4.4 Routing Function

 The routing function is an external unicast route generation
 capability. It provides the setup protocol with the path to reach
 each of the desired destinations. The routing function is called on a
 hop-by-hop basis and provides next-hop information. Once a route is
 selected by the routing function, it persists for the whole stream
 lifetime. The routing function may try to optimize based on the
 number of targets, the requested resources, or use of local network
 multicast or bandwidth capabilities. Alternatively, the routing
 function may even be based on simple connectivity information.

 The setup protocol is not necessarily aware of the criteria used by
 the routing function to select routes. It works with any routing
 function algorithm. The algorithm adopted is a local matter at each
 host/router and different hosts/routers may use different algorithms.
 The interface between setup protocol and routing function is also a
 local matter and therefore it is not specified by this document.

 This version of ST does not support source routing. It does support
 route recording. It does include provisions that allow identification
 of ST capable neighbors. Identification of remote ST hosts/routers is
 not specifically addressed.

1.4.5 Local Resource Manager

 At each host/router traversed by a stream, the Local Resource Manager
 (LRM) is responsible for handling local resources. The LRM knows
 which resources are on the system and what capacity they can provide.
 Resources include:

o CPUs on end systems and routers to execute the application and
 protocol software,

o main memory space for this software (as in all real-time systems,
 code should be pinned in main memory, as swapping it out would have
 detrimental effects on system performance),

o buffer space to store the data, e.g., communication packets, passing
 through the nodes,

o network adapters, and

Delgrossi & Berger, Editors Experimental [Page 12]

RFC 1819 ST2+ Protocol Specification August 1995

o transmission networks between the nodes. Networks may be as simple
 as point-to-point links or as complex as switched networks such as
 Frame Relay and ATM networks.

 During stream setup and modification, the LRM is presented by the
 setup protocol with the flow specification associated to the stream.
 For each resource it handles, the LRM is expected to perform the
 following functions:

o Stream Admission Control: it checks whether, given the flow
 specification, there are sufficient resources left to handle the new
 data stream. If the available resources are insufficient, the new
 data stream must be rejected.

o QoS Computation: it calculates the best possible performance the
 resource can provide for the new data stream under the current
 traffic conditions, e.g., throughput and delay values are computed.

o Resource Reservation: it reserves the resource capacities required
 to meet the desired QoS.

 During data transfer, the LRM is responsible for:

o QoS Enforcement: it enforces the QoS requirements by appropriate
 scheduling of resource access. For example, data packets from an
 application with a short guaranteed delay must be served prior to
 data from an application with a less strict delay bound.

 The LRM may also provide the following additional functions:

o Data Regulation: to smooth a stream’s data traffic, e.g., as with the
 leaky bucket algorithm.

o Policing: to prevent applications exceed their negotiated QoS, e.g.,
 to send data at a higher rate than indicated in the flow
 specification.

o Stream Preemption: to free up resources for other streams with
 higher priority or importance.

 The strategies adopted by the LRMs to handle resources are resource-
 dependent and may vary at every host/router. However, it is necessary
 that all LRMs have the same understanding of the flow specification.
 The interface between setup protocol and LRM is a local matter at
 every host and therefore it is not specified by this document. An
 example of LRM is the Heidelberg Resource Administration Technique
 (HeiRAT) [VoHN93].

Delgrossi & Berger, Editors Experimental [Page 13]

RFC 1819 ST2+ Protocol Specification August 1995

 It is also assumed that the LRM provides functions to compare flow
 specifications, i.e., to decide whether a flow specification requires
 a greater, equal, or smaller amount of resource capacities to be
 reserved.

Delgrossi & Berger, Editors Experimental [Page 14]

RFC 1819 ST2+ Protocol Specification August 1995

1.5 ST2 Basic Concepts

 The following sections present at an introductory level some of the
 fundamental ST2 concepts including streams, data transfer, and flow
 specification.

 Hosts Connections... : ...and Streams
 ==================== : ==============
 data Origin : Origin
 packets +-----------+ : +----+
 +----|Application| : | |
 | |-----------| : +----+
 +--->| ST Agent | : | |
 +-----------+ : | |
 | : | |
 V : | |
 +-------------+ : | |
 | | : | |
+-------------| Network A | : +-------+ +--+
		:	
+-------------+ :	Target 2		
	Target 2 :	& Router	
Target 1	and Router :		
+-----------+	+-----------+ : V V		
	Application	<-+	

+->| ST Agent |--+ +->| ST Agent |--+ : +----+ +----+
 +-----------+ +-----------+ :Target 1 | |
 | : | |
 V : | |
 +-------------+ : | |
 | | : | |
 +-------------| Network B | : +-----+ |
 | | | : | |
 | +-------------+ : | |
 | Target 3 | Target 4 : | |
 | +-----------+ | +-----------+ : V V
 | |Application|<-+ | |Application|<-+ : +----+ +----+
 | |-----------| | | |-----------| | : | | | |
 +->| ST Agent |--+ +->| ST Agent |--+ : +----+ +----+
 +-----------+ +-----------+ : Target 3 Target 4
 :

 Figure 3: The Stream Concept

Delgrossi & Berger, Editors Experimental [Page 15]

RFC 1819 ST2+ Protocol Specification August 1995

1.5.1 Streams

 Streams form the core concepts of ST2. They are established between a
 sending origin and one or more receiving targets in the form of a
 routing tree. Streams are uni-directional from the origin to the
 targets. Nodes in the tree represent so-called ST agents, entities
 executing the ST2 protocol; links in the tree are called hops. Any
 node in the middle of the tree is called an intermediate agent, or
 router. An agent may have any combination of origin, target, or
 intermediate capabilities.

 Figure 3 illustrates a stream from an origin to four targets, where
 the ST agent on Target 2 also functions as an intermediate agent. Let
 us use this Target 2/Router node to explain some basic ST2
 terminology: the direction of the stream from this node to Target 3
 and 4 is called downstream, the direction towards the Origin node
 upstream. ST agents that are one hop away from a given node are
 called previous-hops in the upstream, and next-hops in the downstream
 direction.

 Streams are maintained using SCMP messages. Typical SCMP messages are
 CONNECT and ACCEPT to build a stream, DISCONNECT and REFUSE to close
 a stream, CHANGE to modify the quality of service associated with a
 stream, and JOIN to request to be added to a stream.

 Each ST agent maintains state information describing the streams
 flowing through it. It can actively gather and distribute such
 information. It can recognize failed neighbor ST agents through the
 use of periodic HELLO message exchanges. It can ask other ST agents
 about a particular stream via a STATUS message. These ST agents then
 send back a STATUS-RESPONSE message. NOTIFY messages can be used to
 inform other ST agents of significant events.

 ST2 offers a wealth of functionalities for stream management. Streams
 can be grouped together to minimize allocated resources or to process
 them in the same way in case of failures. During audio conferences,
 for example, only a limited set of participants may talk at once.
 Using the group mechanism, resources for only a portion of the audio
 streams of the group need to be reserved. Using the same concept, an
 entire group of related audio and video streams can be dropped if one
 of them is preempted.

1.5.2 Data Transmission

 Data transfer in ST2 is simplex in the downstream direction. Data
 transport through streams is very simple. ST2 puts only a small
 header in front of the user data. The header contains a protocol
 identification that distinguishes ST2 from IP packets, an ST2 version

Delgrossi & Berger, Editors Experimental [Page 16]

RFC 1819 ST2+ Protocol Specification August 1995

 number, a priority field (specifying a relative importance of streams
 in cases of conflict), a length counter, a stream identification, and
 a checksum. These elements form a 12-byte header.

 Efficiency is also achieved by avoiding fragmentation and reassembly
 on all agents. Stream establishment yields a maximum message size for
 data packets on a stream. This maximum message size is communicated
 to the upper layers, so that they provide data packets of suitable
 size to ST2.

 Communication with multiple next-hops can be made even more efficient
 using MAC Layer multicast when it is available. If a subnet supports
 multicast, a single multicast packet is sufficient to reach all
 next-hops connected to this subnet. This leads to a significant
 reduction of the bandwidth requirements of a stream. If multicast is
 not provided, separate packets need to be sent to each next-hop.

 As ST2 relies on reservation, it does not contain error correction
 mechanisms features for data exchange such as those found in TCP. It
 is assumed that real-time data, such as digital audio and video,
 require partially correct delivery only. In many cases, retransmitted
 packets would arrive too late to meet their real-time delivery
 requirements. Also, depending on the data encoding and the particular
 application, a small number of errors in stream data are acceptable.
 In any case, reliability can be provided by layers on top of ST2 when
 needed.

1.5.3 Flow Specification

 As part of establishing a connection, SCMP handles the negotiation of
 quality-of-service parameters for a stream. In ST2 terminology, these
 parameters form a flow specification (FlowSpec) which is associated
 with the stream. Different versions of FlowSpecs exist, see
 [RFC1190], [DHHS92] and [RFC1363], and can be distinguished by a
 version number. Typically, they contain parameters such as average
 and maximum throughput, end-to-end delay, and delay variance of a
 stream. SCMP itself only provides the mechanism for relaying the
 quality-of-service parameters.

 Three kinds of entities participate in the quality-of-service
 negotiation: application entities on the origin and target sites as
 the service users, ST agents, and local resource managers (LRM). The
 origin application supplies the initial FlowSpec requesting a
 particular service quality. Each ST agent which obtains the FlowSpec
 as part of a connection establishment message, it presents the local
 resource manager with it. ST2 does not determine how resource
 managers make reservations and how resources are scheduled according
 to these reservations; ST2, however, assumes these mechanisms as its

Delgrossi & Berger, Editors Experimental [Page 17]

RFC 1819 ST2+ Protocol Specification August 1995

 basis.

 An example of the FlowSpec negotiation procedure is illustrated in
 Figure 4. Depending on the success of its local reservations, the LRM
 updates the FlowSpec fields and returns the FlowSpec to the ST agent,
 which passes it downstream as part of the connection message.
 Eventually, the FlowSpec is communicated to the application at the
 target which may base its accept/reject decision for establishing the
 connection on it and may finally also modify the FlowSpec. If a
 target accepts the connection, the (possibly modified) FlowSpec is
 propagated back to the origin which can then calculate an overall
 service quality for all targets. The application entity at the origin
 may later request a CHANGE to adjust reservations.

 Origin Router Target 1
 +------+ 1a +------+ 1b +------+
 | |-------------->| |------------->| |
 +------+ +------+ +------+
 ^ | ^ |
 | | | 2 |
 | | +--+
 + +
 +-------------+ \ \ +-------------+ +-------------+
Max Delay: 12	\ \	Max Delay: 12		Max Delay: 12
-------------	\ \	-------------		-------------
Min Delay: 2	\ \	Min Delay: 5		Min Delay: 9
-------------	\ \	-------------		-------------
Max Size:4096	+ +	Max Size:2048		Max Size:2048
 +-------------+ | | +-------------+ +-------------+
 FlowSpec | | 1
 | +---------------+
 | |
 | V
 2 | +------+
 +---------------| |
 +------+
 Target 2
 +-------------+
 |Max Delay: 12|
 |-------------|
 |Min Delay: 4|
 |-------------|
 |Max Size:4096|
 +-------------+

 Figure 4: Quality-of-Service Negotiation with FlowSpecs

Delgrossi & Berger, Editors Experimental [Page 18]

RFC 1819 ST2+ Protocol Specification August 1995

1.6 Outline of This Document

 This document contains the specification of the ST2+ version of the
 ST2 protocol. In the rest of the document, whenever the terms "ST" or
 "ST2" are used, they refer to the ST2+ version of ST2.

 The document is organized as follows:

o Section 2 describes the ST2 user service from an application point
 of view.

o Section 3 illustrates the ST2 data transfer protocol, ST.

o Section 4 through Section 8 specify the ST2 setup protocol, SCMP.

o the ST2 flow specification is presented in Section 9.

o the formats of protocol elements and PDUs are defined in Section 10.

2. ST2 User Service Description

 This section describes the ST user service from the high-level point
 of view of an application. It defines the ST stream operations and
 primitive functions. It specifies which operations on streams can be
 invoked by the applications built on top of ST and when the ST
 primitive functions can be legally executed. Note that the presented
 ST primitives do not specify an API. They are used here with the only
 purpose of illustrating the service model for ST.

2.1 Stream Operations and Primitive Functions

 An ST application at the origin may create, expand, reduce, change,
 send data to, and delete a stream. When a stream is expanded, new
 targets are added to the stream; when a stream is reduced, some of
 the current targets are dropped from it. When a stream is changed,
 the associated quality of service is modified.

 An ST application at the target may join, receive data from, and
 leave a stream. This translates into the following stream operations:

o OPEN: create new stream [origin], CLOSE: delete stream [origin],

o ADD: expand stream, i.e., add new targets to it [origin],

o DROP: reduce stream, i.e., drop targets from it [origin],

o JOIN: join a stream [target], LEAVE: leave a stream [target],

Delgrossi & Berger, Editors Experimental [Page 19]

RFC 1819 ST2+ Protocol Specification August 1995

o DATA: send data through stream [origin],

o CHG: change a stream’s QoS [origin],

 Each stream operation may require the execution of several primitive
 functions to be completed. For instance, to open a new stream, a
 request is first issued by the sender and an indication is generated
 at one or more receivers; then, the receivers may each accept or
 refuse the request and the correspondent indications are generated at
 the sender. A single receiver case is shown in Figure 5 below.

 Sender Network Receiver
 | | |
 OPEN.req | | |
 |-----------------> | |
 | |-----------------> |
 | | | OPEN.ind
 | | | OPEN.accept
 | |<----------------- |
 |<----------------- | |
 OPEN.accept-ind | | |
 | | |

 Figure 5: Primitives for the OPEN Stream Operation

Delgrossi & Berger, Editors Experimental [Page 20]

RFC 1819 ST2+ Protocol Specification August 1995

 Table 1 defines the ST service primitive functions associated to each
 stream operation. The column labelled "O/T" indicates whether the
 primitive is executed at the origin or at the target.

 +===+
 |Primitive | Descriptive |O/T|
 |===|
 |OPEN.req | open a stream | O |
 |OPEN.ind | connection request indication | T |
 |OPEN.accept | accept stream | T |
 |OPEN.refuse | refuse stream | T |
 |OPEN.accept-ind| connection accept indication | O |
 |OPEN.refuse-ind| connection refuse indication | O |
 |ADD.req | add targets to stream | O |
 |ADD.ind | add request indication | T |
 |ADD.accept | accept stream | T |
 |ADD.refuse | refuse stream | T |
 |ADD.accept-ind | add accept indication | O |
 |ADD.refuse-ind | add refuse indication | O |
 |JOIN.req | join a stream | T |
 |JOIN.ind | join request indication | O |
 |JOIN.reject | reject a join | O |
 |JOIN.reject-ind| join reject indication | T |
 |DATA.req | send data | O |
 |DATA.ind | receive data indication | T |
 |CHG.req | change stream QoS | O |
 |CHG.ind | change request indication | T |
 |CHG.accept | accept change | T |
 |CHG.refuse | refuse change | T |
 |CHG.accept-ind | change accept indication | O |
 |CHG.refuse-ind | change refuse indication | O |
 |DROP.req | drop targets | O |
 |DROP.ind | disconnect indication | T |
 |LEAVE.req | leave stream | T |
 |LEAVE.ind | leave stream indication | O |
 |CLOSE.req | close stream | O |
 |CLOSE.ind | close stream indication | T |
 +---+

 Table 1: ST Primitives

2.2 State Diagrams

 It is not sufficient to define the set of ST stream operations. It is
 also necessary to specify when the operations can be legally
 executed. For this reason, a set of states is now introduced and the
 transitions from one state to the others are specified. States are
 defined with respect to a single stream. The previously defined

Delgrossi & Berger, Editors Experimental [Page 21]

RFC 1819 ST2+ Protocol Specification August 1995

 stream operations can be legally executed only from an appropriate
 state.

 An ST agent may, with respect to an ST stream, be in one of the
 following states:

o IDLE: the stream has not been created yet.

o PENDING: the stream is in the process of being established.

o ACTIVE: the stream is established and active.

o ADDING: the stream is established. A stream expansion is underway.

o CHGING: the stream is established. A stream change is underway.

 Previous experience with ST has lead to limits on stream operations
 that can be executed simultaneously. These restrictions are:

 1. A single ADD or CHG operation can be processed at one time. If
 an ADD or CHG is already underway, further requests are queued
 by the ST agent and handled only after the previous operation
 has been completed. This also applies to two subsequent
 requests of the same kind, e.g., two ADD or two CHG operations.
 The second operation is not executed until the first one has
 been completed.

 2. Deleting a stream, leaving a stream, or dropping targets from a
 stream is possible only after stream establishment has been
 completed. A stream is considered to be established when all
 the next-hops of the origin have either accepted or refused the
 stream. Note that stream refuse is automatically forced after
 timeout if no reply comes from a next-hop.

 3. An ST agent forwards data only along already established paths
 to the targets, see also Section 3.1. A path is considered to
 be established when the next-hop on the path has explicitly
 accepted the stream. This implies that the target and all other
 intermediate ST agents are ready to handle the incoming data
 packets. In no cases an ST agent will forward data to a
 next-hop ST agent that has not explicitly accepted the stream.
 To be sure that all targets receive the data, an application
 should send the data only after all paths have been
 established, i.e., the stream is established.

Delgrossi & Berger, Editors Experimental [Page 22]

RFC 1819 ST2+ Protocol Specification August 1995

 4. It is allowed to send data from the CHGING and ADDING states.
 While sending data from the CHGING state, the quality of
 service to the targets affected by the change should be assumed
 to be the more restrictive quality of service. When sending
 data from the ADDING state, the targets that receive the data
 include at least all the targets that were already part of the
 stream at the time the ADD operation was invoked.

 The rules introduced above require ST agents to queue incoming
 requests when the current state does not allow to process them
 immediately. In order to preserve the semantics, ST agents have to
 maintain the order of the requests, i.e., implement FIFO queuing.
 Exceptionally, the CLOSE request at the origin and the LEAVE request
 at the target may be immediately processed: in these cases, the queue
 is deleted and it is possible that requests in the queue are not
 processed.

 The following state diagrams define the ST service. Separate diagrams
 are presented for the origin and the targets.

 The symbol (a/r)* indicates that all targets in the target list have
 explicitly accepted or refused the stream, or refuse has been forced
 after timeout. If the target list is empty, i.e., it contains no
 targets, the (a/r)* condition is immediately satisfied, so the empty
 stream is created and state ESTBL is entered.

 The separate OPEN and ADD primitives at the target are for conceptual
 purposes only. The target is actually unable to distinguish between
 an OPEN and an ADD. This is reflected in Figure 7 and Table 3 through
 the notation OPEN/ADD.

Delgrossi & Berger, Editors Experimental [Page 23]

RFC 1819 ST2+ Protocol Specification August 1995

 +------------+
 | |<-------------------+
 +---------->| IDLE |-------------+ |
 | | | OPEN.req | |
 | +------------+ | |
 CLOSE.req | CLOSE.req ^ ^ CLOSE.req V | CLOSE.req
 | | | +---------+ |
 | | | | PENDING |-|-+ JOIN.reject
 | | -------------| |<|-+
 | JOIN.reject | +---------+ | | | |
 | DROP.req +----------+ | |
 | +-----| | | |
 | | | ESTDL | OPEN.(a/r)* | |
 | +---->| |<------------+ |
 | +----------+ |
 | | ^ | ^ |
 | | | | | |
 +----------+ CHG.req| | | | Add.(a/r)* +----------+
 | |<-------+ | | +-------------- | |
 | CHGING | | | | ADDING |
 | |-----------+ +----------------->| |
 +----------+ CHG.(a/r)* JOIN.ind +----------+
 | ^ ADD.req | ^
 | | | |
 +---+ +---+
 DROP.req DROP.req
 JOIN.reject JOIN.reject

 Figure 6: ST Service at the Origin

 +--------+
 | |-----------------------+
 | IDLE | |
 | |<---+ | OPEN/ADD.ind
 +--------+ | CLOSE.ind | JOIN.req
 ^ | OPEN/ADD.refuse |
 | | JOIN.refect-ind |
 CLOSE.ind | | V
 DROP.ind | | +---------+
 LEAVE.req | +-------------| |
 | | PENDING |
 +-------+ | |
 | | +---------+
 | ESTBL | OPEN/ADD.accept |
 | |<-----------------------+
 +-------+

 Figure 7: ST Service at the Target

Delgrossi & Berger, Editors Experimental [Page 24]

RFC 1819 ST2+ Protocol Specification August 1995

2.3 State Transition Tables

 Table 2 and Table 3 define which primitives can be processed from
 which states and the possible state transitions.

+==+
|Primitive |IDLE| PENDING | ESTBL | CHGING | ADDING |
|==|
OPEN.req	ok	-	-	-	-
OPEN.accept-ind	-	if(a,r)*->ESTBL	-	-	-
OPEN.refuse-ind	-	if(a,r)*->ESTBL	-	-	-
ADD.req	-	queued	->ADDING	queued	queued
ADD.accept-ind	-	-	-	-	if(a,r)*
	-	-	-	-	->ESTBL
ADD.refuse-ind	-	-	-	-	if(a,r)*
	-	-	-	-	->ESTBL
JOIN.ind	-	queued	->ADDING	queued	queued
JOIN.reject	-	OK	ok	ok	ok
DATA.req	-	-	ok	ok	ok
CHG.req	-	queued	->CHGING	queued	queued
CHG.accept-ind	-	-	-	if(a,r)*	-
	-	-	-	->ESTBL	-
CHG.refuse.ind	-	-	-	if(a,r)*	-
	-	-	-	->ESTBL	-
DROP.req	-	-	ok	ok	ok
LEAVE.ind	-	OK	ok	ok	ok
CLOSE.req	-	OK	ok	ok	ok
+--+
 Table 2: Primitives and States at the Origin

 +==+
 | Primitive | IDLE | PENDING | ESTBL |
 |==|
 | OPEN/ADD.ind | ->PENDING | - | - |
 | OPEN/ADD.accept | - | ->ESTBL | - |
 | OPEN/ADD.refuse | - | ->IDLE | - |
 | JOIN.req | ->PENDING | - | - |
 | JOIN.reject-ind |- | ->IDLE | - |
 | DATA.ind | - | - | ok |
 | CHG.ind | - | - | ok |
 | CHG.accept | - | - | ok |
 | DROP.ind | - | ok | ok |
 | LEAVE.req | - | ok | ok |
 | CLOSE.ind | - | ok | ok |
 | CHG.ind | - | - | ok |
 +--+
 Table 3: Primitives and States at the Target

Delgrossi & Berger, Editors Experimental [Page 25]

RFC 1819 ST2+ Protocol Specification August 1995

3. The ST2 Data Transfer Protocol

 This section presents the ST2 data transfer protocol, ST. First, data
 transfer is described in Section 3.1, then, the data transfer
 protocol functions are illustrated in Section 3.2.

3.1 Data Transfer with ST

 Data transmission with ST is unreliable. An application is not
 guaranteed that the data reaches its destinations and ST makes no
 attempts to recover from packet loss, e.g., due to the underlying
 network. However, if the data reaches its destination, it should do
 so according to the quality of service associated with the stream.

 Additionally, ST may deliver data corrupted in transmission. Many
 types of real-time data, such as digital audio and video, require
 partially correct delivery only. In many cases, retransmitted packets
 would arrive too late to meet their real-time delivery requirements.
 On the other hand, depending on the data encoding and the particular
 application, a small number of errors in stream data are acceptable.
 In any case, reliability can be provided by layers on top of ST2 if
 needed.

 Also, no data fragmentation is supported during the data transfer
 phase. The application is expected to segment its data PDUs according
 to the minimum MTU over all paths in the stream. The application
 receives information on the MTUs relative to the paths to the targets
 as part of the ACCEPT message, see Section 8.6. The minimum MTU over
 all paths can be calculated from the MTUs relative to the single
 paths. ST agents silently discard too long data packets, see also
 Section 5.1.1.

 An ST agent forwards the data only along already established paths to
 targets. A path is considered to be established once the next-hop ST
 agent on the path sends an ACCEPT message, see Section 2.2. This
 implies that the target and all other intermediate ST agents on the
 path to the target are ready to handle the incoming data packets. In
 no cases will an ST agent forward data to a next-hop ST agent that
 has not explicitly accepted the stream.

 To be reasonably sure that all targets receive the data with the
 desired quality of service, an application should send the data only
 after the whole stream has been established. Depending on the local
 API, an application may not be prevented from sending data before the
 completion of stream setup, but it should be aware that the data
 could be lost or not reach all intended targets. This behavior may
 actually be desirable to applications, such as those application that
 have multiple targets which can each process data as soon as it is

Delgrossi & Berger, Editors Experimental [Page 26]

RFC 1819 ST2+ Protocol Specification August 1995

 available (e.g., a lecture or distributed gaming).

 It is desirable for implementations to take advantage of networks
 that support multicast. If a network does not support multicast, or
 for the case where the next-hops are on different networks, multiple
 copies of the data packet must be sent.

3.2 ST Protocol Functions

 The ST protocol provides two functions:

 o stream identification

 o data priority

3.2.1 Stream Identification

 ST data packets are encapsulated by an ST header containing the
 Stream IDentifier (SID). This SID is selected at the origin so that
 it is globally unique over the Internet. The SID must be known by the
 setup protocol as well. At stream establishment time, the setup
 protocol builds, at each agent traversed by the stream, an entry into
 its local database containing stream information. The SID can be used
 as a reference into this database, to obtain quickly the necessary
 replication and forwarding information.

 Stream IDentifiers are intended to be used to make the packet
 forwarding task most efficient. The time-critical operation is an
 intermediate ST agent receiving a packet from the previous-hop ST
 agent and forwarding it to the next-hop ST agents.

 The format of data PDUs including the SID is defined in Section 10.1.
 Stream IDentifier generation is discussed in Section 8.1.

3.2.2 Packet Discarding based on Data Priority

 ST provides a well defined quality of service to its applications.
 However, there may be cases where the network is temporarily
 congested and the ST agents have to discard certain packets to
 minimize the overall impact to other streams. The ST protocol
 provides a mechanism to discard data packets based on the Priority
 field in the data PDU, see Section 10.1. The application assigns each
 data packet with a discard-priority level, carried into the Priority
 field. ST agents will attempt to discard lower priority packets first
 during periods of network congestion. Applications may choose to send
 data at multiple priority levels so that less important data may be
 discarded first.

Delgrossi & Berger, Editors Experimental [Page 27]

RFC 1819 ST2+ Protocol Specification August 1995

4. SCMP Functional Description

 ST agents create and manage streams using the ST Control Message
 Protocol (SCMP). Conceptually, SCMP resides immediately above ST (as
 does ICMP above IP). SCMP follows a request-response model. SCMP
 messages are made reliable through the use of retransmission after
 timeout.

 This section contains a functional description of stream management
 with SCMP. To help clarify the SCMP exchanges used to setup and
 maintain ST streams, we include an example of a simple network
 topology, represented in Figure 8. Using the SCMP messages described
 in this section it will be possible for an ST application to:

 o Create a stream from A to the peers at B, C and D,

 o Add a peer at E,

 o Drop peers B and C, and

 o Let F join the stream

 o Delete the stream.

Delgrossi & Berger, Editors Experimental [Page 28]

RFC 1819 ST2+ Protocol Specification August 1995

 +---------+ +---+
 | |----| B |
 +---------+ +----------+ | | +---+
 | |------| Router 1 |---| Subnet2 |
 | | +----------+ | |
 | | | |
 | | +---------+
 | | |
 | Subnet1 | |
 | | +----------+
 | | | Router 3 |
 +---+ | | +----------+
 | A |---| | +----------+ |
 +---+ | |----| Router 2 | |
 | | +----------+ |
 +---------+ | |
 | |
 | +----------+ +---+
 +----------| |----| C |
 | | +---+
 +---------+ | Subnet3 |
 +---+ | | +---+ | | +---+
 | F |---| Subnet4 |---| E |--| |----| D |
 +---+ | | +---+ +----------+ +---+
 +---------+

 Figure 8: Sample Topology for an ST Stream

 We first describe the possible types of stream in Section 4.1;
 Section 4.2 introduces SCMP control message types; SCMP reliability
 is discussed in Section 4.3; stream options are covered in Section
 4.4; stream setup is presented in Section 4.5; Section 4.6
 illustrates stream modification including stream expansion,
 reduction, changes of the quality of service associated to a stream.
 Finally, stream deletion is handled in Section 4.7.

4.1 Types of Streams

 SCMP allows for the setup and management of different types of
 streams. Streams differ in the way they are built and the information
 maintained on connected targets.

Delgrossi & Berger, Editors Experimental [Page 29]

RFC 1819 ST2+ Protocol Specification August 1995

4.1.1 Stream Building

 Streams may be built in a sender-oriented fashion, receiver-oriented
 fashion, or with a mixed approach:

o in the sender-oriented fashion, the application at the origin
 provides the ST agent with the list of receivers for the stream. New
 targets, if any, are also added from the origin.

o in the receiver-oriented approach, the application at the origin
 creates an empty stream that contains no targets. Each target then
 joins the stream autonomously.

o in the mixed approach, the application at the origin creates a
 stream that contains some targets and other targets join the stream
 autonomously.

 ST2 provides stream options to support sender-oriented and mixed
 approach steams. Receiver-oriented streams can be emulated through
 the use of mixed streams. The fashion by which targets may be added
 to a particular stream is controlled via join authorization levels.
 Join authorization levels are described in Section 4.4.2.

4.1.2 Knowledge of Receivers

 When streams are built in the sender-oriented fashion, all ST agents
 will have full information on all targets down stream of a particular
 agent. In this case, target information is relayed down stream from
 agent-to-agent during stream set-up.

 When targets add themselves to mixed approach streams, upstream ST
 agents may or may not be informed. Propagation of information on
 targets that "join" a stream is also controlled via join
 authorization levels. As previously mentioned, join authorization
 levels are described in Section 4.4.2.

 This leads to two types of streams:

o full target information is propagated in a full-state stream. For
 such streams, all agents are aware of all downstream targets
 connected to the stream. This results in target information being
 maintained at the origin and at intermediate agents. Operations on
 single targets are always possible, i.e., change a certain target,
 or, drop that target from the stream. It is also always possible for
 any ST agent to attempt recovery of all downstream targets.

Delgrossi & Berger, Editors Experimental [Page 30]

RFC 1819 ST2+ Protocol Specification August 1995

o in light-weight streams, it is possible that the origin and other
 upstream agents have no knowledge about some targets. This results
 in less maintained state and easier stream management, but it limits
 operations on specific targets. Special actions may be required to
 support change and drop operations on unknown targets, see Section
 5.7. Also, stream recovery may not be possible. Of course, generic
 functions such as deleting the whole stream, are still possible. It
 is expected that applications that will have a large number of
 targets will use light-weight streams in order to limit state in
 agents and the number of targets per control message.

 Full-state streams serve well applications as video conferencing or
 distributed gaming, where it is important to have knowledge on the
 connected receivers, e.g., to limit who participates. Light-weight
 streams may be exploited by applications such as remote lecturing or
 playback applications of radio and TV broadcast where the receivers
 do not need to be known by the sender. Section 4.4.2 defines join
 authorization levels, which support two types of full-state streams
 and one type of light-weight stream.

4.2 Control PDUs

 SCMP defines the following PDUs (the main purpose of each PDU is also
 indicated):

1. ACCEPT to accept a new stream
2. ACK to acknowledge an incoming message
3. CHANGE to change the quality of service associated with
 a stream
4. CONNECT to establish a new stream or add new targets to
 an existing stream
5. DISCONNECT to remove some or all of the stream’s targets
6. ERROR to indicate an error contained in an incoming
 message
7. HELLO to detect failures of neighbor ST agents
8. JOIN to request stream joining from a target
9. JOIN-REJECT to reject a stream joining request from a target
10. NOTIFY to inform an ST agent of a significant event
11. REFUSE to refuse the establishment of a new stream
12. STATUS to query an ST agent on a specific stream
13. STATUS-RESPONSE to reply queries on a specific stream

 SCMP follows a request-response model with all requests expecting
 responses. Retransmission after timeout is used to allow for lost or
 ignored messages. Control messages do not extend across packet
 boundaries; if a control message is too large for the MTU of a hop,
 its information is partitioned and a control message per partition is
 sent, as described in Section 5.1.2.

Delgrossi & Berger, Editors Experimental [Page 31]

RFC 1819 ST2+ Protocol Specification August 1995

 CONNECT and CHANGE request messages are answered with ACCEPT messages
 which indicate success, and with REFUSE messages which indicate
 failure. JOIN messages are answered with either a CONNECT message
 indicating success, or with a JOIN-REJECT message indicating failure.
 Targets may be removed from a stream by either the origin or the
 target via the DISCONNECT and REFUSE messages.

 The ACCEPT, CHANGE, CONNECT, DISCONNECT, JOIN, JOIN-REJECT, NOTIFY
 and REFUSE messages must always be explicitly acknowledged:

o with an ACK message, if the message was received correctly and it
 was possible to parse and correctly extract and interpret its
 header, fields and parameters,

o with an ERROR message, if a syntax error was detected in the header,
 fields, or parameters included in the message. The errored PDU may
 be optionally returned as part of the ERROR message. An ERROR
 message indicates a syntax error only. If any other errors are
 detected, it is necessary to first acknowledge with ACK and then
 take appropriate actions. For instance, suppose a CHANGE message
 contains an unknown SID: first, an ACK message has to be sent, then
 a REFUSE message with ReasonCode (SIDUnknown) follows.

 If no ACK or ERROR message are received before the correspondent
 timer expires, a timeout failure occurs. The way an ST agent should
 handle timeout failures is described in Section 5.2.

 ACK, ERROR, and STATUS-RESPONSE messages are never acknowledged.

 HELLO messages are a special case. If they contain a syntax error, an
 ERROR message should be generated in response. Otherwise, no
 acknowledgment or response should be generated. Use of HELLO messages
 is discussed in Section 6.1.2.

 STATUS messages containing a syntax error should be answered with an
 ERROR message. Otherwise, a STATUS-RESPONSE message should be sent
 back in response. Use of STATUS and STATUS-RESPONSE are discussed in
 Section 8.4.

4.3 SCMP Reliability

 SCMP is made reliable through the use of retransmission when a
 response is not received in a timely manner. The ACCEPT, CHANGE,
 CONNECT, DISCONNECT, JOIN, JOIN-REJECT, NOTIFY, and REFUSE messages
 all must be answered with an ACK message, see Section 4.2. In
 general, when sending a SCMP message which requires an ACK response,
 the sending ST agent needs to set the Toxxxx timer (where xxxx is the
 SCMP message type, e.g., ToConnect). If it does not receive an ACK

Delgrossi & Berger, Editors Experimental [Page 32]

RFC 1819 ST2+ Protocol Specification August 1995

 before the Toxxxx timer expires, the ST agent should retransmit the
 SCMP message. If no ACK has been received within Nxxxx
 retransmissions, then a SCMP timeout condition occurs and the ST
 agent enters its SCMP timeout recovery state. The actions performed
 by the ST agent as the result of the SCMP timeout condition differ
 for different SCMP messages and are described in Section 5.2.

 For some SCMP messages (CONNECT, CHANGE, JOIN, and STATUS) the
 sending ST agent also expects a response back (ACCEPT/REFUSE,
 CONNECT/JOIN- REJECT) after ACK has been received. For these cases,
 the ST agent needs to set the ToxxxxResp timer after it receives the
 ACK. (As before, xxxx is the initiating SCMP message type, e.g.,
 ToConnectResp). If it does not receive the appropriate response back
 when ToxxxxResp expires, the ST agent updates its state and performs
 appropriate recovery action as described in Section 5.2. Suggested
 constants are given in Section 10.5.4.

 The timeout and retransmission algorithm is implementation dependent
 and it is outside the scope of this document. Most existing
 algorithms are based on an estimation of the Round Trip Time (RTT)
 between two agents. Therefore, SCMP contains a mechanism, see Section
 8.5, to estimate this RTT. Note that the timeout related variable
 names described above are for reference purposes only, implementors
 may choose to combine certain variables.

4.4 Stream Options

 An application may select among some stream options. The desired
 options are indicated to the ST agent at the origin when a new stream
 is created. Options apply to single streams and are valid during the
 whole stream’s lifetime. The options chosen by the application at the
 origin are included into the initial CONNECT message, see Section
 4.5.3. When a CONNECT message reaches a target, the application at
 the target is notified of the stream options that have been selected,
 see Section 4.5.5.

4.4.1 No Recovery

 When a stream failure is detected, an ST agent would normally attempt
 stream recovery, as described in Section 6.2. The NoRecovery option
 is used to indicate that ST agents should not attempt recovery for
 the stream. The protocol behavior in the case that the NoRecovery
 option has been selected is illustrated in Section 6.2. The
 NoRecovery option is specified by setting the S-bit in the CONNECT
 message, see Section 10.4.4. The S-bit can be set only by the origin
 and it is never modified by intermediate and target ST agents.

Delgrossi & Berger, Editors Experimental [Page 33]

RFC 1819 ST2+ Protocol Specification August 1995

4.4.2 Join Authorization Level

 When a new stream is created, it is necessary to define the join
 authorization level associated with the stream. This level determines
 the protocol behavior in case of stream joining, see Section 4.1 and
 Section 4.6.3. The join authorization level for a stream is defined
 by the J-bit and N-bit in the CONNECT message header, see Section
 10.4.4. One of the following authorization levels has to be
 selected:

 o Level 0 - Refuse Join (JN = 00): No targets are allowed to join this
 stream.

 o Level 1 - OK, Notify Origin (JN = 01): Targets are allowed to join
 the stream. The origin is notified that the target has joined.

 o Level 2 - OK (JN = 10): Targets are allowed to join the stream. No
 notification is sent to the stream origin.

 Some applications may choose to maintain tight control on their
 streams and will not permit any connections without the origin’s
 permission. For such streams, target applications may request to be
 added by sending an out-of-band, i.e., via regular IP, request to the
 origin. The origin, if it so chooses, can then add the target
 following the process described in Section 4.6.1.

 The selected authorization level impacts stream handling and the
 state that is maintained for the stream, as described in Section 4.1.

4.4.3 Record Route

 The RecordRoute option can be used to request the route between the
 origin and a target be recorded and delivered to the application.
 This option may be used while connecting, accepting, changing, or
 refusing a stream. The results of a RecordRoute option requested by
 the origin, i.e., as part of the CONNECT or CHANGE messages, are
 delivered to the target. The results of a RecordRoute option
 requested by the target, i.e., as part of the ACCEPT or REFUSE
 messages, are delivered to the origin.

 The RecordRoute option is specified by adding the RecordRoute
 parameter to the mentioned SCMP messages. The format of the
 RecordRoute parameter is shown in Section 10.3.5. When adding this
 parameter, the ST agent at the origin must determine the number of
 entries that may be recorded as explained in Section 10.3.5.

Delgrossi & Berger, Editors Experimental [Page 34]

RFC 1819 ST2+ Protocol Specification August 1995

4.4.4 User Data

 The UserData option can be used by applications to transport
 application specific data along with some SCMP control messages. This
 option can be included with ACCEPT, CHANGE, CONNECT, DISCONNECT, and
 REFUSE messages. The format of the UserData parameter is shown in
 Section 10.3.7. This option may be included by the origin, or the
 target, by adding the UserData parameter to the mentioned SCMP
 messages. This option may only be included once per SCMP message.

4.5 Stream Setup

 This section presents a description of stream setup. For simplicity,
 we assume that everything succeeds, e.g., any required resources are
 available, messages are properly delivered, and the routing is
 correct. Possible failures in the setup phase are handled in Section
 5.2.

4.5.1 Information from the Application

 Before stream setup can be started, the application has to collect
 the necessary information to determine the characteristics for the
 connection. This includes identifying the participants and selecting
 the QoS parameters of the data flow. Information passed to the ST
 agent by the application includes:

o the list of the stream’s targets (Section 10.3.6). The list may be
 empty (Section 4.5.3.1),

o the flow specification containing the desired quality of service for
 the stream (Section 9),

o information on the groups in which the stream is a member, if any
 (Section 7),

o information on the options selected for the stream (Section 4.4).

4.5.2 Initial Setup at the Origin

 The ST agent at the origin then performs the following operations:

o allocates a stream ID (SID) for the stream (Section 8.1),

o invokes the routing function to determine the set of next-hops for
 the stream (Section 4.5.2.1),

o invokes the Local Resource Manager (LRM) to reserve resources
 (Section 4.5.2.2),

Delgrossi & Berger, Editors Experimental [Page 35]

RFC 1819 ST2+ Protocol Specification August 1995

o creates local database entries to store information on the new
 stream,

o propagates the stream creation request to the next-hops determined
 by the routing function (Section 4.5.3).

4.5.2.1 Invoking the Routing Function

 An ST agent that is setting up a stream invokes the routing function
 to find the next-hop to reach each of the targets specified by the
 target list provided by the application. This is similar to the
 routing decision in IP. However, in this case the route is to a
 multitude of targets with QoS requirements rather than to a single
 destination.

 The result of the routing function is a set of next-hop ST agents.
 The set of next-hops selected by the routing function is not
 necessarily the same as the set of next-hops that IP would select
 given a number of independent IP datagrams to the same destinations.
 The routing algorithm may attempt to optimize parameters other than
 the number of hops that the packets will take, such as delay, local
 network bandwidth consumption, or total internet bandwidth
 consumption. Alternatively, the routing algorithm may use a simple
 route lookup for each target.

 Once a next-hop is selected by the routing function, it persists for
 the whole stream lifetime, unless a network failure occurs.

4.5.2.2 Reserving Resources

 The ST agent invokes the Local Resource Manager (LRM) to perform the
 appropriate reservations. The ST agent presents the LRM with
 information including:

o the flow specification with the desired quality of service for the
 stream (Section 9),

o the version number associated with the flow specification
 (Section 9).

o information on the groups the stream is member in, if any
 (Section 7),

 The flow specification contains information needed by the LRM to
 allocate resources. The LRM updates the flow specification contents
 information before returning it to the ST agent. Section 9.2.3
 defines the fields of the flow specification to be updated by the
 LRM.

Delgrossi & Berger, Editors Experimental [Page 36]

RFC 1819 ST2+ Protocol Specification August 1995

 The membership of a stream in a group may affect the amount of
 resources that have to be allocated by the LRM, see Section 7.

4.5.3 Sending CONNECT Messages

 The ST agent sends a CONNECT message to each of the next-hop ST
 agents identified by the routing function. Each CONNECT message
 contains the SID, the selected stream options, the FlowSpec, and a
 TargetList. The format of the CONNECT message is defined by Section
 10.4.4. In general, the FlowSpec and TargetList depend on both the
 next-hop and the intervening network. Each TargetList is a subset of
 the original TargetList, identifying the targets that are to be
 reached through the next-hop to which the CONNECT message is being
 sent.

 The TargetList may be empty, see Section 4.5.3.1; if the TargetList
 causes a too long CONNECT message to be generated, the CONNECT
 message is partitioned as explained in Section 5.1.2. If multiple
 next-hops are to be reached through a network that supports network
 level multicast, a different CONNECT message must nevertheless be
 sent to each next-hop since each will have a different TargetList.

4.5.3.1 Empty Target List

 An application at the origin may request the local ST agent to create
 an empty stream. It does so by passing an empty TargetList to the
 local ST agent during the initial stream setup. When the local ST
 agent receives a request to create an empty stream, it allocates the
 stream ID (SID), updates its local database entries to store
 information on the new stream and notifies the application that
 stream setup is complete. The local ST agent does not generate any
 CONNECT message for streams with an empty TargetList. Targets may be
 later added by the origin, see Section 4.6.1, or they may
 autonomously join the stream, see Section 4.6.3.

4.5.4 CONNECT Processing by an Intermediate ST agent

 An ST agent receiving a CONNECT message, assuming no errors, responds
 to the previous-hop with an ACK. The ACK message must identify the
 CONNECT message to which it corresponds by including the reference
 number indicated by the Reference field of the CONNECT message. The
 intermediate ST agent calls the routing function, invokes the LRM to
 reserve resources, and then propagates the CONNECT messages to its
 next-hops, as described in the previous sections.

Delgrossi & Berger, Editors Experimental [Page 37]

RFC 1819 ST2+ Protocol Specification August 1995

4.5.5 CONNECT Processing at the Targets

 An ST agent that is the target of a CONNECT message, assuming no
 errors, responds to the previous-hop with an ACK. The ST agent
 invokes the LRM to reserve local resources and then queries the
 specified application process whether or not it is willing to accept
 the connection.

 The application is presented with parameters from the CONNECT message
 including the SID, the selected stream options, Origin, FlowSpec,
 TargetList, and Group, if any, to be used as a basis for its
 decision. The application is identified by a combination of the
 NextPcol field, from the Origin parameter, and the service access
 point, or SAP, field included in the correspondent (usually single
 remaining) Target of the TargetList. The contents of the SAP field
 may specify the port or other local identifier for use by the
 protocol layer above the host ST layer. Subsequently received data
 packets will carry the SID, that can be mapped into this information
 and be used for their delivery.

 Finally, based on the application’s decision, the ST agent sends to
 the previous-hop from which the CONNECT message was received either
 an ACCEPT or REFUSE message. Since the ACCEPT (or REFUSE) message has
 to be acknowledged by the previous-hop, it is assigned a new
 Reference number that will be returned in the ACK. The CONNECT
 message to which ACCEPT (or REFUSE) is a reply is identified by
 placing the CONNECT’s Reference number in the LnkReference field of
 ACCEPT (or REFUSE). The ACCEPT message contains the FlowSpec as
 accepted by the application at the target.

4.5.6 ACCEPT Processing by an Intermediate ST agent

 When an intermediate ST agent receives an ACCEPT, it first verifies
 that the message is a response to an earlier CONNECT. If not, it
 responds to the next-hop ST agent with an ERROR message, with
 ReasonCode (LnkRefUnknown). Otherwise, it responds to the next-hop ST
 agent with an ACK, and propagates the individual ACCEPT message to
 the previous-hop along the same path traced by the CONNECT but in the
 reverse direction toward the origin.

 The FlowSpec is included in the ACCEPT message so that the origin and
 intermediate ST agents can gain access to the information that was
 accumulated as the CONNECT traversed the internet. Note that the
 resources, as specified in the FlowSpec in the ACCEPT message, may
 differ from the resources that were reserved when the CONNECT was
 originally processed. Therefore, the ST agent presents the LRM with
 the FlowSpec included in the ACCEPT message. It is expected that each
 LRM adjusts local reservations releasing any excess resources. The

Delgrossi & Berger, Editors Experimental [Page 38]

RFC 1819 ST2+ Protocol Specification August 1995

 LRM may choose not to adjust local reservations when that adjustment
 may result in the loss of needed resources. It may also choose to
 wait to adjust allocated resources until all targets in transition
 have been accepted or refused.

 In the case where the intermediate ST agent is acting as the origin
 with respect to this target, see Section 4.6.3.1, the ACCEPT message
 is not propagated upstream.

4.5.7 ACCEPT Processing by the Origin

 The origin will eventually receive an ACCEPT (or REFUSE) message from
 each of the targets. As each ACCEPT is received, the application is
 notified of the target and the resources that were successfully
 allocated along the path to it, as specified in the FlowSpec
 contained in the ACCEPT message. The application may then use the
 information to either adopt or terminate the portion of the stream to
 each target.

 When an ACCEPT is received by the origin, the path to the target is
 considered to be established and the ST agent is allowed to forward
 the data along this path as explained in Section 2 and in Section
 3.1.

4.5.8 REFUSE Processing by the Intermediate ST agent

 If an application at a target does not wish to participate in the
 stream, it sends a REFUSE message back to the origin with ReasonCode
 (ApplDisconnect). An intermediate ST agent that receives a REFUSE
 message with ReasonCode (ApplDisconnect) acknowledges it by sending
 an ACK to the next-hop, invokes the LRM to adjusts reservations as
 appropriate, deletes the target entry from the internal database, and
 propagates the REFUSE message back to the previous-hop ST agent.

 In the case where the intermediate ST agent is acting as the origin
 with respect to this target, see Section 4.6.3.1, the REFUSE message
 is only propagated upstream when there are no more downstream agents
 participating in the stream. In this case, the agent indicates that
 the agent is to be removed from the stream propagating the REFUSE
 message with the G-bit set (1).

4.5.9 REFUSE Processing by the Origin

 When the REFUSE message reaches the origin, the ST agent at the
 origin sends an ACK and notifies the application that the target is
 no longer part of the stream and also if the stream has no remaining
 targets. If there are no remaining targets, the application may wish
 to terminate the stream, or keep the stream active to allow addition

Delgrossi & Berger, Editors Experimental [Page 39]

RFC 1819 ST2+ Protocol Specification August 1995

 of targets or stream joining as described in Section 4.6.3.

4.5.10 Other Functions during Stream Setup

 Some other functions have to be accomplished by an ST agent as
 CONNECT messages travel downstream and ACCEPT (or REFUSE) messages
 travel upstream during the stream setup phase. They were not
 mentioned in the previous sections to keep the discussion as simple
 as possible. These functions include:

 o computing the smallest Maximum Transmission Unit size over the path
 to the targets, as part of the MTU discovery mechanism presented in
 Section 8.6. This is done by updating the MaxMsgSize field of the
 CONNECT message, see Section 10.4.4. This value is carried back to
 origin in the MaxMsgSize field of the ACCEPT message, see Section
 10.4.1.

 o counting the number of IP clouds to be traversed to reach the
 targets, if any. IP clouds are traversed when the IP encapsulation
 mechanism is used. This mechanism described in Section 8.7.
 Encapsulating agents update the IPHops field of the CONNECT message,
 see Section 10.4.4. The resulting value is carried back to origin in
 the IPHops field of the ACCEPT message, see Section 10.4.1.

 o updating the RecoveryTimeout value for the stream based on what can
 the agent can support. This is part of the stream recovery
 mechanism, in Section 6.2. This is done by updating the
 RecoveryTimeout field of the CONNECT message, see Section 10.4.4.
 This value is carried back to origin in the RecoveryTimeout field of
 the ACCEPT message, see Section 10.4.1.

4.6 Modifying an Existing Stream

 Some applications may wish to modify a stream after it has been
 created. Possible changes include expanding a stream, reducing it,
 and changing its FlowSpec. The origin may add or remove targets as
 described in Section 4.6.1 and Section 4.6.2. Targets may request to
 join the stream as described in Section 4.6.3 or, they may decide to
 leave a stream as described in Section 4.6.4. Section 4.6.5 explains
 how to change a stream’s FlowSpec.

 As defined by Section 2, an ST agent can handle only one stream
 modification at a time. If a stream modification operation is already
 underway, further requests are queued and handled when the previous
 operation has been completed. This also applies to two subsequent
 requests of the same kind, e.g., two subsequent changes to the
 FlowSpec.

Delgrossi & Berger, Editors Experimental [Page 40]

RFC 1819 ST2+ Protocol Specification August 1995

4.6.1 The Origin Adding New Targets

 It is possible for an application at the origin to add new targets to
 an existing stream any time after the stream has been established.
 Before new targets are added, the application has to collect the
 necessary information on the new targets. Such information is passed
 to the ST agent at the origin.

 The ST agent at the origin issues a CONNECT message that contains the
 SID, the FlowSpec, and the TargetList specifying the new targets.
 This is similar to sending a CONNECT message during stream
 establishment, with the following exceptions: the origin checks that
 a) the SID is valid, b) the targets are not already members of the
 stream, c) that the LRM evaluates the FlowSpec of the new target to
 be the same as the FlowSpec of the existing stream, i.e., it requires
 an equal or smaller amount of resources to be allocated. If the
 FlowSpec of the new target does not match the FlowSpec of the
 existing stream, an error is generated with ReasonCode
 (FlowSpecMismatch). Functions to compare flow specifications are
 provided by the LRM, see Section 1.4.5.

 An intermediate ST agent that is already a participant in the stream
 looks at the SID and StreamCreationTime, and verifies that the stream
 is the same. It then checks if the intersection of the TargetList and
 the targets of the established stream is empty. If this is not the
 case, it responds with a REFUSE message with ReasonCode
 (TargetExists) that contains a TargetList of those targets that were
 duplicates. To indicate that the stream exists, and includes the
 listed targets, the ST agent sets to one (1) the E-bit of the REFUSE
 message, see Section 10.4.11. The agent then proceeds processing
 each new target in the TargetList.

 For each new target in the TargetList, processing is much the same as
 for the original CONNECT. The CONNECT is acknowledged, propagated,
 and network resources are reserved. Intermediate or target ST agents
 that are not already participants in the stream behave as in the case
 of stream setup (see Section 4.5.4 and Section 4.5.5).

4.6.2 The Origin Removing a Target

 It is possible for an application at the origin to remove existing
 targets of a stream any time after the targets have accepted the
 stream. The application at the origin specifies the set of targets
 that are to be removed and informs the local ST agent. Based on this
 information, the ST agent sends DISCONNECT messages with the
 ReasonCode (ApplDisconnect) to the next-hops relative to the targets.

Delgrossi & Berger, Editors Experimental [Page 41]

RFC 1819 ST2+ Protocol Specification August 1995

 An ST agent that receives a DISCONNECT message must acknowledge it by
 sending an ACK to the previous-hop. The ST agent updates its state
 and notifies the LRM of the target deletion so that the LRM can
 modify reservations as appropriate. When the DISCONNECT message
 reaches the target, the ST agent also notifies the application that
 the target is no longer part of the stream. When there are no
 remaining targets that can be reached through a particular next-hop,
 the ST agent informs the LRM and it deletes the next-hop from its
 next-hops set.

 SCMP also provides a flooding mechanism to delete targets that joined
 the stream without notifying the origin. The special case of target
 deletion via flooding is described in Section 5.7.

4.6.3 A Target Joining a Stream

 An application may request to join an existing stream. It has to
 collect information on the stream including the stream ID (SID) and
 the IP address of the stream’s origin. This can be done out-of-band,
 e.g., via regular IP. The information is then passed to the local ST
 agent. The ST agent generates a JOIN message containing the
 application’s request to join the stream and sends it toward the
 stream origin.

 An ST agent receiving a JOIN message, assuming no errors, responds
 with an ACK. The ACK message must identify the JOIN message to which
 it corresponds by including the Reference number indicated by the
 Reference field of the JOIN message. If the ST agent is not traversed
 by the stream that has to be joined, it propagates the JOIN message
 toward the stream’s origin. Once a JOIN message has been
 acknowledged, ST agents do not retain any state information related
 to the JOIN message.

 Eventually, an ST agent traversed by the stream or the stream’s
 origin itself is reached. This agent must respond to a received JOIN
 first with an ACK to the ST agent from which the message was
 received, then, it issues either a CONNECT or a JOIN-REJECT message
 and sends it toward the target. The response to the join request is
 based on the join authorization level associated with the stream, see
 Section 4.4.2:

o If the stream has authorization level #0 (refuse join):
 The ST agent sends a JOIN-REJECT message toward the target with
 ReasonCode (JoinAuthFailure).

o If the stream has authorization level #1 (ok, notify origin):
 The ST agent sends a CONNECT message toward the target with a
 TargetList including the target that requested to join the stream.

Delgrossi & Berger, Editors Experimental [Page 42]

RFC 1819 ST2+ Protocol Specification August 1995

 This eventually results in adding the target to the stream. When
 the ST agent receives the ACCEPT message indicating that the new
 target has been added, it does not propagate the ACCEPT message
 backwards (Section 4.5.6). Instead, it issues a NOTIFY message
 with ReasonCode (TargetJoined) so that upstream agents, including
 the origin, may add the new target to maintained state
 information. The NOTIFY message includes all target specific
 information.

o If the stream has authorization level #2 (ok):
 The ST agent sends a CONNECT message toward the target with a
 TargetList including the target that requested to join the stream.
 This eventually results in adding the target to the stream. When
 the ST agent receives the ACCEPT message indicating that the new
 target has been added, it does not propagate the ACCEPT message
 backwards (Section 4.5.6), nor does it notify the origin. A NOTIFY
 message is generated with ReasonCode (TargetJoined) if the target
 specific information needs to be propagated back to the origin. An
 example of such information is change in MTU, see Section 8.6.

4.6.3.1 Intermediate Agent (Router) as Origin

 When a stream has join authorization level #2, see Section 4.4.2, it
 is possible that the stream origin is unaware of some targets
 participating in the stream. In this case, the ST intermediate agent
 that first sent a CONNECT message to this target has to act as the
 stream origin for the given target. This includes:

o if the whole stream is deleted, the intermediate agent must
 disconnect the target.

o if the stream FlowSpec is changed, the intermediate agent must
 change the FlowSpec for the target as appropriate.

o proper handling of ACCEPT and REFUSE messages, without propagation
 to upstream ST agents.

o generation of NOTIFY messages when needed. (As described above.)

 The intermediate agent behaves normally for all other targets added
 to the stream as a consequence of a CONNECT message issued by the
 origin.

4.6.4 A Target Deleting Itself

 The application at the target may inform the local ST agent that it
 wants to be removed from the stream. The ST agent then forms a REFUSE
 message with the target itself as the only entry in the TargetList

Delgrossi & Berger, Editors Experimental [Page 43]

RFC 1819 ST2+ Protocol Specification August 1995

 and with ReasonCode (ApplDisconnect). The REFUSE message is sent back
 to the origin via the previous-hop. If a stream has multiple targets
 and one target leaves the stream using this REFUSE mechanism, the
 stream to the other targets is not affected; the stream continues to
 exist.

 An ST agent that receives a REFUSE message acknowledges it by sending
 an ACK to the next-hop. The target is deleted and the LRM is notified
 so that it adjusts reservations as appropriate. The REFUSE message is
 also propagated back to the previous-hop ST agent except in the case
 where the agent is acting as the origin. In this case a NOTIFY may be
 propagated instead, see Section 4.6.3.

 When the REFUSE reaches the origin, the origin sends an ACK and
 notifies the application that the target is no longer part of the
 stream.

4.6.5 Changing a Stream’s FlowSpec

 The application at the origin may wish to change the FlowSpec of an
 established stream. Changing the FlowSpec is a critical operation and
 it may even lead in some cases to the deletion of the affected
 targets. Possible problems with FlowSpec changes are discussed in
 Section 5.6.

 To change the stream’s FlowSpec, the application informs the ST agent
 at the origin of the new FlowSpec and of the list of targets relative
 to the change. The ST agent at the origin then issues one CHANGE
 message per next-hop including the new FlowSpec and sends it to the
 relevant next-hop ST agents. If the G-bit field of the CHANGE message
 is set (1), the change affects all targets in the stream.

 The CHANGE message contains a bit called I-bit, see Section 10.4.3.
 By default, the I-bit is set to zero (0) to indicate that the LRM is
 expected to try and perform the requested FlowSpec change without
 risking to tear down the stream. Applications that desire a higher
 probability of success and are willing to take the risk of breaking
 the stream can indicate this by setting the I-bit to one (1).
 Applications that require the requested modification in order to
 continue operating are expected to set this bit.

 An intermediate ST agent that receives a CHANGE message first sends
 an ACK to the previous-hop and then provides the FlowSpec to the LRM.
 If the LRM can perform the change, the ST agent propagates the CHANGE
 messages along the established paths.

Delgrossi & Berger, Editors Experimental [Page 44]

RFC 1819 ST2+ Protocol Specification August 1995

 If the whole process succeeds, the CHANGE messages will eventually
 reach the targets. Targets respond with an ACCEPT (or REFUSE) message
 that is propagated back to the origin. In processing the ACCEPT
 message on the way back to the origin, excess resources may be
 released by the LRM as described in Section 4.5.6. The REFUSE message
 must have the ReasonCode (ApplRefused).

 SCMP also provides a flooding mechanism to change targets that joined
 the stream without notifying the origin. The special case of target
 change via flooding is described in Section 5.7.

4.7 Stream Tear Down

 A stream is usually terminated by the origin when it has no further
 data to send. A stream is also torn down if the application should
 terminate abnormally or if certain network failures are encountered.
 Processing in this case is identical to the previous descriptions
 except that the ReasonCode (ApplAbort, NetworkFailure, etc.) is
 different.

 When all targets have left a stream, the origin notifies the
 application of that fact, and the application is then responsible for
 terminating the stream. Note, however, that the application may
 decide to add targets to the stream instead of terminating it, or may
 just leave the stream open with no targets in order to permit stream
 joins.

5. Exceptional Cases

 The previous descriptions covered the simple cases where everything
 worked. We now discuss what happens when things do not succeed.
 Included are situations where messages exceed a network MTU, are
 lost, the requested resources are not available, the routing fails or
 is inconsistent.

5.1 Long ST Messages

 It is possible that an ST agent, or an application, will need to send
 a message that exceeds a network’s Maximum Transmission Unit (MTU).
 This case must be handled but not via generic fragmentation, since
 ST2 does not support generic fragmentation of either data or control
 messages.

5.1.1 Handling of Long Data Packets

 ST agents discard data packets that exceed the MTU of the next-hop
 network. No error message is generated. Applications should avoid
 sending data packets larger than the minimum MTU supported by a given

Delgrossi & Berger, Editors Experimental [Page 45]

RFC 1819 ST2+ Protocol Specification August 1995

 stream. The application, both at the origin and targets, can learn
 the stream minimum MTU through the MTU discovery mechanism described
 in Section 8.6.

5.1.2 Handling of Long Control Packets

 Each ST agent knows the MTU of the networks to which it is connected,
 and those MTUs restrict the size of the SCMP message it can send. An
 SCMP message size can exceed the MTU of a given network for a number
 of reasons:

o the TargetList parameter (Section 10.3.6) may be too long;

o the RecordRoute parameter (Section 10.3.5) may be too long.

o the UserData parameter (Section 10.3.7) may be too long;

o the PDUInError field of the ERROR message (Section 10.4.6) may be
 too long;

 An ST agent receiving or generating a too long SCMP message should:

o break the message into multiple messages, each carrying part of the
 TargetList. Any RecordRoute and UserData parameters are replicated
 in each message for delivery to all targets. Applications that
 support a large number of targets may avoid using long TargetList
 parameters, and are expected to do so, by exploiting the stream
 joining functions, see Section 4.6.3. One exception to this rule
 exists. In the case of a long TargetList parameter to be included in
 a STATUS-RESPONSE message, the TargetList parameter is just
 truncated to the point where the list can fit in a single message,
 see Section 8.4.

o for down stream agents: if the TargetList parameter contains a
 single Target element and the message size is still too long, the ST
 agent should issue a REFUSE message with ReasonCode
 (RecordRouteSize) if the size of the RecordRoute parameter causes
 the SCMP message size to exceed the network MTU, or with ReasonCode
 (UserDataSize) if the size of the UserData parameter causes the SCMP
 message size to exceed the network MTU. If both RecordRoute and
 UserData parameters are present the ReasonCode (UserDataSize) should
 be sent. For messages generated at the target: the target ST agent
 must check for SCMP messages that may exceed the MTU on the complete
 target-to-origin path, and inform the application that a too long
 SCMP messages has been generated. The format for the error reporting
 is a local implementation issue. The error codes are the same as
 previously stated.

Delgrossi & Berger, Editors Experimental [Page 46]

RFC 1819 ST2+ Protocol Specification August 1995

 ST agents generating too long ERROR messages, simply truncate the
 PDUInError field to the point where the message is smaller than the
 network MTU.

5.2 Timeout Failures

 As described in Section 4.3, SCMP message delivery is made reliable
 through the use of acknowledgments, timeouts, and retransmission. The
 ACCEPT, CHANGE, CONNECT, DISCONNECT, JOIN, JOIN-REJECT, NOTIFY, and
 REFUSE messages must always be acknowledged, see Section 4.2. In
 addition, for some SCMP messages (CHANGE, CONNECT, JOIN) the sending
 ST agent also expects a response back (ACCEPT/REFUSE, CONNECT/JOIN-
 REJECT) after an ACK has been received. Also, the STATUS message must
 be answered with a STATUS-RESPONSE message.

 The following sections describe the handling of each of the possible
 failure cases due to timeout situations while waiting for an
 acknowledgment or a response. The timeout related variables, and
 their names, used in the next sections are for reference purposes
 only. They may be implementation specific. Different implementations
 are not required to share variable names, or even the mechanism by
 which the timeout and retransmission behavior is implemented.

5.2.1 Failure due to ACCEPT Acknowledgment Timeout

 An ST agent that sends an ACCEPT message upstream expects an ACK from
 the previous-hop ST agent. If no ACK is received before the ToAccept
 timeout expires, the ST agent should retry and send the ACCEPT
 message again. After NAccept unsuccessful retries, the ST agent sends
 a REFUSE message toward the origin, and a DISCONNECT message toward
 the targets. Both REFUSE and DISCONNECT must identify the affected
 targets and specify the ReasonCode (RetransTimeout).

5.2.2 Failure due to CHANGE Acknowledgment Timeout

 An ST agent that sends a CHANGE message downstream expects an ACK
 from the next-hop ST agent. If no ACK is received before the ToChange
 timeout expires, the ST agent should retry and send the CHANGE
 message again. After NChange unsuccessful retries, the ST agent
 aborts the change attempt by sending a REFUSE message toward the
 origin, and a DISCONNECT message toward the targets. Both REFUSE and
 DISCONNECT must identify the affected targets and specify the
 ReasonCode (RetransTimeout).

Delgrossi & Berger, Editors Experimental [Page 47]

RFC 1819 ST2+ Protocol Specification August 1995

5.2.3 Failure due to CHANGE Response Timeout

 Only the origin ST agent implements this timeout. After correctly
 receiving the ACK to a CHANGE message, an ST agent expects to receive
 an ACCEPT, or REFUSE message in response. If one of these messages is
 not received before the ToChangeResp timer expires, the ST agent at
 the origin aborts the change attempt, and behaves as if a REFUSE
 message with the E-bit set and with ReasonCode (ResponseTimeout) is
 received.

5.2.4 Failure due to CONNECT Acknowledgment Timeout

 An ST agent that sends a CONNECT message downstream expects an ACK
 from the next-hop ST agent. If no ACK is received before the
 ToConnect timeout expires, the ST agent should retry and send the
 CONNECT message again. After NConnect unsuccessful retries, the ST
 agent sends a REFUSE message toward the origin, and a DISCONNECT
 message toward the targets. Both REFUSE and DISCONNECT must identify
 the affected targets and specify the ReasonCode (RetransTimeout).

5.2.5 Failure due to CONNECT Response Timeout

 Only the origin ST agent implements this timeout. After correctly
 receiving the ACK to a CONNECT message, an ST agent expects to
 receive an ACCEPT or REFUSE message in response. If one of these
 messages is not received before the ToConnectResp timer expires, the
 origin ST agent aborts the connection setup attempt, acts as if a
 REFUSE message is received, and it sends a DISCONNECT message toward
 the targets. Both REFUSE and DISCONNECT must identify the affected
 targets and specify the ReasonCode (ResponseTimeout).

5.2.6 Failure due to DISCONNECT Acknowledgment Timeout

 An ST agent that sends a DISCONNECT message downstream expects an ACK
 from the next-hop ST agent. If no ACK is received before the
 ToDisconnect timeout expires, the ST agent should retry and send the
 DISCONNECT message again. After NDisconnect unsuccessful retries, the
 ST agent simply gives up and it assumes the next-hop ST agent is not
 part in the stream any more.

5.2.7 Failure due to JOIN Acknowledgment Timeout

 An ST agent that sends a JOIN message toward the origin expects an
 ACK from a neighbor ST agent. If no ACK is received before the ToJoin
 timeout expires, the ST agent should retry and send the JOIN message
 again. After NJoin unsuccessful retries, the ST agent sends a JOIN-
 REJECT message back in the direction of the target with ReasonCode
 (RetransTimeout).

Delgrossi & Berger, Editors Experimental [Page 48]

RFC 1819 ST2+ Protocol Specification August 1995

5.2.8 Failure due to JOIN Response Timeout

 Only the target agent implements this timeout. After correctly
 receiving the ACK to a JOIN message, the ST agent at the target
 expects to receive a CONNECT or JOIN-REJECT message in response. If
 one of these message is not received before the ToJoinResp timer
 expires, the ST agent aborts the stream join attempt and returns an
 error corresponding with ReasonCode (RetransTimeout) to the
 application.

 Note that, after correctly receiving the ACK to a JOIN message,
 intermediate ST agents do not maintain any state on the stream
 joining attempt. As a consequence, they do not set the ToJoinResp
 timer and do not wait for a CONNECT or JOIN-REJECT message. This is
 described in Section 4.6.3.

5.2.9 Failure due to JOIN-REJECT Acknowledgment Timeout

 An ST agent that sends a JOIN-REJECT message toward the target
 expects an ACK from a neighbor ST agent. If no ACK is received before
 the ToJoinReject timeout expires, the ST agent should retry and send
 the JOIN-REJECT message again. After NJoinReject unsuccessful
 retries, the ST agent simply gives up.

5.2.10 Failure due to NOTIFY Acknowledgment Timeout

 An ST agent that sends a NOTIFY message to a neighbor ST agent
 expects an ACK from that neighbor ST agent. If no ACK is received
 before the ToNotify timeout expires, the ST agent should retry and
 send the NOTIFY message again. After NNotify unsuccessful retries,
 the ST agent simply gives up and behaves as if the ACK message was
 received.

5.2.11 Failure due to REFUSE Acknowledgment Timeout

 An ST agent that sends a REFUSE message upstream expects an ACK from
 the previous-hop ST agent. If no ACK is received before the ToRefuse
 timeout expires, the ST agent should retry and send the REFUSE
 message again. After NRefuse unsuccessful retries, the ST agent gives
 up and it assumes it is not part in the stream any more.

5.2.12 Failure due to STATUS Response Timeout

 After sending a STATUS message to a neighbor ST agent, an ST agent
 expects to receive a STATUS-RESPONSE message in response. If this
 message is not received before the ToStatusResp timer expires, the ST
 agent sends the STATUS message again. After NStatus unsuccessful
 retries, the ST agent gives up and assumes that the neighbor ST agent

Delgrossi & Berger, Editors Experimental [Page 49]

RFC 1819 ST2+ Protocol Specification August 1995

 is not active.

5.3 Setup Failures due to Routing Failures

 It is possible for an ST agent to receive a CONNECT message that
 contains a known SID, but from an ST agent other than the previous-
 hop ST agent of the stream with that SID. This may be:

 1. that two branches of the tree forming the stream have joined
 back together,

 2. the result of an attempted recovery of a partially failed
 stream, or

 3. a routing loop.

 The TargetList contained in the CONNECT is used to distinguish the
 different cases by comparing each newly received target with those of
 the previously existing stream:

o if the IP address of the target(s) differ, it is case #1;

o if the target matches a target in the existing stream, it may be
 case #2 or #3.

 Case #1 is handled in Section 5.3.1, while the other cases are
 handled in Section 5.3.2.

5.3.1 Path Convergence

 It is possible for an ST agent to receive a CONNECT message that
 contains a known SID, but from an ST agent other than the previous-
 hop ST agent of the stream with that SID. This might be the result of
 two branches of the tree forming the stream have joined back
 together. Detection of this case and other possible sources was
 discussed in Section 5.2.

 SCMP does not allow for streams which have converged paths, i.e.,
 streams are always tree-shaped and not graph-like. At the point of
 convergence, the ST agent which detects the condition generates a
 REFUSE message with ReasonCode (PathConvergence). Also, as a help to
 the upstream ST agent, the detecting agent places the IP address of
 one of the stream’s connected targets in the ValidTargetIPAddress
 field of the REFUSE message. This IP address will be used by upstream
 ST agents to avoid splitting the stream.

 An upstream ST agent that receives the REFUSE with ReasonCode
 (PathConvergence) will check to see if the listed IP address is one

Delgrossi & Berger, Editors Experimental [Page 50]

RFC 1819 ST2+ Protocol Specification August 1995

 of the known stream targets. If it is not, the REFUSE is propagated
 to the previous-hop agent. If the listed IP address is known by the
 upstream ST agent, this ST agent is the ST agent that caused the
 split in the stream. (This agent may even be the origin.) This agent
 then avoids splitting the stream by using the next-hop of that known
 target as the next-hop for the refused targets. It sends a CONNECT
 with the affected targets to the existing valid next-hop.

 The above process will proceed, hop by hop, until the
 ValidTargetIPAddress matches the IP address of a known target. The
 only case where this process will fail is when the known target is
 deleted prior to the REFUSE propagating to the origin. In this case
 the origin can just reissue the CONNECT and start the whole process
 over again.

5.3.2 Other Cases

 The remaining cases including a partially failed stream and a routing
 loop, are not easily distinguishable. In attempting recovery of a
 failed stream, an ST agent may issue new CONNECT messages to the
 affected targets. Such a CONNECT may reach an ST agent downstream of
 the failure before that ST agent has received a DISCONNECT from the
 neighborhood of the failure. Until that ST agent receives the
 DISCONNECT, it cannot distinguish between a failure recovery and an
 erroneous routing loop. That ST agent must therefore respond to the
 CONNECT with a REFUSE message with the affected targets specified in
 the TargetList and an appropriate ReasonCode (StreamExists).

 The ST agent immediately preceding that point, i.e., the latest ST
 agent to send the CONNECT message, will receive the REFUSE message.
 It must release any resources reserved exclusively for traffic to the
 listed targets. If this ST agent was not the one attempting the
 stream recovery, then it cannot distinguish between a failure
 recovery and an erroneous routing loop. It should repeat the CONNECT
 after a ToConnect timeout, see Section 5.2.4. If after NConnect
 retransmissions it continues to receive REFUSE messages, it should
 propagate the REFUSE message toward the origin, with the TargetList
 that specifies the affected targets, but with a different ReasonCode
 (RouteLoop).

 The REFUSE message with this ReasonCode (RouteLoop) is propagated by
 each ST agent without retransmitting any CONNECT messages. At each ST
 agent, it causes any resources reserved exclusively for the listed
 targets to be released. The REFUSE will be propagated to the origin
 in the case of an erroneous routing loop. In the case of stream
 recovery, it will be propagated to the ST agent that is attempting
 the recovery, which may be an intermediate ST agent or the origin
 itself. In the case of a stream recovery, the ST agent attempting the

Delgrossi & Berger, Editors Experimental [Page 51]

RFC 1819 ST2+ Protocol Specification August 1995

 recovery may issue new CONNECT messages to the same or to different
 next-hops.

 If an ST agent receives both a REFUSE message and a DISCONNECT
 message with a target in common then it can, for the each target in
 common, release the relevant resources and propagate neither the
 REFUSE nor the DISCONNECT.

 If the origin receives such a REFUSE message, it should attempt to
 send a new CONNECT to all the affected targets. Since routing errors
 in an internet are assumed to be temporary, the new CONNECTs will
 eventually find acceptable routes to the targets, if one exists. If
 no further routes exist after NRetryRoute tries, the application
 should be informed so that it may take whatever action it seems
 necessary.

5.4 Problems due to Routing Inconsistency

 When an intermediate ST agent receives a CONNECT, it invokes the
 routing algorithm to select the next-hop ST agents based on the
 TargetList and the networks to which it is connected. If the
 resulting next-hop to any of the targets is across the same network
 from which it received the CONNECT (but not the previous-hop itself),
 there may be a routing problem. However, the routing algorithm at the
 previous- hop may be optimizing differently than the local algorithm
 would in the same situation. Since the local ST agent cannot
 distinguish the two cases, it should permit the setup but send back
 to the previous- hop ST agent an informative NOTIFY message with the
 appropriate ReasonCode (RouteBack), pertinent TargetList, and in the
 NextHopIPAddress element the address of the next-hop ST agent
 returned by its routing algorithm.

 The ST agent that receives such a NOTIFY should ACK it. If the ST
 agent is using an algorithm that would produce such behavior, no
 further action is taken; if not, the ST agent should send a
 DISCONNECT to the next-hop ST agent to correct the problem.

 Alternatively, if the next-hop returned by the routing function is in
 fact the previous-hop, a routing inconsistency has been detected. In
 this case, a REFUSE is sent back to the previous-hop ST agent
 containing an appropriate ReasonCode (RouteInconsist), pertinent
 TargetList, and in the NextHopIPAddress element the address of the
 previous-hop. When the previous-hop receives the REFUSE, it will
 recompute the next-hop for the affected targets. If there is a
 difference in the routing databases in the two ST agents, they may
 exchange CONNECT and REFUSE messages again. Since such routing errors
 in the internet are assumed to be temporary, the situation should
 eventually stabilize.

Delgrossi & Berger, Editors Experimental [Page 52]

RFC 1819 ST2+ Protocol Specification August 1995

5.5 Problems in Reserving Resources

 As mentioned in Section 1.4.5, resource reservation is handled by the
 LRM. The LRM may not be able to satisfy a particular request during
 stream setup or modification for a number of reasons, including a
 mismatched FlowSpec, an unknown FlowSpec version, an error in
 processing a FlowSpec, and an inability to allocate the requested
 resource. This section discusses these cases and specifies the
 ReasonCodes that should be used when these error cases are
 encountered.

5.5.1 Mismatched FlowSpecs

 In some cases the LRM may require a requested FlowSpec to match an
 existing FlowSpec, e.g., when adding new targets to an existing
 stream, see Section 4.6.1. In case of FlowSpec mismatch the LRM
 notifies the processing ST agent which should respond with ReasonCode
 (FlowSpecMismatch).

5.5.2 Unknown FlowSpec Version

 When the LRM is invoked, it is passed information including the
 version of the FlowSpec, see Section 4.5.2.2. If this version is not
 known by the LRM, the LRM notifies the ST agent. The ST agent should
 respond with a REFUSE message with ReasonCode (FlowVerUnknown).

5.5.3 LRM Unable to Process FlowSpec

 The LRM may encounter an LRM or FlowSpec specific error while
 attempting to satisfy a request. An example of such an error is given
 in Section 9.2.1. These errors are implementation specific and will
 not be enumerated with ST ReasonCodes. They are covered by a single,
 generic ReasonCode. When an LRM encounters such an error, it should
 notify the ST agent which should respond with the generic ReasonCode
 (FlowSpecError).

5.5.4 Insufficient Resources

 If the LRM cannot make the necessary reservations because sufficient
 resources are not available, an ST agent may:

o try alternative paths to the targets: the ST agent calls the routing
 function to find a different path to the targets. If an alternative
 path is found, stream connection setup continues in the usual way,
 as described in Section 4.5.

Delgrossi & Berger, Editors Experimental [Page 53]

RFC 1819 ST2+ Protocol Specification August 1995

o refuse to establish the stream along this path: the origin ST agent
 informs the application of the stream setup failure; intermediate
 and target ST agents issue a REFUSE message (as described in Section
 4.5.8) with ReasonCode (CantGetResrc).

 It depends on the local implementations whether an ST agent tries
 alternative paths or refuses to establish the stream. In any case, if
 enough resources cannot be found over different paths, the ST agent
 has to explicitly refuse to establish the stream.

5.6 Problems Caused by CHANGE Messages

 A CHANGE might fail for several reasons, including:

o insufficient resources: the request may be for a larger amount of
 network resources when those resources are not available, ReasonCode
 (CantGetResrc);

o a target application not agreeing to the change, ReasonCode
 (ApplRefused);

 The affected stream can be left in one of two states as a result of
 change failures: a) the stream can revert back to the state it was in
 prior to the CHANGE message being processed, or b) the stream may be
 torn down.

 The expected common case of failure will be when the requested change
 cannot be satisfied, but the pre-change resources remain allocated
 and available for use by the stream. In this case, the ST agent at
 the point where the failure occurred must inform upstream ST agents
 of the failure. (In the case where this ST agent is the target, there
 may not actually be a failure, the application may merely have not
 agreed to the change). The ST agent informs upstream ST agents by
 sending a REFUSE message with ReasonCode (CantGetResrc or
 ApplRefused). To indicate that the pre-change FlowSpec is still
 available and that the stream still exists, the ST agent sets the E-
 bit of the REFUSE message to one (1), see Section 10.4.11. Upstream
 ST agents receiving the REFUSE message inform the LRM so that it can
 attempt to revert back to the pre-change FlowSpec. It is permissible,
 but not desirable, for excess resources to remain allocated.

 For the case when the attempt to change the stream results in the
 loss of previously reserved resources, the stream is torn down. This
 can happen, for instance, when the I-bit is set (Section 4.6.5) and
 the LRM releases pre-change stream resources before the new ones are
 reserved, and neither new nor former resources are available. In this
 case, the ST agent where the failure occurs must inform other ST
 agents of the break in the affected portion of the stream. This is

Delgrossi & Berger, Editors Experimental [Page 54]

RFC 1819 ST2+ Protocol Specification August 1995

 done by the ST agent by sending a REFUSE message upstream and a
 DISCONNECT message downstream, both with the ReasonCode
 (CantGetResrc). To indicate that pre-change stream resources have
 been lost, the E-bit of the REFUSE message is set to zero (0).

 Note that a failure to change the resources requested for specific
 targets should not cause other targets in the stream to be deleted.

5.7 Unknown Targets in DISCONNECT and CHANGE

 The handling of unknown targets listed in a DISCONNECT or CHANGE
 message is dependent on a stream’s join authorization level, see
 Section 4.4.2. For streams with join authorization levels #0 and #1,
 see Section 4.4.2, all targets must be known. In this case, when
 processing a CHANGE message, the agent should generate a REFUSE
 message with ReasonCode (TargetUnknown). When processing a DISCONNECT
 message, it is possible that the DISCONNECT is a duplicate of an old
 request so the agent should respond as if it has successfully
 disconnected the target. That is, it should respond with an ACK
 message.

 For streams with join authorization level #2, it is possible that the
 origin is not aware of some targets that participate in the stream.
 The origin may delete or change these targets via the following
 flooding mechanism.

 If no next-hop ST agent can be associated with a target, the CHANGE/
 DISCONNECT message including the target is replicated to all known
 next-hop ST agents. This has the effect of propagating the CHANGE/
 DISCONNECT message to all downstream ST agents. Eventually, the ST
 agent that acts as the origin for the target (Section 4.6.3.1) is
 reached and the target is deleted.

 Target deletion/change via flooding is not expected to be the normal
 case. It is included to present the applications with uniform
 capabilities for all stream types. Flooding only applies to streams
 with join authorization level #2.

6. Failure Detection and Recovery

6.1 Failure Detection

 The SCMP failure detection mechanism is based on two assumptions:

1. If a neighbor of an ST agent is up, and has been up without a
 disruption, and has not notified the ST agent of a problem with
 streams that pass through both, then the ST agent can assume that
 there has not been any problem with those streams.

Delgrossi & Berger, Editors Experimental [Page 55]

RFC 1819 ST2+ Protocol Specification August 1995

2. A network through which an ST agent has routed a stream will notify
 the ST agent if there is a problem that affects the stream data
 packets but does not affect the control packets.

 The purpose of the robustness protocol defined here is for ST agents
 to determine that the streams through a neighbor have been broken by
 the failure of the neighbor or the intervening network. This protocol
 should detect the overwhelming majority of failures that can occur.
 Once a failure is detected, the recovery procedures described in
 Section 6.2 are initiated by the ST agents.

6.1.1 Network Failures

 An ST agent can detect network failures by two mechanisms:

 o the network can report a failure, or

 o the ST agent can discover a failure by itself.

 They differ in the amount of information that an ST agent has
 available to it in order to make a recovery decision. For example, a
 network may be able to report that reserved bandwidth has been lost
 and the reason for the loss and may also report that connectivity to
 the neighboring ST agent remains intact. On the other hand, an ST
 agent may discover that communication with a neighboring ST agent has
 ceased because it has not received any traffic from that neighbor in
 some time period. If an ST agent detects a failure, it may not be
 able to determine if the failure was in the network while the
 neighbor remains available, or the neighbor has failed while the
 network remains intact.

6.1.2 Detecting ST Agents Failures

 Each ST agent periodically sends each neighbor with which it shares
 one or more streams a HELLO message. This message exchange is between
 ST agents, not entities representing streams or applications. That
 is, an ST agent need only send a single HELLO message to a neighbor
 regardless of the number of streams that flow between them. All ST
 agents (host as well as intermediate) must participate in this
 exchange. However, only ST agents that share active streams can
 participate in this exchange and it is an error to send a HELLO
 message to a neighbor ST agent with no streams in common, e.g., to
 check whether it is active. STATUS messages can be used to poll the
 status of neighbor ST agents, see Section 8.4.

 For the purpose of HELLO message exchange, stream existence is
 bounded by ACCEPT and DISCONNECT/REFUSE processing and is defined for
 both the upstream and downstream case. A stream to a previous-hop is

Delgrossi & Berger, Editors Experimental [Page 56]

RFC 1819 ST2+ Protocol Specification August 1995

 defined to start once an ACCEPT message has been forwarded upstream.
 A stream to a next-hop is defined to start once the received ACCEPT
 message has been acknowledged. A stream is defined to terminate once
 an acknowledgment is sent for a received DISCONNECT or REFUSE
 message, and an acknowledgment for a sent DISCONNECT or REFUSE
 message has been received.

 The HELLO message has two fields:

 o a HelloTimer field that is in units of milliseconds modulo the
 maximum for the field size, and

 o a Restarted-bit specifying that the ST agent has been restarted
 recently.

 The HelloTimer must appear to be incremented every millisecond
 whether a HELLO message is sent or not. The HelloTimer wraps around
 to zero after reaching the maximum value. Whenever an ST agent
 suffers a catastrophic event that may result in it losing ST state
 information, it must reset its HelloTimer to zero and must set the
 Restarted-bit in all HELLO messages sent in the following
 HelloTimerHoldDown seconds.

 If an ST agent receives a HELLO message that contains the Restarted-
 bit set, it must assume that the sending ST agent has lost its state.
 If it shares streams with that neighbor, it must initiate stream
 recovery activity, see Section 6.2. If it does not share streams with
 that neighbor, it should not attempt to create one until that bit is
 no longer set. If an ST agent receives a CONNECT message from a
 neighbor whose Restarted-bit is still set, the agent must respond
 with an ERROR message with the appropriate ReasonCode
 (RestartRemote). If an agent receives a CONNECT message while the
 agent’s own Restarted- bit is set, the agent must respond with an
 ERROR message with the appropriate ReasonCode (RestartLocal).

 Each ST stream has an associated RecoveryTimeout value. This value is
 assigned by the origin and carried in the CONNECT message, see
 Section 4.5.10. Each agent checks to see if it can support the
 requested value. If it can not, it updates the value to the smallest
 timeout interval it can support. The RecoveryTimeout used by a
 particular stream is obtained from the ACCEPT message, see Section
 4.5.10, and is the smallest value seen across all ACCEPT messages
 from participating targets.

 An ST agent must send HELLO messages to its neighbor with a period
 shorter than the smallest RecoveryTimeout of all the active streams
 that pass between the two ST agents, regardless of direction. This
 period must be smaller by a factor, called HelloLossFactor, which is

Delgrossi & Berger, Editors Experimental [Page 57]

RFC 1819 ST2+ Protocol Specification August 1995

 at least as large as the greatest number of consecutive HELLO
 messages that could credibly be lost while the communication between
 the two ST agents is still viable.

 An ST agent may send simultaneous HELLO messages to all its neighbors
 at the rate necessary to support the smallest RecoveryTimeout of any
 active stream. Alternately, it may send HELLO messages to different
 neighbors independently at different rates corresponding to
 RecoveryTimeouts of individual streams.

 An ST agent must expect to receive at least one new HELLO message
 from each neighbor at least as frequently as the smallest
 RecoveryTimeout of any active stream in common with that neighbor.
 The agent can detect duplicate or delayed HELLO messages by comparing
 the HelloTimer field of the most recent valid HELLO message from that
 neighbor with the HelloTimer field of an incoming HELLO message.
 Valid incoming HELLO messages will have a HelloTimer field that is
 greater than the field contained in the previously received valid
 HELLO message by the time elapsed since the previous message was
 received. Actual evaluation of the elapsed time interval should take
 into account the maximum likely delay variance from that neighbor.

 If the ST agent does not receive a valid HELLO message within the
 RecoveryTimeout period of a stream, it must assume that the
 neighboring ST agent or the communication link between the two has
 failed and it must initiate stream recovery activity, as described
 below in Section 6.2.

6.2 Failure Recovery

 If an intermediate ST agent fails or a network or part of a network
 fails, the previous-hop ST agent and the various next-hop ST agents
 will discover the fact by the failure detection mechanism described
 in Section 6.1.

 The recovery of an ST stream is a relatively complex and time
 consuming effort because it is designed in a general manner to
 operate across a large number of networks with diverse
 characteristics. Therefore, it may require information to be
 distributed widely, and may require relatively long timers. On the
 other hand, since a network is typically a homogeneous system,
 failure recovery in the network may be a relatively faster and
 simpler operation. Therefore an ST agent that detects a failure
 should attempt to fix the network failure before attempting recovery
 of the ST stream. If the stream that existed between two ST agents
 before the failure cannot be reconstructed by network recovery
 mechanisms alone, then the ST stream recovery mechanism must be
 invoked.

Delgrossi & Berger, Editors Experimental [Page 58]

RFC 1819 ST2+ Protocol Specification August 1995

 If stream recovery is necessary, the different ST agents will need to
 perform different functions, depending on their relation to the
 failure:

o An ST agent that is a next-hop from a failure should first verify
 that there was a failure. It can do this using STATUS messages to
 query its upstream neighbor. If it cannot communicate with that
 neighbor, then for each active stream from that neighbor it should
 first send a REFUSE message upstream with the appropriate ReasonCode
 (STAgentFailure). This is done to the neighbor to speed up the
 failure recovery in case the hop is unidirectional, i.e., the
 neighbor can hear the ST agent but the ST agent cannot hear the
 neighbor. The ST agent detecting the failure must then, for each
 active stream from that neighbor, send DISCONNECT messages with the
 same ReasonCode toward the targets. All downstream ST agents process
 this DISCONNECT message just like the DISCONNECT that tears down the
 stream. If recovery is successful, targets will receive new CONNECT
 messages.

o An ST agent that is the previous-hop before the failed component
 first verifies that there was a failure by querying the downstream
 neighbor using STATUS messages. If the neighbor has lost its state
 but is available, then the ST agent may try and reconstruct
 (explained below) the affected streams, for those streams that do
 not have the NoRecovery option selected. If it cannot communicate
 with the next-hop, then the ST agent detecting the failure sends a
 DISCONNECT message, for each affected stream, with the appropriate
 ReasonCode (STAgentFailure) toward the affected targets. It does so
 to speed up failure recovery in case the communication may be
 unidirectional and this message might be delivered successfully.

 Based on the NoRecovery option, the ST agent that is the previous-hop
 before the failed component takes the following actions:

o If the NoRecovery option is selected, then the ST agent sends, per
 affected stream, a REFUSE message with the appropriate ReasonCode
 (STAgentFailure) to the previous-hop. The TargetList in these
 messages contains all the targets that were reached through the
 broken branch. As discussed in Section 5.1.2, multiple REFUSE
 messages may be required if the PDU is too long for the MTU of the
 intervening network. The REFUSE message is propagated all the way to
 the origin. The application at the origin can attempt recovery of
 the stream by sending a new CONNECT to the affected targets. For
 established streams, the new CONNECT will be treated by intermediate
 ST agents as an addition of new targets into the established stream.

Delgrossi & Berger, Editors Experimental [Page 59]

RFC 1819 ST2+ Protocol Specification August 1995

o If the NoRecovery option is not selected, the ST agent can attempt
 recovery of the affected streams. It does so one a stream by stream
 basis by issuing a new CONNECT message to the affected targets. If
 the ST agent cannot find new routes to some targets, or if the only
 route to some targets is through the previous-hop, then it sends one
 or more REFUSE messages to the previous-hop with the appropriate
 ReasonCode (CantRecover) specifying the affected targets in the
 TargetList. The previous-hop can then attempt recovery of the stream
 by issuing a CONNECT to those targets. If it cannot find an
 appropriate route, it will propagate the REFUSE message toward the
 origin.

 Regardless of which ST agent attempts recovery of a damaged stream,
 it will issue one or more CONNECT messages to the affected targets.
 These CONNECT messages are treated by intermediate ST agents as
 additions of new targets into the established stream. The FlowSpecs
 of the new CONNECT messages are the same as the ones contained in the
 most recent CONNECT or CHANGE messages that the ST agent had sent
 toward the affected targets when the stream was operational.

 Upon receiving an ACCEPT during the a stream recovery, the agent
 reconstructing the stream must ensure that the FlowSpec and other
 stream attributes (e.g., MaxMsgSize and RecoveryTimeout) of the re-
 established stream are equal to, or are less restrictive, than the
 pre-failure stream. If they are more restrictive, the recovery
 attempt must be aborted. If they are equal, or are less restrictive,
 then the recovery attempt is successful. When the attempt is a
 success, failure recovery related ACCEPTs are not forwarded upstream
 by the recovering agent.

 Any ST agent that decides that enough recovery attempts have been
 made, or that recovery attempts have no chance of succeeding, may
 indicate that no further attempts at recovery should be made. This is
 done by setting the N-bit in the REFUSE message, see Section 10.4.11.
 This bit must be set by agents, including the target, that know that
 there is no chance of recovery succeeding. An ST agent that receives
 a REFUSE message with the N-bit set (1) will not attempt recovery,
 regardless of the NoRecovery option, and it will set the N-bit when
 propagating the REFUSE message upstream.

6.2.1 Problems in Stream Recovery

 The reconstruction of a broken stream may not proceed smoothly. Since
 there may be some delay while the information concerning the failure
 is propagated throughout an internet, routing errors may occur for
 some time after a failure. As a result, the ST agent attempting the
 recovery may receive ERROR messages for the new CONNECTs that are
 caused by internet routing errors. The ST agent attempting the

Delgrossi & Berger, Editors Experimental [Page 60]

RFC 1819 ST2+ Protocol Specification August 1995

 recovery should be prepared to resend CONNECTs before it succeeds in
 reconstructing the stream. If the failure partitions the internet and
 a new set of routes cannot be found to the targets, the REFUSE
 messages will eventually be propagated to the origin, which can then
 inform the application so it can decide whether to terminate or to
 continue to attempt recovery of the stream.

 The new CONNECT may at some point reach an ST agent downstream of the
 failure before the DISCONNECT does. In this case, the ST agent that
 receives the CONNECT is not yet aware that the stream has suffered a
 failure, and will interpret the new CONNECT as resulting from a
 routing failure. It will respond with an ERROR message with the
 appropriate ReasonCode (StreamExists). Since the timeout that the ST
 agents immediately preceding the failure and immediately following
 the failure are approximately the same, it is very likely that the
 remnants of the broken stream will soon be torn down by a DISCONNECT
 message. Therefore, the ST agent that receives the ERROR message with
 ReasonCode (StreamExists) should retransmit the CONNECT message after
 the ToConnect timeout expires. If this fails again, the request will
 be retried for NConnect times. Only if it still fails will the ST
 agent send a REFUSE message with the appropriate ReasonCode
 (RouteLoop) to its previous-hop. This message will be propagated back
 to the ST agent that is attempting recovery of the damaged stream.
 That ST agent can issue a new CONNECT message if it so chooses. The
 REFUSE is matched to a CONNECT message created by a recovery
 operation through the LnkReference field in the CONNECT.

 ST agents that have propagated a CONNECT message and have received a
 REFUSE message should maintain this information for some period of
 time. If an ST agent receives a second CONNECT message for a target
 that recently resulted in a REFUSE, that ST agent may respond with a
 REFUSE immediately rather than attempting to propagate the CONNECT.
 This has the effect of pruning the tree that is formed by the
 propagation of CONNECT messages to a target that is not reachable by
 the routes that are selected first. The tree will pass through any
 given ST agent only once, and the stream setup phase will be
 completed faster.

 If a CONNECT message reaches a target, the target should as
 efficiently as possible use the state that it has saved from before
 the stream failed during recovery of the stream. It will then issue
 an ACCEPT message toward the origin. The ACCEPT message will be
 intercepted by the ST agent that is attempting recovery of the
 damaged stream, if not the origin. If the FlowSpec contained in the
 ACCEPT specifies the same selection of parameters as were in effect
 before the failure, then the ST agent that is attempting recovery
 will not propagate the ACCEPT. FlowSpec comparison is done by the
 LRM. If the selections of the parameters are different, then the ST

Delgrossi & Berger, Editors Experimental [Page 61]

RFC 1819 ST2+ Protocol Specification August 1995

 agent that is attempting recovery will send the origin a NOTIFY
 message with the appropriate ReasonCode (FailureRecovery) that
 contains a FlowSpec that specifies the new parameter values. The
 origin may then have to change its data generation characteristics
 and the stream’s parameters with a CHANGE message to use the newly
 recovered subtree.

6.3 Stream Preemption

 As mentioned in Section 1.4.5, it is possible that the LRM decides to
 break a stream intentionally. This is called stream preemption.
 Streams are expected to be preempted in order to free resources for a
 new stream which has a higher priority.

 If the LRM decides that it is necessary to preempt one or more of the
 stream traversing it, the decision on which streams have to be
 preempted has to be made. There are two ways for an application to
 influence such decision:

 1. based on FlowSpec information. For instance, with the ST2+
 FlowSpec, streams can be assigned a precedence value from 0
 (least important) to 256 (most important). This value is
 carried in the FlowSpec when the stream is setup, see Section
 9.2, so that the LRM is informed about it.

 2. with the group mechanism. An application may specify that a set
 of streams are related to each other and that they are all
 candidate for preemption if one of them gets preempted. It can
 be done by using the fate-sharing relationship defined in
 Section 7.1.2. This helps the LRM making a good choice when
 more than one stream have to be preempted, because it leads to
 breaking a single application as opposed to as many
 applications as the number of preempted streams.

 If the LRM preempts a stream, it must notify the local ST agent. The
 following actions are performed by the ST agent:

o The ST agent at the host where the stream was preempted sends
 DISCONNECT messages with the appropriate ReasonCode
 (StreamPreempted) toward the affected targets. It sends a REFUSE
 message with the appropriate ReasonCode (StreamPreempted) to the
 previous-hop.

o A previous-hop ST agent of the preempted stream acts as in case of
 failure recovery, see Section 6.2.

o A next-hop ST agent of the preempted stream acts as in case of
 failure recovery, see Section 6.2.

Delgrossi & Berger, Editors Experimental [Page 62]

RFC 1819 ST2+ Protocol Specification August 1995

 Note that, as opposite to failure recovery, there is no need to
 verify that the failure actually occurred, because this is explicitly
 indicated by the ReasonCode (StreamPreempted).

7. A Group of Streams

 There may be need to associate related streams. The group mechanism
 is simply an association technique that allows ST agents to identify
 the different streams that are to be associated.

 A group consists of a set of streams and a relationship. The set of
 streams may be empty. The relationship applies to all group members.
 Each group is identified by a group name. The group name must be
 globally unique.

 Streams belong to the same group if they have the same GroupName in
 the GroupName field of the Group parameter, see Section 10.3.2. The
 relationship is defined by the Relationship field. Group membership
 must be specified at stream creation time and persists for the whole
 stream lifetime. A single stream may belong to multiple groups.

 The ST agent that creates a new group is called group initiator. Any
 ST agent can be a group initiator. The initiator allocates the
 GroupName and the Relationship among group members. The initiator may
 or may not be the origin of a stream belonging to the group.
 GroupName generation is described in Section 8.2.

7.1 Basic Group Relationships

 This version of ST defines four basic group relationships. An ST2+
 implementation must support all four basic relationships. Adherence
 to specified relationships are usually best effort. The basic
 relationships are described in detail below in Section 7.1.1 -
 Section 7.1.4.

7.1.1 Bandwidth Sharing

 Streams associated with the same group share the same network
 bandwidth. The intent is to support applications such as audio
 conferences where, of all participants, only some are allowed to
 speak at one time. In such a scenario, global bandwidth utilization
 can be lowered by allocating only those resources that can be used at
 once, e.g., it is sufficient to reserve bandwidth for a small set of
 audio streams.

 The basic concept of a shared bandwidth group is that the LRM will
 allocate up to some specified multiplier of the most demanding stream
 that it knows about in the group. The LRM will allocate resources

Delgrossi & Berger, Editors Experimental [Page 63]

RFC 1819 ST2+ Protocol Specification August 1995

 incrementally, as stream setup requests are received, until the total
 group requirements are satisfied. Subsequent setup requests will
 share the group’s resources and will not need any additional
 resources allocated. The procedure will result in standard allocation
 where only one stream in a group traverses an agent, and shared
 allocations where multiple streams traverse an agent.

 To illustrate, let’s call the multiplier mentioned above "N", and the
 most demanding stream that an agent knows about in a group Bmax. For
 an application that intends to allow three participants to speak at
 the same time, N has a value of three and each LRM will allocate for
 the group an amount of bandwidth up to 3*Bmax even when there are
 many more steams in the group. The LRM will reserve resources
 incrementally, per stream request, until N*Bmax resources are
 allocated. Each agent may be traversed by a different set and number
 of streams all belonging to the same group.

 An ST agent receiving a stream request presents the LRM with all
 necessary group information, see Section 4.5.2.2. If maximum
 bandwidth, N*Bmax, for the group has already been allocated and a new
 stream with a bandwidth demand less than Bmax is being established,
 the LRM won’t allocate any further bandwidth.

 If there is less than N*Bmax resources allocated, the LRM will expand
 the resources allocated to the group by the amount requested in the
 new FlowSpec, up to N*Bmax resources. The LRM will update the
 FlowSpec based on what resources are available to the stream, but not
 the total resources allocated for the group.

 It should be noted that ST agents and LRMs become aware of a group’s
 requirements only when the streams belonging to the group are
 created. In case of the bandwidth sharing relationship, an
 application should attempt to establish the most demanding streams
 first to minimize stream setup efforts. If on the contrary the less
 demanding streams are built first, it will be always necessary to
 allocate additional bandwidth in consecutive steps as the most
 demanding streams are built. It is also up to the applications to
 coordinate their different FlowSpecs and decide upon an appropriate
 value for N.

7.1.2 Fate Sharing

 Streams belonging to this group share the same fate. If a stream is
 deleted, the other members of the group are also deleted. This is
 intended to support stream preemption by indicating which streams are
 mutually related. If preemption of multiple streams is necessary,
 this information can be used by the LRM to delete a set of related
 streams, e.g., with impact on a single application, instead of making

Delgrossi & Berger, Editors Experimental [Page 64]

RFC 1819 ST2+ Protocol Specification August 1995

 a random choice with the possible effect of interrupting several
 different applications. This attribute does not apply to normal
 stream shut down, i.e., ReasonCode (ApplDisconnect). On normal
 disconnect, other streams belonging to such groups remain active.

 This relationship provides a hint on which streams should be
 preempted. Still, the LRM responsible for the preemption is not
 forced to behave accordingly, and other streams could be preempted
 first based on different criteria.

7.1.3 Route Sharing

 Streams belonging to this group share the same paths as much as is
 possible. This can be desirable for several reasons, e.g., to exploit
 the same allocated resources or in the attempt to maintain the
 transmission order. An ST agent attempts to select the same path
 although the way this is implemented depends heavily on the routing
 algorithm which is used.

 If the routing algorithm is sophisticated enough, an ST agent can
 suggest that a stream is routed over an already established path.
 Otherwise, it can ask the routing algorithm for a set of legal routes
 to the destination and check whether the desired path is included in
 those feasible.

 Route sharing is a hint to the routing algorithm used by ST. Failing
 to route a stream through a shared path should not prevent the
 creation of a new stream or result in the deletion of an existing
 stream.

7.1.4 Subnet Resources Sharing

 This relationship provides a hint to the data link layer functions.
 Streams belonging to this group may share the same MAC layer
 resources. As an example, the same MAC layer multicast address may be
 used for all the streams in a given group. This mechanism allows for
 a better utilization of MAC layer multicast addresses and it is
 especially useful when used with network adapters that offer a very
 small number of MAC layer multicast addresses.

7.2 Relationships Orthogonality

 The four basic relationships, as they have been defined, are
 orthogonal. This means, any combinations of the basic relationships
 are allowed. For instance, let’s consider an application that
 requires full-duplex service for a stream with multiple targets.
 Also, let’s suppose that only N targets are allowed to send data back
 to the origin at the same time. In this scenario, all the reverse

Delgrossi & Berger, Editors Experimental [Page 65]

RFC 1819 ST2+ Protocol Specification August 1995

 streams could belong to the same group. They could be sharing both
 the paths and the bandwidth attributes. The Path&Bandwidth sharing
 relationship is obtained from the basic set of relationships. This
 example is important because it shows how full-duplex service can be
 efficiently obtained in ST.

8. Ancillary Functions

 Certain functions are required by ST host and intermediate agent
 implementations. Such functions are described in this section.

8.1 Stream ID Generation

 The stream ID, or SID, is composed of 16-bit unique identifier and
 the stream origin’s 32-bit IP address. Stream IDs must be globally
 unique. The specific definition and format of the 16 -bit field is
 left to the implementor. This field is expected to have only local
 significance.

 An ST implementation has to provide a stream ID generator facility,
 so that an application or higher layer protocol can obtain a unique
 IDs from the ST layer. This is a mechanism for the application to
 request the allocation of stream ID that is independent of the
 request to create a stream. The Stream ID is used by the application
 or higher layer protocol when creating the streams.

 For instance, the following two functions could be made available:

 o AllocateStreamID() -> result, StreamID

 o ReleaseStreamID(StreamID) -> result

 An implementation may also provide a StreamID deletion function.

8.2 Group Name Generator

 GroupName generation is similar to Stream ID generation. The
 GroupName includes a 16-bit unique identifier, a 32-bit creation
 timestamp, and a 32-bit IP address. Group names are globally unique.
 A GroupName includes the creator’s IP address, so this reduces a
 global uniqueness problem to a simple local problem. The specific
 definitions and formats of the 16-bit field and the 32-bit creation
 timestamp are left to the implementor. These fields must be locally
 unique, and only have local significance.

 An ST implementation has to provide a group name generator facility,
 so that an application or higher layer protocol can obtain a unique
 GroupName from the ST layer. This is a mechanism for the application

Delgrossi & Berger, Editors Experimental [Page 66]

RFC 1819 ST2+ Protocol Specification August 1995

 to request the allocation of a GroupName that is independent of the
 request to create a stream. The GroupName is used by the application
 or higher layer protocol when creating the streams that are to be
 part of the group.

 For instance, the following two functions could be made available:

 o AllocateGroupName() -> result, GroupName

 o ReleaseGroupName(GroupName) -> result

 An implementation may also provide a GroupName deletion function.

8.3 Checksum Computation

 The standard Internet checksum algorithm is used for ST: "The
 checksum field is the 16-bit one’s complement of the one’s complement
 sum of all 16-bit words in the header. For purposes of computing the
 checksum, the value of the checksum field is zero (0)." See
 [RFC1071], [RFC1141], and [RFC791] for suggestions for efficient
 checksum algorithms.

8.4 Neighbor ST Agent Identification and Information Collection

 The STATUS message can be used to collect information about neighbor
 ST agents, streams the neighbor supports, and specific targets of
 streams the neighbor supports. An agent receiving a STATUS message
 provides the requested information via a STATUS-RESPONSE message.

 The STATUS message can be used to collect different information from
 a neighbor. It can be used to:

o identify ST capable neighbors. If an ST agent wishes to check if
 a neighbor is ST capable, it should generate a STATUS message with
 an SID which has all its fields set to zero. An agent receiving a
 STATUS message with such SID should answer with a STATUS-RESPONSE
 containing the same SID, and no other stream information. The
 receiving ST agent must answer as soon as possible to aid in Round
 Trip Time estimation, see Section 8.5;

o obtain information on a particular stream. If an ST agent wishes to
 check a neighbor’s general information related to a specific
 stream, it should generate a STATUS message containing the stream’s
 SID. An ST agent receiving such a message, will first check to see
 if the stream is known. If not known, the receiving ST agent sends a
 STATUS-RESPONSE containing the same SID, and no other stream
 information. If the stream is known, the receiving ST agent sends a
 STATUS-RESPONSE containing the stream’s SID, IPHops, FlowSpec, group

Delgrossi & Berger, Editors Experimental [Page 67]

RFC 1819 ST2+ Protocol Specification August 1995

 membership (if any), and as many targets as can be included in a
 single message as limited by MTU, see Section 5.1.2. Note that all
 targets may not be included in a response to a request for general
 stream information. If information on a specific target in a stream
 is desired, the mechanism described next should be used.

o obtain information on particular targets in a stream. If an ST agent
 wishes to check a neighbor’s information related to one or more
 specific targets of a specific stream, it should generate a STATUS
 message containing the stream’s SID and a TargetList parameter
 listing the relevant targets. An ST agent receiving such a message,
 will first check to see if the stream and target are known. If the
 stream is not known, the agent follows the process described above.
 If both the stream and targets are known, the agent responds with
 STATUS-RESPONSE containing the stream’s SID, IPHops, FlowSpec, group
 membership (if any), and the requested targets that are known. If
 the stream is known but the target is not, the agent responds with a
 STATUS-RESPONSE containing the stream’s SID, IPHops, FlowSpec, group
 membership (if any), but no targets.

 The specific formats for STATUS and STATUS-RESPONSE messages are
 defined in Section 10.4.12 and Section 10.4.13.

8.5 Round Trip Time Estimation

 SCMP is made reliable through use of retransmission when an expected
 acknowledgment is not received in a timely manner. Timeout and
 retransmission algorithms are implementation dependent and are
 outside the scope of this document. However, it must be reasonable
 enough not to cause excessive retransmission of SCMP messages while
 maintaining the robustness of the protocol. Algorithms on this
 subject are described in [WoHD95], [Jaco88], [KaPa87].

 Most existing algorithms are based on an estimation of the Round Trip
 Time (RTT) between two hosts. With SCMP, if an ST agent wishes to
 have an estimate of the RTT to and from a neighbor, it should
 generate a STATUS message with an SID which has all its fields set to
 zero. An ST agent receiving a STATUS message with such SID should
 answer as rapidly as possible with a STATUS-RESPONSE message
 containing the same SID, and no other stream information. The time
 interval between the send and receive operations can be used as an
 estimate of the RTT to and from the neighbor.

8.6 Network MTU Discovery

 At connection setup, the application at the origin asks the local ST
 agent to create streams with certain QoS requirements. The local ST
 agent fills out its network MTU value in the MaxMsgSize parameter in

Delgrossi & Berger, Editors Experimental [Page 68]

RFC 1819 ST2+ Protocol Specification August 1995

 the CONNECT message and forwards it to the next-hop ST agents. Each
 ST agent in the path checks to see if it’s network MTU is smaller
 than the one specified in the CONNECT message and, if it is, the ST
 agent updates the MaxMsgSize in the CONNECT message to it’s network
 MTU. If the target application decides to accept the stream, the ST
 agent at the target copies the MTU value in the CONNECT message to
 the MaxMsgSize field in the ACCEPT message and sends it back to the
 application at the origin. The MaxMsgSize field in the ACCEPT message
 is the minimum MTU of the intervening networks to that target. If the
 application has multiple targets then the minimum MTU of the stream
 is the smallest MaxMsgSize received from all the ACCEPT messages. It
 is the responsibility of the application to segment its PDUs
 according to the minimum MaxMsgSize of the stream since no data
 fragmentation is supported during the data transfer phase. If a
 particular target’s MaxMsgSize is unacceptable to an application, it
 may disconnect the target from the stream and assume that the target
 cannot be supported. When evaluating a particular target’s
 MaxMsgSize, the application or the application interface will need to
 take into account the size of the ST data header.

8.7 IP Encapsulation of ST

 ST packets may be encapsulated in IP to allow them to pass through
 routers that don’t support the ST Protocol. Of course, ST resource
 management is precluded over such a path, and packet overhead is
 increased by encapsulation, but if the performance is reasonably
 predictable this may be better than not communicating at all.

 IP-encapsulated ST packets begin with a normal IP header. Most fields
 of the IP header should be filled in according to the same rules that
 apply to any other IP packet. Three fields of special interest are:

o Protocol is 5, see [RFC1700], to indicate an ST packet is enclosed,
 as opposed to TCP or UDP, for example.

o Destination Address is that of the next-hop ST agent. This may or
 may not be the target of the ST stream. There may be an intermediate
 ST agent to which the packet should be routed to take advantage of
 service guarantees on the path past that agent. Such an intermediate
 agent would not be on a directly-connected network (or else IP
 encapsulation wouldn’t be needed), so it would probably not be
 listed in the normal routing table. Additional routing mechanisms,
 not defined here, will be required to learn about such agents.

o Type-of-Service may be set to an appropriate value for the service
 being requested, see [RFC1700]. This feature is not implemented
 uniformly in the Internet, so its use can’t be precisely defined
 here.

Delgrossi & Berger, Editors Experimental [Page 69]

RFC 1819 ST2+ Protocol Specification August 1995

 IP encapsulation adds little difficulty for the ST agent that
 receives the packet. However, when IP encapsulation is performed it
 must be done in both directions. To process the encapsulated IP
 message, the ST agents simply remove the IP header and proceed with
 ST header as usual.

 The more difficult part is during setup, when the ST agent must
 decide whether or not to encapsulate. If the next-hop ST agent is on
 a remote network and the route to that network is through a router
 that supports IP but not ST, then encapsulation is required. The
 routing function provides ST agents with the route and capability
 information needed to support encapsulation.

 On forwarding, the (mostly constant) IP Header must be inserted and
 the IP checksum appropriately updated.

 Applications are informed about the number of IP hops traversed on
 the path to each target. The IPHops field of the CONNECT message, see
 Section 10.4.4, carries the number of traversed IP hops to the target
 application. The field is incremented by each ST agent when IP
 encapsulation will be used to reach the next-hop ST agent. The number
 of IP hops traversed is returned to the origin in the IPHops field of
 the ACCEPT message, Section 10.4.1.

 When using IP Encapsulation, the MaxMsgSize field will not reflect
 the MTU of the IP encapsulated segments. This means that IP
 fragmentation and reassembly may be needed in the IP cloud to support
 a message of MaxMsgSize. IP fragmentation can only occur when the MTU
 of the IP cloud, less IP header length, is the smallest MTU in a
 stream’s network path.

8.8 IP Multicasting

 If an ST agent must use IP encapsulation to reach multiple next-hops
 toward different targets, then either the packet must be replicated
 for transmission to each next-hop, or IP multicasting may be used if
 it is implemented in the next-hop ST agents and in the intervening IP
 routers.

 When the stream is established, the collection of next-hop ST agents
 must be set up as an IP multicast group. The ST agent must allocate
 an appropriate IP multicast address (see Section 10.3.3) and fill
 that address in the IPMulticastAddress field of the CONNECT message.
 The IP multicast address in the CONNECT message is used to inform the
 next-hop ST agents that they should join the multicast group to
 receive subsequent PDUs. Obviously, the CONNECT message itself must
 be sent using unicast. The next-hop ST agents must be able to receive
 on the specified multicast address in order to accept the connection.

Delgrossi & Berger, Editors Experimental [Page 70]

RFC 1819 ST2+ Protocol Specification August 1995

 If the next-hop ST agent can not receive on the specified multicast
 address, it sends a REFUSE message with ReasonCode (BadMcastAddress).
 Upon receiving the REFUSE, the upstream agent can choose to retry
 with a different multicast address. Alternatively, it can choose to
 lose the efficiency of multicast and use unicast delivery.

 The following permanent IP multicast addresses have been assigned to
 ST:

 224.0.0.7 All ST routers (intermediate agents)
 224.0.0.8 All ST hosts (agents)

 In addition, a block of transient IP multicast addresses, 224.1.0.0 -
 224.1.255.255, has been allocated for ST multicast groups. For
 instance, the following two functions could be made available:

 o AllocateMcastAddr() -> result, McastAddr

 o ListenMcastAddr(McastAddr) -> result

 o ReleaseMcastAddr(McastAddr) -> result

9. The ST2+ Flow Specification

 This section defines the ST2+ flow specification. The flow
 specification contains the user application requirements in terms of
 quality of service. Its contents are LRM dependent and are
 transparent to the ST2 setup protocol. ST2 carries the flow
 specification as part of the FlowSpec parameter, which is described
 in Section 10.3.1. The required ST2+ flow specification is included
 in the protocol only to support interoperability. ST2+ also defines a
 "null" flow specification to be used only to support testing.

 ST2 is not dependent on a particular flow specification format and it
 is expected that other versions of the flow specification will be
 needed in the future. Different flow specification formats are
 distinguished by the value of the Version field of the FlowSpec
 parameter, see Section 10.3.1. A single stream is always associated
 with a single flow specification format, i.e., the Version field is
 consistent throughout the whole stream. The following Version field
 values are defined:

Delgrossi & Berger, Editors Experimental [Page 71]

RFC 1819 ST2+ Protocol Specification August 1995

 0 - Null FlowSpec /* must be supported */
 1 - ST Version 1
 2 - ST Version 1.5
 3 - RFC 1190 FlowSpec
 4 - HeiTS FlowSpec
 5 - BerKom FlowSpec
 6 - RFC 1363 FlowSpec
 7 - ST2+ FlowSpec /* must be supported */

 FlowSpecs version #0 and #7 must be supported by ST2+
 implementations. Version numbers in the range 1-6 indicate flow
 specifications are currently used in existing ST2 implementations.
 Values in the 128-255 range are reserved for private and experimental
 use.

 In general, a flow specification may support sophisticated flow
 descriptions. For example, a flow specification could represent sub-
 flows of a particular stream. This could then be used to by a
 cooperating application and LRM to forward designated packets to
 specific targets based on the different sub-flows. The reserved bits
 in the ST2 Data PDU, see Section 10.1, may be used with such a flow
 specification to designate packets associated with different sub-
 flows. The ST2+ FlowSpec is not so sophisticated, and is intended for
 use with applications that generate traffic at a single rate for
 uniform delivery to all targets.

9.1 FlowSpec Version #0 - (Null FlowSpec)

 The flow specification identified by a #0 value of the Version field
 is called the Null FlowSpec. This flow specification causes no
 resources to be allocated. It is ignored by the LRMs. Its contents
 are never updated. Stream setup takes place in the usual way leading
 to successful stream establishment, but no resources are actually
 reserved.

 The purpose of the Null FlowSpec is that of facilitating
 interoperability tests by allowing streams to be built without
 actually allocating the correspondent amount of resources. The Null
 FlowSpec may also be used for testing and debugging purposes.

 The Null FlowSpec comprises the 4-byte FlowSpec parameter only, see
 Section 10.3.1. The third byte (Version field) must be set to 0.

9.2 FlowSpec Version #7 - ST2+ FlowSpec

 The flow specification identified by a #7 value of the Version field
 is the ST2+ FlowSpec, to be used by all ST2+ implementations. It
 allows the user applications to express their real-time requirements

Delgrossi & Berger, Editors Experimental [Page 72]

RFC 1819 ST2+ Protocol Specification August 1995

 in the form of a QoS class, precedence, and three basic QoS
 parameters:

 o message size,

 o message rate,

 o end-to-end delay.

 The QoS class indicates what kind of QoS guarantees are expected by
 the application, e.g., strict guarantees or predictive, see Section
 9.2.1. QoS parameters are expressed via a set of values:

o the "desired" values indicate the QoS desired by the application.
 These values are assigned by the application and never modified by
 the LRM.

o the "limit" values indicate the lowest QoS the application is
 willing to accept. These values are also assigned by the application
 and never modified by the LRM.

o the "actual" values indicate the QoS that the system is able to
 provide. They are updated by the LRM at each node. The "actual"
 values are always bounded by the "limit" and "desired" values.

9.2.1 QoS Classes

 Two QoS classes are defined:

 1 - QOS_PREDICTIVE /* QoSClass field value = 0x01, must be
 supported*/
 2 - QOS_GUARANTEED /* QoSClass field value = 0x10, optional */

o The QOS_PREDICTIVE class implies that the negotiated QoS may be
 violated for short time intervals during the data transfer. An
 application has to provide values that take into account the
 "normal" case, e.g., the "desired" message rate is the allocated rate
 for the transmission. Reservations are done for the "normal" case as
 opposite to the peak case required by the QOS_GUARANTEED service
 class. This QoS class must be supported by all implementations.

o The QOS_GUARANTEED class implies that the negotiated QoS for the
 stream is never violated during the data transfer. An application
 has to provide values that take into account the worst possible
 case, e.g., the "desired" message rate is the peak rate for the
 transmission. As a result, sufficient resources to handle the peak
 rate are reserved. This strategy may lead to overbooking of
 resources, but it provides strict real-time guarantees. Support of

Delgrossi & Berger, Editors Experimental [Page 73]

RFC 1819 ST2+ Protocol Specification August 1995

 this QoS class is optional.

 If a LRM that doesn’t support class QOS_GUARANTEED receives a
 FlowSpec containing QOS_GUARANTEED class, it informs the local ST
 agent. The ST agent may try different paths or delete the
 correspondent portion of the stream as described in Section 5.5.3,
 i.e., ReasonCode (FlowSpecError).

9.2.2 Precedence

 Precedence is the importance of the connection being established.
 Zero represents the lowest precedence. The lowest level is expected
 to be used by default. In general, the distinction between precedence
 and priority is that precedence specifies streams that are permitted
 to take previously committed resources from another stream, while
 priority identifies those PDUs that a stream is most willing to have
 dropped.

9.2.3 Maximum Data Size

 This parameter is expressed in bytes. It represents the maximum
 amount of data, excluding ST and other headers, allowed to be sent in
 a messages as part of the stream. The LRM first checks whether it is
 possible to get the value desired by the application (DesMaxSize). If
 not, it updates the actual value (ActMaxSize) with the available size
 unless this value is inferior to the minimum allowed by the
 application (LimitMaxSize), in which case it informs the local ST
 agent that it is not possible to build the stream along this path.

9.2.4 Message Rate

 This parameter is expressed in messages/second. It represents the
 transmission rate for the stream. The LRM first checks whether it is
 possible to get the value desired by the application (DesRate). If
 not, it updates the actual value (ActRate) with the available rate
 unless this value is inferior to the minimum allowed by the
 application (LimitRate), in which case it informs the local ST agent
 that it is not possible to build the stream along this path.

9.2.5 Delay and Delay Jitter

 The delay parameter is expressed in milliseconds. It represents the
 maximum end-to-end delay for the stream. The LRM first checks whether
 it is possible to get the value desired by the application
 (DesMaxDelay). If not, it updates the actual value (ActMaxDelay) with
 the available delay unless this value is greater than the maximum
 delay allowed by the application (LimitMaxDelay), in which case it
 informs the local ST agent that it is not possible to build the

Delgrossi & Berger, Editors Experimental [Page 74]

RFC 1819 ST2+ Protocol Specification August 1995

 stream along this path.

 The LRM also updates at each node the MinDelay field by incrementing
 it by the minimum possible delay to the next-hop. Information on the
 minimum possible delay allows to calculate the maximum end-to-end
 delay range, i.e., the time interval in which a data packet can be
 received. This interval should not exceed the DesMaxDelayRange value
 indicated by the application. The maximum end-to-end delay range is
 an upper bound of the delay jitter.

9.2.6 ST2+ FlowSpec Format

 The ST2+ FlowSpec has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | QosClass | Precedence | 0(unused) |
 +-+
 | DesRate |
 +-+
 | LimitRate |
 +-+
 | ActRate |
 +-+
 | DesMaxSize | LimitMaxSize |
 +-+
 | ActMaxSize | DesMaxDelay |
 +-+
 | LimitMaxDelay | ActMaxDelay |
 +-+
 | DesMaxDelayRange | ActMinDelay |
 +-+

 Figure 9: The ST2+ FlowSpec.

 The LRM modifies only "actual" fields, i.e., those beginning with
 "Act". The user application assigns values to all other fields.

o QoSClass indicates which of the two defined classes of service
 applies. The two classes are: QOS_PREDICTIVE (QoSClass = 1) and
 QOS_GUARANTEED (QoSClass = 2).

o Precedence indicates the stream’s precedence. Zero represents the
 lowest precedence, and should be the default value.

o DesRate is the desired transmission rate for the stream in messages/
 second. This field is set by the origin and is not modified by

Delgrossi & Berger, Editors Experimental [Page 75]

RFC 1819 ST2+ Protocol Specification August 1995

 intermediate agents.

o LimitRate is the minimum acceptable transmission rate in messages/
 second. This field is set by the origin and is not modified by
 intermediate agents.

o ActRate is the actual transmission rate allocated for the stream in
 messages/second. Each agent updates this field with the available
 rate unless this value is less than LimitRate, in which case a
 REFUSE is generated.

o DesMaxSize is the desired maximum data size in bytes that will be
 sent in a message in the stream. This field is set by the origin.

o LimitMaxSize is the minimum acceptable data size in bytes. This
 field is set by the origin

o ActMaxSize is the actual maximum data size that may be sent in a
 message in the stream. This field is updated by each agent based on
 MTU and available resources. If available maximum size is less than
 LimitMaxSize, the connection must be refused with ReasonCode
 (CantGetResrc).

o DesMaxDelay is the desired maximum end-to-end delay for the stream
 in milliseconds. This field is set by the origin.

o LimitMaxDelay is the upper-bound of acceptable end-to-end delay for
 the stream in milliseconds. This field is set by the origin.

o ActMaxDelay is the maximum end-to-end delay that will be seen by
 data in the stream. Each ST agent adds to this field the maximum
 delay that will be introduced by the agent, including transmission
 time to the next-hop ST agent. If the actual maximum exceeds
 LimitMaxDelay, then the connection is refused with ReasonCode
 (CantGetResrc).

o DesMaxDelayRange is the desired maximum delay range that may be
 encountered end-to-end by stream data in milliseconds. This value is
 set by the application at the origin.

o ActMinDelay is the actual minimum end-to-end delay that will be
 encountered by stream data in milliseconds. Each ST agent adds to
 this field the minimum delay that will be introduced by the agent,
 including transmission time to the next-hop ST agent. Each agent
 must add at least 1 millisecond. The delay range for the stream can
 be calculated from the actual maximum and minimum delay fields. It
 is expected that the range will be important to some applications.

Delgrossi & Berger, Editors Experimental [Page 76]

RFC 1819 ST2+ Protocol Specification August 1995

10. ST2 Protocol Data Units Specification

10.1 Data PDU

 IP and ST packets can be distinguished by the IP Version Number
 field, i.e., the first four (4) bits of the packet; ST has been
 assigned the value 5 (see [RFC1700]). There is no requirement for
 compatibility between IP and ST packet headers beyond the first four
 bits. (IP uses value 4.)

 The ST PDUs sent between ST agents consist of an ST Header
 encapsulating either a higher layer PDU or an ST Control Message.
 Data packets are distinguished from control messages via the D-bit
 (bit 8) in the ST header.

 The ST Header also includes an ST Version Number, a total length
 field, a header checksum, a unique id, and the stream origin 32-bit
 IP address. The unique id and the stream origin 32-bit IP address
 form the stream id (SID). This is shown in Figure 10. Please refer to
 Section 10.6 for an explanation of the notation.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ST=5 | Ver=3 |D| Pri | 0 | TotalBytes |
 +-+
 | HeaderChecksum | UniqueID |
 +-+
 | OriginIPAddress |
 +-+

 Figure 10: ST Header

o ST is the IP Version Number assigned to identify ST packets. The
 value for ST is 5.

o Ver is the ST Version Number. The value for the current ST2+ version
 is 3.

o D (bit 8) is set to 1 in all ST data packets and to 0 in all SCMP
 control messages.

o Pri (bits 9-11) is the packet-drop priority field with zero (0)
 being lowest priority and seven the highest. The field is to be used
 as described in Section 3.2.2.

Delgrossi & Berger, Editors Experimental [Page 77]

RFC 1819 ST2+ Protocol Specification August 1995

o TotalBytes is the length, in bytes, of the entire ST packet, it
 includes the ST Header but does not include any local network
 headers or trailers. In general, all length fields in the ST
 Protocol are in units of bytes.

o HeaderChecksum covers only the ST Header (12 bytes). The ST Protocol
 uses 16-bit checksums here in the ST Header and in each Control
 Message. For checksum computation, see Section 8.3.

o UniqueID is the first element of the stream ID (SID). It is locally
 unique at the stream origin, see Section 8.1.

o OriginIPAddress is the second element of the SID. It is the 32-bit
 IP address of the stream origin, see Section 8.1.

 Bits 12-15 must be set to zero (0) when using the flow specifications
 defined in this document, see Section 9. They may be set accordingly
 when other flow specifications are used, e.g., as described in
 [WoHD95].

10.1.1 ST Data Packets

 ST packets whose D-bit is non-zero are data packets. Their
 interpretation is a matter for the higher layer protocols and
 consequently is not specified here. The data packets are not
 protected by an ST checksum and will be delivered to the higher layer
 protocol even with errors. ST agents will not pass data packets over
 a new hop whose setup is not complete.

10.2 Control PDUs

 SCMP control messages are exchanged between neighbor ST agents using
 a D-bit of zero (0). The control protocol follows a request-response
 model with all requests expecting responses. Retransmission after
 timeout (see Section 4.3) is used to allow for lost or ignored
 messages. Control messages do not extend across packet boundaries; if
 a control message is too large for the MTU of a hop, its information
 is partitioned and a control message per partition is sent (see
 Section 5.1.2). All control messages have the following format

Delgrossi & Berger, Editors Experimental [Page 78]

RFC 1819 ST2+ Protocol Specification August 1995

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode | Options | TotalBytes |
 +-+
 | Reference | LnkReference |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode |
 +-+
 +-+
 : OpCodeSpecificData :
 +-+

 Figure 11: ST Control Message Format

o OpCode identifies the type of control message.

o Options is used to convey OpCode-specific variations for a control
 message.

o TotalBytes is the length of the control message, in bytes, including
 all OpCode specific fields and optional parameters. The value is
 always divisible by four (4).

o Reference is a transaction number. Each sender of a request control
 message assigns a Reference number to the message that is unique
 with respect to the stream. The Reference number is used by the
 receiver to detect and discard duplicates. Each acknowledgment
 carries the Reference number of the request being acknowledged.
 Reference zero (0) is never used, and Reference numbers are assumed
 to be monotonically increasing with wraparound so that the older-
 than and more-recent-than relations are well defined.

o LnkReference contains the Reference field of the request control
 message that caused this request control message to be created. It
 is used in situations where a single request leads to multiple
 responses from the same ST agent. Examples are CONNECT and CHANGE
 messages that are first acknowledged hop-by-hop and then lead to an
 ACCEPT or REFUSE response from each target.

o SenderIPAddress is the 32-bit IP address of the network interface
 that the ST agent used to send the control message. This value
 changes each time the packet is forwarded by an ST agent (hop-by-
 hop).

Delgrossi & Berger, Editors Experimental [Page 79]

RFC 1819 ST2+ Protocol Specification August 1995

o Checksum is the checksum of the control message. Because the control
 messages are sent in packets that may be delivered with bits in
 error, each control message must be checked to be error free before
 it is acted upon.

o ReasonCode is set to zero (0 = NoError) in most SCMP messages.
 Otherwise, it can be set to an appropriate value to indicate an
 error situation as defined in Section 10.5.3.

o OpCodeSpecificData contains any additional information that is
 associated with the control message. It depends on the specific
 control message and is explained further below. In some response
 control messages, fields of zero (0) are included to allow the
 format to match that of the corresponding request message. The
 OpCodeSpecificData may also contain optional parameters. The
 specifics of OpCodeSpecificData are defined in Section 10.3.

10.3 Common SCMP Elements

 Several fields and parameters (referred to generically as elements)
 are common to two or more PDUs. They are described in detail here
 instead of repeating their description several times. In many cases,
 the presence of a parameter is optional. To permit the parameters to
 be easily defined and parsed, each is identified with a PCode byte
 that is followed by a PBytes byte indicating the length of the
 parameter in bytes (including the PCode, PByte, and any padding
 bytes). If the length of the information is not a multiple of four
 (4) bytes, the parameter is padded with one to three zero (0) bytes.
 PBytes is thus always a multiple of four (4). Parameters can be
 present in any order.

10.3.1 FlowSpec

 The FlowSpec parameter (PCode = 1) is used in several SCMP messages
 to convey the ST2 flow specification. The FlowSpec parameter has the
 following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PCode = 1 | PBytes | Version | 0 |
 +-+
 +-+
 : FlowSpec detail :
 +-+

 Figure 12: FlowSpec Parameter

Delgrossi & Berger, Editors Experimental [Page 80]

RFC 1819 ST2+ Protocol Specification August 1995

o the Version field contains the FlowSpec version.

o the FlowSpec detail field contains the flow specification and is
 transparent to the ST agent. It is the data structure to be passed
 to the LRM. It must be 4-byte aligned.

 The Null FlowSpec, see Section 9.1, has no FlowSpec detail field.
 PBytes is set to four (4), and Version is set to zero (0). The ST2+
 FlowSpec, see Section 9.2, is a 32-byte data structure. PBytes is set
 to 36, and Version is set to seven (7).

10.3.2 Group

 The Group parameter (PCode = 2) is an optional argument used to
 indicate that the stream is a member in the specified group.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PCode = 2 | PBytes = 16 | GroupUniqueID |
 +-+
 | GroupCreationTime |
 +-+
 | GroupInitiatorIPAddress |
 +-+
 | Relationship | N |
 +-+

 Figure 13: Group Parameter

o GroupUniqueID, GroupInitiatorIPAddress, and GroupCreationTime
 together form the GroupName field. They are allocated by the group
 name generator function, see Section 8.2. GroupUniqueID and
 GroupCreationTime are implementation specific and have only local
 definitions.

o Relationship has the following format:

 0
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0 (unused) |S|P|F|B|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 14: Relationship Field

Delgrossi & Berger, Editors Experimental [Page 81]

RFC 1819 ST2+ Protocol Specification August 1995

 The B, F, P, S bits correspond to Bandwidth, Fate, Path, and Subnet
 resources sharing, see Section 7. A value of 1 indicates that the
 relationship exists for this group. All combinations of the four bits
 are allowed. Bits 0-11 of the Relationship field are reserved for
 future use and must be set to 0.

o N contains a legal value only if the B-bit is set. It is the value
 of the N parameter to be used as explained in Section 7.1.1.

10.3.3 MulticastAddress

 The MulticastAddress parameter (PCode = 3) is an optional parameter
 that is used when using IP encapsulation and setting up an IP
 multicast group. This parameter is used to communicate the desired IP
 multicast address to next-hop ST agents that should become members of
 the group, see Section 8.8.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PCode = 3 | PBytes = 8 | 0 |
 +-+
 | IPMulticastAddress |
 +-+

 Figure 15: MulticastAddress

o IPMulticastAddress is the 32-bit IP multicast address to be used to
 receive data packets for the stream.

10.3.4 Origin

 The Origin parameter (PCode = 4) is used to identify the next higher
 protocol, and the SAP being used in conjunction with that protocol.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PCode = 5 | PBytes | NextPcol |OriginSAPBytes |
 +-+
 : OriginSAP : Padding |
 +-+

 Figure 16: Origin

Delgrossi & Berger, Editors Experimental [Page 82]

RFC 1819 ST2+ Protocol Specification August 1995

o NextPcol is an 8-bit field used in demultiplexing operations to
 identify the protocol to be used above ST. The values of NextPcol
 are in the same number space as the IP header’s Protocol field and
 are consequently defined in the Assigned Numbers RFC [RFC1700].

o OriginSAPBytes specifies the length of the OriginSAP, exclusive of
 any padding required to maintain 32-bit alignment.

o OriginSAP identifies the origin’s SAP associated with the NextPcol
 protocol.

 Note that the 32-bit IP address of the stream origin is not included
 in this parameter because it is always available as part of the ST
 header.

10.3.5 RecordRoute

 The RecordRoute parameter (PCode = 5) is used to request that the
 route between the origin and a target be recorded and delivered to
 the user application. The ST agent at the origin (or target)
 including this parameter, has to determine the parameter’s length,
 indicated by the PBytes field. ST agents processing messages
 containing this parameter add their receiving IP address in the
 position indicated by the FreeOffset field, space permitting. If no
 space is available, the parameter is passed unchanged. When included
 by the origin, all agents between the origin and the target add their
 IP addresses and this information is made available to the
 application at the target. When included by the target, all agents
 between the target and the origin, inclusive, add their IP addresses
 and this information is made available to the application at the
 origin.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PCode = 5 | PBytes | 0 | FreeOffset |
 +-+
 | IP Address 1 |
 +-+
 : ... :
 +-+
 | IP Address N |
 +-+

 Figure 17: RecordRoute

o PBytes is the length of the parameter in bytes. Length is determined
 by the agent (target or origin) that first introduces the parameter.

Delgrossi & Berger, Editors Experimental [Page 83]

RFC 1819 ST2+ Protocol Specification August 1995

 Once set, the length of the parameter remains unchanged.

o FreeOffset indicates the offset, relative to the start of the
 parameter, for the next IP address to be recorded. When the
 FreeOffset is greater than, or equal to, PBytes the RecordRoute
 parameter is full.

o IP Address is filled in, space permitting, by each ST agent
 processing this parameter.

10.3.6 Target and TargetList

 Several control messages use a parameter called TargetList (PCode =
 6), which contains information about the targets to which the message
 pertains. For each Target in the TargetList, the information includes
 the 32-bit IP address of the target, the SAP applicable to the next
 higher layer protocol, and the length of the SAP (SAPBytes).
 Consequently, a Target structure can be of variable length. Each
 entry has the format shown in Figure 18.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Target IP Address |
 +-+
 | TargetBytes | SAPBytes | SAP : Padding |
 +-+

 Figure 18: Target

o TargetIPAddress is the 32-bit IP Address of the Target.

o TargetBytes is the length of the Target structure, beginning with
 the TargetIPAddress.

o SAPBytes is the length of the SAP, excluding any padding required to
 maintain 32-bit alignment.

o SAP may be longer than 2 bytes and it includes a padding when
 required. There would be no padding required for SAPs with lengths
 of 2, 6, 10, etc., bytes.

Delgrossi & Berger, Editors Experimental [Page 84]

RFC 1819 ST2+ Protocol Specification August 1995

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PCode = 6 | PBytes | TargetCount = N |
 +-+
 | Target 1 |
 +-+
 : : :
 +-+
 | Target N |
 +-+

 Figure 19: TargetList
10.3.7 UserData

 The UserData parameter (PCode = 7) is an optional parameter that may
 be used by the next higher protocol or an application to convey
 arbitrary information to its peers. This parameter is propagated in
 some control messages and its contents have no significance to ST
 agents. Note that since the size of control messages is limited by
 the smallest MTU in the path to the targets, the maximum size of this
 parameter cannot be specified a priori. If the size of this parameter
 causes a message to exceed the network MTU, an ST agent behaves as
 described in Section 5.1.2. The parameter must be padded to a
 multiple of 32 bits.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PCode = 7 | PBytes | UserBytes |
 +-+
 : UserInfo : Padding |
 +-+

 Figure 20: UserData

o UserBytes specifies the number of valid UserInfo bytes.

o UserInfo is arbitrary data meaningful to the next higher protocol
 layer or application.

Delgrossi & Berger, Editors Experimental [Page 85]

RFC 1819 ST2+ Protocol Specification August 1995

10.3.8 Handling of Undefined Parameters

 An ST agent must be able to handle all parameters listed above. To
 support possible future uses, parameters with unknown PCodes must
 also be supported. If an agent receives a message containing a
 parameter with an unknown Pcode value, the agent should handle the
 parameter as if it was a UserData parameter. That is, the contents of
 the parameter should be ignored, and the message should be
 propagated, as appropriate, along with the related control message.

10.4 ST Control Message PDUs

 ST Control messages are described in the following section. Please
 refer to Section 10.6 for an explanation of the notation.

10.4.1 ACCEPT

 ACCEPT (OpCode = 1) is issued by a target as a positive response to a
 CONNECT message. It implies that the target is prepared to accept
 data from the origin along the stream that was established by the
 CONNECT. ACCEPT is also issued as a positive response to a CHANGE
 message. It implies that the target accepts the proposed stream
 modification.

 ACCEPT is relayed by the ST agents from the target to the origin
 along the path established by CONNECT (or CHANGE) but in the reverse
 direction. ACCEPT must be acknowledged with ACK at each hop.

Delgrossi & Berger, Editors Experimental [Page 86]

RFC 1819 ST2+ Protocol Specification August 1995

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode = 1 | 0 | TotalBytes |
 +-+
 | Reference | LnkReference |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode = 0 |
 +-+
 | MaxMsgSize | RecoveryTimeout |
 +-+
 | StreamCreationTime |
 +-+
 | IPHops | 0 |
 +-+
 : FlowSpec :
 +-+
 : TargetList :
 +-+
 +-+
 : RecordRoute :
 +-+
 +-+
 : UserData :
 +-+

 Figure 21: ACCEPT Control Message

o Reference contains a number assigned by the ST agent sending ACCEPT
 for use in the acknowledging ACK.

o LnkReference is the Reference number from the corresponding CONNECT
 (or CHANGE)

o MaxMsgSize indicates the smallest MTU along the path traversed by
 the stream. This field is only set when responding to a CONNECT
 request.

o RecoveryTimeout reflects the nominal number of milliseconds that the
 application is willing to wait for a failed system component to be
 detected and any corrective action to be taken. This field
 represents what can actually be supported by each participating
 agent, and is only set when responding to a CONNECT request.

o StreamCreationTime is the 32- bits system dependent timestamp copied
 from the corresponding CONNECT request.

Delgrossi & Berger, Editors Experimental [Page 87]

RFC 1819 ST2+ Protocol Specification August 1995

o IPHops is the number of IP encapsulated hops traversed by the
 stream. This field is set to zero by the origin, and is incremented
 at each IP encapsulating agent.

10.4.2 ACK

 ACK (OpCode = 2) is used to acknowledge a request. The ACK message is
 not propagated beyond the previous-hop or next-hop ST agent.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode = 2 | 0 | TotalBytes |
 +-+
 | Reference | LnkReference = 0 |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode |
 +-+

 Figure 22: ACK Control Message

o Reference is the Reference number of the control message being
 acknowledged.

o ReasonCode is usually NoError, but other possibilities exist, e.g.,
 DuplicateIgn.

Delgrossi & Berger, Editors Experimental [Page 88]

RFC 1819 ST2+ Protocol Specification August 1995

10.4.3 CHANGE

 CHANGE (OpCode = 3) is used to change the FlowSpec of an established
 stream. The CHANGE message is processed similarly to CONNECT, except
 that it travels along the path of an established stream. CHANGE must
 be propagated until it reaches the related stream’s targets. CHANGE
 must be acknowledged with ACK at each hop.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode = 3 |G|I| 0 | TotalBytes |
 +-+
 | Reference | LnkReference = 0 |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode = 0 |
 +-+
 : FlowSpec :
 +-+
 +-+
 : TargetList :
 +-+
 +-+
 : RecordRoute :
 +-+
 +-+
 : UserData :
 +-+

 Figure 23: CHANGE Control Message

o G (bit 8) is used to request a global, stream-wide change; the
 TargetList parameter should be omitted when the G bit is specified.

o I (bit 7) is used to indicate that the LRM is permitted to interrupt
 and, if needed, break the stream in the process of trying to satisfy
 the requested change.

o Reference contains a number assigned by the ST agent sending CHANGE
 for use in the acknowledging ACK.

10.4.4 CONNECT

 CONNECT (OpCode = 4) requests the setup of a new stream or an
 addition to or recovery of an existing stream. Only the origin can
 issue the initial set of CONNECTs to setup a stream, and the first

Delgrossi & Berger, Editors Experimental [Page 89]

RFC 1819 ST2+ Protocol Specification August 1995

 CONNECT to each next-hop is used to convey the SID.

 The next-hop initially responds with an ACK, which implies that the
 CONNECT was valid and is being processed. The next-hop will later
 relay back either an ACCEPT or REFUSE from each target. An
 intermediate ST agent that receives a CONNECT behaves as explained in
 Section 4.5.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode = 4 |J N|S| 0 | TotalBytes |
 +-+
 | Reference | LnkReference = 0 |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode = 0 |
 +-+
 | MaxMsgSize | RecoveryTimeout |
 +-+
 | StreamCreationTime |
 +-+
 | IPHops | 0 |
 +-+
 : Origin :
 +-+
 : FlowSpec :
 +-+
 +-+
 : TargetList :
 +-+
 +-+
 : RecordRoute :
 +-+
 +-+
 : Group :
 +-+
 +-+
 : MulticastAddress :
 +-+
 +-+
 : UserData :
 +-+

 Figure 24: CONNECT Control Message

Delgrossi & Berger, Editors Experimental [Page 90]

RFC 1819 ST2+ Protocol Specification August 1995

o JN (bits 8 and 9) indicate the join authorization level for the
 stream, see Section 4.4.2.

o S (bit 10) indicates the NoRecovery option (Section 4.4.1). When the
 S-bit is set (1), the NoRecovery option is specified for the stream.

o Reference contains a number assigned by the ST agent sending CONNECT
 for use in the acknowledging ACK.

o MaxMsgSize indicates the smallest MTU along the path traversed by
 the stream. This field is initially set to the network MTU of the
 agent issues the CONNECT.

o RecoveryTimeout is the nominal number of milliseconds that the
 application is willing to wait for failed system component to be
 detected and any corrective action to be taken.

o StreamCreationTime is the 32- bits system dependent timestamp
 generated by the ST agent issuing the CONNECT.

o IPHops is the number of IP encapsulated hops traversed by the
 stream. This field is set to zero by the origin, and is incremented
 at each IP encapsulating agent.

Delgrossi & Berger, Editors Experimental [Page 91]

RFC 1819 ST2+ Protocol Specification August 1995

10.4.5 DISCONNECT

 DISCONNECT (OpCode = 5) is used by an origin to tear down an
 established stream or part of a stream, or by an intermediate ST
 agent that detects a failure between itself and its previous-hop, as
 distinguished by the ReasonCode. The DISCONNECT message specifies the
 list of targets that are to be disconnected. An ACK is required in
 response to a DISCONNECT message. The DISCONNECT message is
 propagated all the way to the specified targets. The targets are
 expected to terminate their participation in the stream.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode = 5 |G| 0 | TotalBytes |
 +-+
 | Reference | LnkReference = 0 |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode |
 +-+
 | GeneratorIPAddress |
 +-+
 +-+
 : TargetList :
 +-+
 +-+
 : UserData :
 +-+

 Figure 25: DISCONNECT Control Message

o G (bit 8) is used to request a DISCONNECT of all the stream’s
 targets. TargetList should be omitted when the G-bit is set (1). If
 TargetList is present, it is ignored.

o Reference contains a number assigned by the ST agent sending
 DISCONNECT for use in the acknowledging ACK.

o ReasonCode reflects the event that initiated the message.

o GeneratorIPAddress is the 32-bit IP address of the host that first
 generated the DISCONNECT message.

Delgrossi & Berger, Editors Experimental [Page 92]

RFC 1819 ST2+ Protocol Specification August 1995

10.4.6 ERROR

 ERROR (OpCode = 6) is sent in acknowledgment to a request in which an
 error is detected. No action is taken on the erroneous request. No
 ACK is expected. The ERROR message is not propagated beyond the
 previous-hop or next-hop ST agent. An ERROR is never sent in response
 to another ERROR. The receiver of an ERROR is encouraged to try again
 without waiting for a retransmission timeout.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode = 6 | 0 | TotalBytes |
 +-+
 | Reference | LnkReference = 0 |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode |
 +-+
 : PDUInError :
 +-+

 Figure 26: ERROR Control Message

o Reference is the Reference number of the erroneous request.

o ReasonCode indicates the error that triggered the message.

o PDUInError is the PDU in error, beginning with the ST Header. This
 parameter is optional. Its length is limited by network MTU, and may
 be truncated when too long.

Delgrossi & Berger, Editors Experimental [Page 93]

RFC 1819 ST2+ Protocol Specification August 1995

10.4.7 HELLO

 HELLO (OpCode = 7) is used as part of the ST failure detection
 mechanism, see Section 6.1.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode = 7 |R| 0 | TotalBytes |
 +-+
 | Reference = 0 | LnkReference = 0 |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode = 0 |
 +-+
 | HelloTimer |
 +-+

 Figure 27: HELLO Control Message

o R (bit 8) is used for the Restarted-bit.

o HelloTimer represents the time in millisecond since the agent was
 restarted, modulo the precision of the field. It is used to detect
 duplicate or delayed HELLO messages.

Delgrossi & Berger, Editors Experimental [Page 94]

RFC 1819 ST2+ Protocol Specification August 1995

10.4.8 JOIN

 JOIN (OpCode = 8) is used as part of the ST steam joining mechanism,
 see Section 4.6.3.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode = 8 | 0 | TotalBytes |
 +-+
 | Reference | LnkReference = 0 |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode = 0 |
 +-+
 | GeneratorIPAddress |
 +-+
 : TargetList :
 +-+

 Figure 28: JOIN Control Message

o Reference contains a number assigned by the ST agent sending JOIN
 for use in the acknowledging ACK.

o GeneratorIPAddress is the 32-bit IP address of the host that
 generated the JOIN message.

o TargetList is the information associated with the target to be added
 to the stream.

Delgrossi & Berger, Editors Experimental [Page 95]

RFC 1819 ST2+ Protocol Specification August 1995

10.4.9 JOIN-REJECT

 JOIN-REJECT (OpCode = 9) is used as part of the ST steam joining
 mechanism, see Section 4.6.3.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode = 9 | 0 | TotalBytes |
 +-+
 | Reference | LnkReference |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode |
 +-+
 | GeneratorIPAddress |
 +-+

 Figure 29: JOIN-REJECT Control Message

o Reference contains a number assigned by the ST agent sending the
 REFUSE for use in the acknowledging ACK.

o LnkReference is the Reference number from the corresponding JOIN
 message.

o ReasonCode reflects the reason why the JOIN request was rejected.

o GeneratorIPAddress is the 32-bit IP address of the host that first
 generated the JOIN-REJECT message.

Delgrossi & Berger, Editors Experimental [Page 96]

RFC 1819 ST2+ Protocol Specification August 1995

10.4.10 NOTIFY

 NOTIFY (OpCode = 10) is issued by an ST agent to inform other ST
 agents of events that may be significant. NOTIFY may be propagated
 beyond the previous-hop or next-hop ST agent depending on the
 ReasonCode, see Section 10.5.3; NOTIFY must be acknowledged with an
 ACK.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode = 10 | 0 | TotalBytes |
 +-+
 | Reference | LnkReference = 0 |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode |
 +-+
 | DetectorIPAddress |
 +-+
 | MaxMsgSize | RecoveryTimeout |
 +-+
 +-+
 : FlowSpec :
 +-+
 +-+
 : TargetList :
 +-+
 +-+
 : UserData :
 +-+

 Figure 30: NOTIFY Control Message

o Reference contains a number assigned by the ST agent sending the
 NOTIFY for use in the acknowledging ACK.

o ReasonCode identifies the reason for the notification.

o DetectorIPAddress is the 32-bit IP address of the ST agent that
 detects the event.

o MaxMsgSize is set when the MTU of the listed targets has changed
 (e.g., due to recovery), or when the notification is generated after
 a successful JOIN. Otherwise it is set to zero (0).

Delgrossi & Berger, Editors Experimental [Page 97]

RFC 1819 ST2+ Protocol Specification August 1995

o RecoveryTimeout is set when the notification is generated after a
 successful JOIN. Otherwise it is set to zero (0).

o FlowSpec is present when the notification is generated after a
 successful JOIN.

o TargetList is present when the notification is related to one or
 more targets, or when MaxMsgSize is set

o UserData is present if the notification is generated after a
 successful JOIN and the UserData parameter was set in the ACCEPT
 message.

10.4.11 REFUSE

 REFUSE (OpCode = 11) is issued by a target that either does not wish
 to accept a CONNECT message or wishes to remove itself from an
 established stream. It might also be issued by an intermediate ST
 agent in response to a CONNECT or CHANGE either to terminate a
 routing loop, or when a satisfactory next-hop to a target cannot be
 found. It may also be a separate command when an existing stream has
 been preempted by a higher precedence stream or an ST agent detects
 the failure of a previous-hop, next-hop, or the network between them.
 In all cases, the TargetList specifies the targets that are affected
 by the condition. Each REFUSE must be acknowledged by an ACK.

 The REFUSE is relayed back by the ST agents to the origin (or
 intermediate ST agent that created the CONNECT or CHANGE) along the
 path traced by the CONNECT. The ST agent receiving the REFUSE will
 process it differently depending on the condition that caused it, as
 specified in the ReasonCode field. No special effort is made to
 combine multiple REFUSE messages since it is considered most unlikely
 that separate REFUSEs will happen to both pass through an ST agent at
 the same time and be easily combined, e.g., have identical
 ReasonCodes and parameters.

Delgrossi & Berger, Editors Experimental [Page 98]

RFC 1819 ST2+ Protocol Specification August 1995

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode = 11 |G|E|N| 0 | TotalBytes |
 +-+
 | Reference | LnkReference |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode |
 +-+
 | DetectorIPAddress |
 +-+
 | ValidTargetIPAddress |
 +-+
 +-+
 : TargetList :
 +-+
 +-+
 : RecordRoute :
 +-+
 +-+
 : UserData :
 +-+

 Figure 31: REFUSE Control Message

o G (bit 8) is used to indicate that all targets down stream from the
 sender are refusing. It is expected that this will be set most
 commonly due to network failures. The TargetList parameter is
 ignored or not present when this bit is set, and must be included
 when not set.

o E (bit 9) is set by an ST agent to indicate that the request failed
 and that the pre-change stream attributes, including resources, and
 the stream itself still exist.

o N (bit 10) is used to indicate that no further attempts to recover
 the stream should be made. This bit must be set when stream recovery
 should not be attempted, even in the case where the target
 application has shut down normally (ApplDisconnect).

o Reference contains a number assigned by the ST agent sending the
 REFUSE for use in the acknowledging ACK.

o LnkReference is either the Reference number from the corresponding
 CONNECT or CHANGE, if it is the result of such a message, or zero
 when the REFUSE was originated as a separate command.

Delgrossi & Berger, Editors Experimental [Page 99]

RFC 1819 ST2+ Protocol Specification August 1995

o DetectorIPAddress is the 32-bit IP address of the host that first
 generated the REFUSE message.

o ValidTargetIPAddress is the 32-bit IP address of a host that is
 properly connected as part of the stream. This parameter is only
 used when recovering from stream convergence, otherwise it is set to
 zero (0).

10.4.12 STATUS

 STATUS (OpCode = 12) is used to inquire about the existence of a
 particular stream identified by the SID. Use of STATUS is intended
 for collecting information from an neighbor ST agent, including
 general and specific stream information, and round trip time
 estimation. The use of this message type is described in Section 8.4.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode = 12 | 0 | TotalBytes |
 +-+
 | Reference | LnkReference = 0 |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode = 0 |
 +-+
 +-+
 : TargetList :
 +-+

 Figure 32: STATUS Control Message

o Reference contains a number assigned by the ST agent sending STATUS
 for use in the replying STATUS-RESPONSE.

o TargetList is an optional parameter that when present indicates that
 only information related to the specific targets should be relayed
 in the STATUS-RESPONSE.

10.4.13 STATUS-RESPONSE

 STATUS-RESPONSE (OpCode = 13) is the reply to a STATUS message. If
 the stream specified in the STATUS message is not known, the STATUS-
 RESPONSE will contain the specified SID but no other parameters. It
 will otherwise contain the current SID, FlowSpec, TargetList, and
 possibly Groups of the stream. It the full target list can not fit in
 a single message, only those targets that can be included in one

Delgrossi & Berger, Editors Experimental [Page 100]

RFC 1819 ST2+ Protocol Specification August 1995

 message will be included. As mentioned in Section 10.4.12, it is
 possible to request information on a specific target.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OpCode = 13 | 0 | TotalBytes |
 +-+
 | Reference | LnkReference = 0 |
 +-+
 | SenderIPAddress |
 +-+
 | Checksum | ReasonCode = 0 |
 +-+
 +-+
 : FlowSpec :
 +-+
 +-+
 : Groups :
 +-+
 +-+
 : TargetList :
 +-+

 Figure 33: STATUS-RESPONSE Control Message

o Reference contains a number assigned by the ST agent sending the
 STATUS.

10.5 Suggested Protocol Constants

 The ST Protocol uses several fields that must have specific values
 for the protocol to work, and also several values that an
 implementation must select. This section specifies the required
 values and suggests initial values for others. It is recommended that
 the latter be implemented as variables so that they may be easily
 changed when experience indicates better values. Eventually, they
 should be managed via the normal network management facilities.

 ST uses IP Version Number 5.

 When encapsulated in IP, ST uses IP Protocol Number 5.

Delgrossi & Berger, Editors Experimental [Page 101]

RFC 1819 ST2+ Protocol Specification August 1995

10.5.1 SCMP Messages

 1) ACCEPT
 2) ACK
 3) CHANGE
 4) CONNECT
 5) DISCONNECT
 6) ERROR
 7) HELLO
 8) JOIN
 9) JOIN-REJECT
 10) NOTIFY
 11) REFUSE
 12) STATUS
 13) STATUS-RESPONSE

10.5.2 SCMP Parameters

 1) FlowSpec
 2) Group
 3) MulticastAddress
 4) Origin
 5) RecordRoute
 6) TargetList
 7) UserData

10.5.3 ReasonCode

 Several errors may occur during protocol processing. All ST error
 codes are taken from a single number space. The currently defined
 values and their meaning is presented in the list below. Note that
 new error codes may be defined from time to time. All implementations
 are expected to handle new codes in a graceful manner. If an unknown
 ReasonCode is encountered, it should be assumed to be fatal. The
 ReasonCode is an 8-bit field. Following values are defined:

1 NoError No error has occurred.
2 ErrorUnknown An error not contained in this list has been
 detected.
3 AccessDenied Access denied.
4 AckUnexpected An unexpected ACK was received.
5 ApplAbort The application aborted the stream abnormally.
6 ApplDisconnect The application closed the stream normally.
7 ApplRefused Applications refused requested connection or
 change.
8 AuthentFailed The authentication function failed.
9 BadMcastAddress IP Multicast address is unacceptable in CONNECT
10 CantGetResrc Unable to acquire (additional) resources.

Delgrossi & Berger, Editors Experimental [Page 102]

RFC 1819 ST2+ Protocol Specification August 1995

11 CantRelResrc Unable to release excess resources.
12 CantRecover Unable to recover failed stream.
13 CksumBadCtl Control PDU has a bad message checksum.
14 CksumBadST PDU has a bad ST Header checksum.
15 DuplicateIgn Control PDU is a duplicate and is being
 acknowledged.
16 DuplicateTarget Control PDU contains a duplicate target, or an
 attempt to add an existing target.
17 FlowSpecMismatch FlowSpec in request does not match
 existing FlowSpec.
18 FlowSpecError An error occurred while processing the FlowSpec
19 FlowVerUnknown Control PDU has a FlowSpec Version Number that
 is not supported.
20 GroupUnknown Control PDU contains an unknown Group Name.
21 InconsistGroup An inconsistency has been detected with the
 streams forming a group.
22 IntfcFailure A network interface failure has been detected.
23 InvalidSender Control PDU has an invalid SenderIPAddress
 field.
24 InvalidTotByt Control PDU has an invalid TotalBytes field.
25 JoinAuthFailure Join failed due to stream authorization level.
26 LnkRefUnknown Control PDU contains an unknown LnkReference.
27 NetworkFailure A network failure has been detected.
28 NoRouteToAgent Cannot find a route to an ST agent.
29 NoRouteToHost Cannot find a route to a host.
30 NoRouteToNet Cannot find a route to a network.
31 OpCodeUnknown Control PDU has an invalid OpCode field.
32 PCodeUnknown Control PDU has a parameter with an invalid
 PCode.
33 ParmValueBad Control PDU contains an invalid parameter value.
34 PathConvergence Two branches of the stream join during the
 CONNECT setup.
35 ProtocolUnknown Control PDU contains an unknown next-higher
 layer protocol identifier.
36 RecordRouteSize RecordRoute parameter is too long to permit
 message to fit a network’s MTU.
37 RefUnknown Control PDU contains an unknown Reference.
38 ResponseTimeout Control message has been acknowledged but not
 answered by an appropriate control message.
39 RestartLocal The local ST agent has recently restarted.
40 RestartRemote The remote ST agent has recently restarted.
41 RetransTimeout An acknowledgment has not been received after
 several retransmissions.
42 RouteBack Route to next-hop through same interface as
 previous-hop and is not previous-hop.
43 RouteInconsist A routing inconsistency has been detected.
44 RouteLoop A routing loop has been detected.

Delgrossi & Berger, Editors Experimental [Page 103]

RFC 1819 ST2+ Protocol Specification August 1995

45 SAPUnknown Control PDU contains an unknown next-higher
 layer SAP (port).
46 SIDUnknown Control PDU contains an unknown SID.
47 STAgentFailure An ST agent failure has been detected.
48 STVer3Bad A received PDU is not ST Version 3.
49 StreamExists A stream with the given SID already exists.
50 StreamPreempted The stream has been preempted by one with a
 higher precedence.
51 TargetExists A CONNECT was received that specified an
 existing target.
52 TargetUnknown A target is not a member of the specified
 stream.
53 TargetMissing A target parameter was expected and is not
 included, or is empty.
54 TruncatedCtl Control PDU is shorter than expected.
55 TruncatedPDU A received ST PDU is shorter than the ST Header
 indicates.
56 UserDataSize UserData parameter too large to permit a
 message to fit into a network’s MTU.

10.5.4 Timeouts and Other Constants

 SCMP uses retransmission to effect reliability and thus has several
 "retransmission timers". Each "timer" is modeled by an initial time
 interval (ToXxx), which may get updated dynamically through
 measurement of control traffic, and a number of times (NXxx) to
 retransmit a message before declaring a failure. All time intervals
 are in units of milliseconds. Note that the variables are described
 for reference purposes only, different implementations may not
 include the identical variables.

Value Timeout Name Meaning
--
 500 ToAccept Initial hop-by-hop timeout for acknowledgment of
 ACCEPT
 3 NAccept ACCEPT retries before failure
 500 ToChange Initial hop-by-hop timeout for acknowledgment of
 CHANGE
 3 NChange CHANGE retries before failure
 5000 ToChangeResp End-to-End CHANGE timeout for receipt of ACCEPT
 or REFUSE
 500 ToConnect Initial hop-by-hop timeout for acknowledgment of
 CONNECT
 5 NConnect CONNECT retries before failure
 5000 ToConnectResp End-to-End CONNECT timeout for receipt of ACCEPT
 or REFUSE from targets by origin
 500 ToDisconnect Initial hop-by-hop timeout for acknowledgment of
 DISCONNECT

Delgrossi & Berger, Editors Experimental [Page 104]

RFC 1819 ST2+ Protocol Specification August 1995

 3 NDisconnect DISCONNECT retries before failure
 500 ToJoin Initial hop-by-hop timeout for acknowledgment of
 JOIN
 3 NJoin JOIN retries before failure
 500 ToJoinReject Initial hop-by-hop timeout for acknowledgment of
 JOIN-REJECT
 3 NJoinReject JOIN-REJECT retries before failure
 5000 ToJoinResp Timeout for receipt of CONNECT or JOIN-REJECT
 from origin or intermediate hop
 500 ToNotify Initial hop-by-hop timeout for acknowledgment of
 NOTIFY
 3 NNotify NOTIFY retries before failure
 500 ToRefuse Initial hop-by-hop timeout for acknowledgment of
 REFUSE
 3 NRefuse REFUSE retries before failure
 500 ToRetryRoute Timeout for receipt of ACCEPT or REFUSE from
 targets during failure recovery
 5 NRetryRoute CONNECT retries before failure
 1000 ToStatusResp Timeout for receipt of STATUS-RESPONSE
 3 NStatus STATUS retries before failure
10000 HelloTimerHoldDown Interval that Restarted bit must be set
 after ST restart
 5 HelloLossFactor Number of consecutively missed HELLO
 messages before declaring link failure
 2000 DefaultRecoveryTimeout Interval between successive HELLOs
 to/from active neighbors

10.6 Data Notations

 The convention in the documentation of Internet Protocols is to
 express numbers in decimal and to picture data with the most
 significant octet on the left and the least significant octet on the
 right.

 The order of transmission of the header and data described in this
 document is resolved to the octet level. Whenever a diagram shows a
 group of octets, the order of transmission of those octets is the
 normal order in which they are read in English. For example, in the
 following diagram the octets are transmitted in the order they are
 numbered.

Delgrossi & Berger, Editors Experimental [Page 105]

RFC 1819 ST2+ Protocol Specification August 1995

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 1 | 2 | 3 | 4 |
 +-+
 | 5 | 6 | 7 | 8 |
 +-+
 | 9 | 10 | 11 | 12 |
 +-+

 Figure 34: Transmission Order of Bytes

 Whenever an octet represents a numeric quantity the left most bit in
 the diagram is the high order or most significant bit. That is, the
 bit labeled 0 is the most significant bit. For example, the following
 diagram represents the value 170 (decimal).

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |1 0 1 0 1 0 1 0|
 +-+-+-+-+-+-+-+-+

 Figure 35: Significance of Bits

 Similarly, whenever a multi-octet field represents a numeric quantity
 the left most bit of the whole field is the most significant bit.
 When a multi-octet quantity is transmitted the most significant octet
 is transmitted first.

 Fields whose length is fixed and fully illustrated are shown with a
 vertical bar (|) at the end; fixed fields whose contents are
 abbreviated are shown with an exclamation point (!); variable fields
 are shown with colons (:). Optional parameters are separated from
 control messages with a blank line. The order of parameters is not
 meaningful.

11. References

[RFC1071] Braden, R., Borman, D., and C. Partridge,
 "Computing the Internet Checksum", RFC 1071,
 USC/Information Sciences Institute,
 Cray Research, BBN Laboratories, September 1988.

[RFC1112] Deering, S., "Host Extensions for IP Multicasting",
 STD 5, RFC 1112, Stanford University, August 1989.

Delgrossi & Berger, Editors Experimental [Page 106]

RFC 1819 ST2+ Protocol Specification August 1995

[WoHD95] L. Wolf, R. G. Herrtwich, L. Delgrossi: Filtering
 Multimedia Data in Reservation-based Networks,
 Kommunikation in Verteilten Systemen 1995 (KiVS),
 Chemnitz-Zwickau, Germany, February 1995.

[RFC1122] Braden, R., "Requirements for Internet Hosts --
 Communication Layers", STD 3, RFC 1122,
 USC/Information Sciences Institute, October 1989.

[Jaco88] Jacobson, V.: Congestion Avoidance and Control, ACM
 SIGCOMM-88, August 1988.

[KaPa87] Karn, P. and C. Partridge: Round Trip Time Estimation,
 ACM SIGCOMM-87, August 1987.

[RFC1141] Mallory, T., and A. Kullberg, "Incremental Updating
 of the Internet Checksum", RFC 1141, BBN, January 1990.

[RFC1363] Partridge, C., "A Proposal Flow Specification",
 RFC 1363, BBN, September 1992.

[RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DARPA, September 1981.

[RFC1700] Reynolds, J., and J. Postel, "Assigned Numbers",
 STD 2, RFC 1700, USC/Information Sciences Institute,
 October 1994.

[RFC1190] Topolcic C., "Internet Stream Protocol Version 2
 (ST-II)", RFC 1190, CIP Working Group, October 1990.

[RFC1633] Braden, R., Clark, D., and S. Shenker, "Integrated
 Services in the Internet Architecture: an Overview",
 RFC 1633, USC/Information Sciences Institute,
 MIT, Xerox PARC, June 1994.

[VoHN93] C. Vogt, R. G. Herrtwich, R. Nagarajan: HeiRAT: the
 Heidelberg Resource Administration Technique - Design
 Philosophy and Goals, Kommunikation In Verteilten
 Systemen, Munich, Informatik Aktuell, Springer-Verlag,
 Heidelberg, 1993.

[Cohe81] D. Cohen: A Network Voice Protocol NVP-II, University of
 Southern California, Los Angeles, 1981.

[Cole81] R. Cole: PVP - A Packet Video Protocol, University of
 Southern California, Los Angeles, 1981.

Delgrossi & Berger, Editors Experimental [Page 107]

RFC 1819 ST2+ Protocol Specification August 1995

[DeAl92] L. Delgrossi (Ed.) The BERKOM-II Multimedia Transport
 System, Version 1, BERKOM Working Document, October,
 1992.

[DHHS92] L. Delgrossi, C. Halstrick, R. G. Herrtwich, H.
 Stuettgen: HeiTP: a Transport Protocol for ST-II,
 GLOBECOM’92, Orlando (Florida), December 1992.

[Schu94] H. Schulzrinne: RTP: A Transport Protocol for Real-Time
 Applications. Work in Progress, 1994.

12. Security Considerations

 Security issues are not discussed in this memo.

13. Acknowledgments and Authors’ Addresses

 Many individuals have contributed to the work described in this memo.
 We thank the participants in the ST Working Group for their input,
 review, and constructive comments. George Mason University C3I Center
 for hosting an interim meeting. Murali Rajagopal for his efforts on
 ST2+ state machines. Special thanks are due to Steve DeJarnett, who
 served as working group co-chair until summer 1993.

 We would also like to acknowledge the authors of [RFC1190]. All
 authors of [RFC1190] should be considered authors of this document
 since this document contains much of their text and ideas.

Delgrossi & Berger, Editors Experimental [Page 108]

RFC 1819 ST2+ Protocol Specification August 1995

 Louis Berger
 BBN Systems and Technologies
 1300 North 17th Street, Suite 1200
 Arlington, VA 22209

 Phone: 703-284-4651
 EMail: lberger@bbn.com

 Luca Delgrossi
 Andersen Consulting Technology Park
 449, Route des Cretes
 06902 Sophia Antipolis, France

 Phone: +33.92.94.80.92
 EMail: luca@andersen.fr

 Dat Duong
 BBN Systems and Technologies
 1300 North 17th Street, Suite 1200
 Arlington, VA 22209

 Phone: 703-284-4760
 EMail: dat@bbn.com

 Steve Jackowski
 Syzygy Communications Incorporated
 269 Mt. Hermon Road
 Scotts Valley, CA 95066

 Phone: 408-439-6834
 EMail: stevej@syzygycomm.com

 Sibylle Schaller
 IBM ENC
 Broadband Multimedia Communications
 Vangerowstr. 18
 D69020 Heidelberg, Germany

 Phone: +49-6221-5944553
 EMail: schaller@heidelbg.ibm.com

Delgrossi & Berger, Editors Experimental [Page 109]

