
Network Working Group T. Howes
Request for Comments: 1823 M. Smith
Category: Informational University of Michigan
 August 1995

 The LDAP Application Program Interface

Status of this Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

1. Introduction

 This document defines a C language application program interface to
 the lightweight directory access protocol (LDAP). The LDAP API is
 designed to be powerful, yet simple to use. It defines compatible
 synchronous and asynchronous interfaces to LDAP to suit a wide
 variety of applications. This document gives a brief overview of the
 LDAP model, then an overview of how the API is used by an application
 program to obtain LDAP information. The API calls are described in
 detail, followed by an appendix that provides some example code
 demonstrating the use of the API.

2. Overview of the LDAP Model

 LDAP is the lightweight directory access protocol, described in [2]
 and [7]. It can provide a lightweight frontend to the X.500 directory
 [1], or a stand-alone service. In either mode, LDAP is based on a
 client-server model in which a client makes a TCP connection to an
 LDAP server, over which it sends requests and receives responses.

 The LDAP information model is based on the entry, which contains
 information about some object (e.g., a person). Entries are composed
 of attributes, which have a type and one or more values. Each
 attribute has a syntax that determines what kinds of values are
 allowed in the attribute (e.g., ASCII characters, a jpeg photograph,
 etc.) and how those values behave during directory operations (e.g.,
 is case significant during comparisons).

 Entries are organized in a tree structure, usually based on
 political, geographical, and organizational boundaries. Each entry is
 uniquely named relative to its sibling entries by its relative
 distinguished name (RDN) consisting of one or more distinguished
 attribute values from the entry. At most one value from each
 attribute may be used in the RDN. For example, the entry for the

Howes & Smith Informational [Page 1]

RFC 1823 LDAP API August 1995

 person Babs Jensen might be named with the "Barbara Jensen" value
 from the commonName attribute. A globally unique name for an entry,
 called a distinguished name or DN, is constructed by concatenating
 the sequence of RDNs from the root of the tree down to the entry. For
 example, if Babs worked for the University of Michigan, the DN of her
 U-M entry might be "cn=Barbara Jensen, o=University of Michigan,
 c=US". The DN format used by LDAP is defined in [4].

 Operations are provided to authenticate, search for and retrieve
 information, modify information, and add and delete entries from the
 tree. The next sections give an overview of how the API is used and
 detailed descriptions of the LDAP API calls that implement all of
 these functions.

3. Overview of LDAP API Use

 An application generally uses the LDAP API in four simple steps.

 o Open a connection to an LDAP server. The ldap_open() call
 returns a handle to the connection, allowing multiple
 connections to be open at once.

 o Authenticate to the LDAP server and/or the X.500 DSA. The
 ldap_bind() call and friends support a variety of
 authentication methods.

 o Perform some LDAP operations and obtain some results.
 ldap_search() and friends return results which can be parsed
 by ldap_result2error(), ldap_first_entry(), ldap_next_entry(),
 etc.

 o Close the connection. The ldap_unbind() call closes the
 connection.

 Operations can be performed either synchronously or asynchronously.
 Synchronous calls end in _s. For example, a synchronous search can be
 completed by calling ldap_search_s(). An asynchronous search can be
 initiated by calling ldap_search(). All synchronous routines return
 an indication of the outcome of the operation (e.g, the constant
 LDAP_SUCCESS or some other error code). The asynchronous routines
 return the message id of the operation initiated. This id can be used
 in subsequent calls to ldap_result() to obtain the result(s) of the
 operation. An asynchronous operation can be abandoned by calling
 ldap_abandon().

Howes & Smith Informational [Page 2]

RFC 1823 LDAP API August 1995

 Results and errors are returned in an opaque structure called
 LDAPMessage. Routines are provided to parse this structure, step
 through entries and attributes returned, etc. Routines are also
 provided to interpret errors. The next sections describe these
 routines in more detail.

4. Calls for performing LDAP operations

 This section describes each LDAP operation API call in detail. All
 calls take a "connection handle", a pointer to an LDAP structure
 containing per-connection information. Many routines return results
 in an LDAPMessage structure. These structures and others are
 described as needed below.

4.1. Opening a connection

 ldap_open() opens a connection to the LDAP server.

 typedef struct ldap {
 /* ... opaque parameters ... */
 int ld_deref;
 int ld_timelimit;
 int ld_sizelimit;
 int ld_errno;
 char *ld_matched;
 char *ld_error;
 /* ... opaque parameters ... */
 } LDAP;

 LDAP *ldap_open(char *hostname, int portno);

 Parameters are:

 hostname Contains a space-separated list of hostnames or dotted
 strings representing the IP address of hosts running an
 LDAP server to connect to. The hosts are tried in the
 order listed, stopping with the first one to which a
 successful connection is made;

 portno contains the TCP port number to which to connect. The
 default LDAP port can be obtained by supplying the
 constant LDAP_PORT.

 ldap_open() returns a "connection handle", a pointer to an LDAP
 structure that should be passed to subsequent calls pertaining to the
 connection. It returns NULL if the connection cannot be opened. One
 of the ldap_bind calls described below must be completed before other
 operations can be performed on the connection.

Howes & Smith Informational [Page 3]

RFC 1823 LDAP API August 1995

 The calling program should assume nothing about the order of the
 fields in the LDAP structure. There may be other fields in the
 structure for internal library use. The fields shown above are
 described as needed in the description of other calls below.

4.2. Authenticating to the directory

 ldap_bind() and friends are used to authenticate to the directory.

 int ldap_bind(LDAP *ld, char *dn, char *cred, int method);

 int ldap_bind_s(LDAP *ld, char *dn, char *cred, int method);

 int ldap_simple_bind(LDAP *ld, char *dn, char *passwd);

 int ldap_simple_bind_s(LDAP *ld, char *dn, char *passwd);

 int ldap_kerberos_bind(LDAP *ld, char *dn);

 int ldap_kerberos_bind_s(LDAP *ld, char *dn);

 Parameters are:

 ld The connection handle;

 dn The name of the entry to bind as;

 cred The credentials with which to authenticate;

 method One of LDAP_AUTH_SIMPLE, LDAP_AUTH_KRBV41, or
 LDAP_AUTH_KRBV42, indicating the authentication method to use;

 passwd For ldap_simple_bind(), the password to compare to the entry’s
 userPassword attribute;

 There are three types of bind calls, providing simple authentication,
 kerberos authentication, and general routines to do either one. In
 the case of Kerberos version 4 authentication using the general
 ldap_bind() routines, the credentials are ignored, as the routines
 assume a valid ticket granting ticket already exists which can be
 used to retrieve the appropriate service tickets.

 Synchronous versions of the routines have names that end in _s.
 These routines return the result of the bind operation, either the
 constant LDAP_SUCCESS if the operation was successful, or another
 LDAP error code if it was not. See the section below on error
 handling for more information about possible errors and how to
 interpret them.

Howes & Smith Informational [Page 4]

RFC 1823 LDAP API August 1995

 Asynchronous versions of these routines return the message id of the
 bind operation initiated. A subsequent call to ldap_result(),
 described below, can be used to obtain the result of the bind. In
 case of error, these routines will return -1, setting the ld_errno
 field in the LDAP structure appropriately.

 Note that no other operations over the connection should be attempted
 before a bind call has successfully completed. Subsequent bind calls
 can be used to re-authenticate over the same connection.

4.3. Closing the connection

 ldap_unbind() is used to unbind from the directory and close the
 connection.

 int ldap_unbind(LDAP *ld);

 Parameters are:

 ld The connection handle.

 ldap_unbind() works synchronously, unbinding from the directory,
 closing the connection, and freeing up the ld structure before
 returning. ldap_unbind() returns LDAP_SUCCESS (or another LDAP error
 code if the request cannot be sent to the LDAP server). After a call
 to ldap_unbind(), the ld connection handle is invalid.

4.4. Searching

 ldap_search() and friends are used to search the LDAP directory,
 returning a requested set of attributes for each entry matched.
 There are three variations.

 struct timeval {
 long tv_sec;
 long tv_usec;
 };
 int ldap_search(
 LDAP *ld,
 char *base,
 int scope,
 char *filter,
 char *attrs[],
 int attrsonly
);
 int ldap_search_s(
 LDAP *ld,
 char *base,

Howes & Smith Informational [Page 5]

RFC 1823 LDAP API August 1995

 int scope,
 char *filter,
 char *attrs[],
 int attrsonly,
 LDAPMessage **res
);
 int ldap_search_st(
 LDAP *ld,
 char *base,
 int scope,
 char *filter,
 char *attrs[],
 int attrsonly,
 struct timeval *timeout,
 LDAPMessage **res
);

 Parameters are:

 ld The connection handle;

 base The dn of the entry at which to start the search;

 scope One of LDAP_SCOPE_BASE, LDAP_SCOPE_ONELEVEL, or
 LDAP_SCOPE_SUBTREE, indicating the scope of the search;

 filter A character string as described in RFC 1558 [3],
 representing the search filter;

 attrs A NULL-terminated array of strings indicating which
 attributes to return for each matching entry. Passing
 NULL for this parameter causes all available attributes
 to be retrieved;

 attrsonly A boolean value that should be zero if both attribute
 types and values are to be returned, non-zero if only
 types are wanted;

 timeout For the ldap_search_st() call, this specifies the local
 search timeout value;

 res For the synchronous calls, this is a result parameter
 which will contain the results of the search upon
 completion of the call.

 There are three fields in the ld connection handle which control how
 the search is performed. They are:

Howes & Smith Informational [Page 6]

RFC 1823 LDAP API August 1995

 ld_sizelimit A limit on the number of entries to return from the
 search. A value of zero means no limit;

 ld_timelimit A limit on the number of seconds to spend on the search.
 A value of zero means no limit;

 ld_deref One of LDAP_DEREF_NEVER, LDAP_DEREF_SEARCHING,
 LDAP_DEREF_FINDING, or LDAP_DEREF_ALWAYS, specifying
 how aliases should be handled during the search. The
 LDAP_DEREF_SEARCHING value means aliases should be
 dereferenced during the search but not when locating
 the base object of the search. The LDAP_DEREF_FINDING
 value means aliases should be dereferenced when
 locating the base object but not during the search.

 An asynchronous search is initiated by calling ldap_search(). It
 returns the message id of the initiated search. The results of the
 search can be obtained by a subsequent call to ldap_result(). The
 results can be parsed by the result parsing routines described in
 detail later. In case of error, -1 is returned and the ld_errno
 field in the LDAP structure is set appropriately.

 A synchronous search is performed by calling ldap_search_s() or
 ldap_search_st(). The routines are identical, except that
 ldap_search_st() takes an additional parameter specifying a timeout
 for the search. Both routines return an indication of the result of
 the search, either LDAP_SUCCESS or some error indication (see Error
 Handling below). The entries returned from the search (if any) are
 contained in the res parameter. This parameter is opaque to the
 caller. Entries, attributes, values, etc., should be extracted by
 calling the parsing routines described below. The results contained
 in res should be freed when no longer in use by calling
 ldap_msgfree(), described later.

4.5. Reading an entry

 LDAP does not support a read operation directly. Instead, this
 operation is emulated by a search with base set to the DN of the
 entry to read, scope set to LDAP_SCOPE_BASE, and filter set to
 "(objectclass=*)". attrs contains the list of attributes to return.

4.6. Listing the children of an entry

 LDAP does not support a list operation directly. Instead, this
 operation is emulated by a search with base set to the DN of the
 entry to list, scope set to LDAP_SCOPE_ONELEVEL, and filter set to
 "(objectclass=*)". attrs contains the list of attributes to return
 for each child entry.

Howes & Smith Informational [Page 7]

RFC 1823 LDAP API August 1995

4.7. Modifying an entry

 The ldap_modify() and ldap_modify_s() routines are used to modify an
 existing LDAP entry.

 typedef struct ldapmod {
 int mod_op;
 char *mod_type;
 union {
 char **modv_strvals;
 struct berval **modv_bvals;
 } mod_vals;
 } LDAPMod;
 #define mod_values mod_vals.modv_strvals
 #define mod_bvalues mod_vals.modv_bvals

 int ldap_modify(LDAP *ld, char *dn, LDAPMod *mods[]);

 int ldap_modify_s(LDAP *ld, char *dn, LDAPMod *mods[]);

 Parameters are:

 ld The connection handle;

 dn The name of the entry to modify;

 mods A NULL-terminated array of modifications to make to the
 entry.

 The fields in the LDAPMod structure have the following meanings:

 mod_op The modification operation to perform. It should be one of
 LDAP_MOD_ADD, LDAP_MOD_DELETE, or LDAP_MOD_REPLACE. This
 field also indicates the type of values included in the
 mod_vals union. It is ORed with LDAP_MOD_BVALUES to select
 the mod_bvalues form. Otherwise, the mod_values form is
 used;

 mod_type The type of the attribute to modify;

 mod_vals The values (if any) to add, delete, or replace. Only one of
 the mod_values or mod_bvalues variants should be used,
 selected by ORing the mod_op field with the constant
 LDAP_MOD_BVALUES. mod_values is a NULL-terminated array of
 zero-terminated strings and mod_bvalues is a NULL-terminated
 array of berval structures that can be used to pass binary
 values such as images.

Howes & Smith Informational [Page 8]

RFC 1823 LDAP API August 1995

 For LDAP_MOD_ADD modifications, the given values are added to the
 entry, creating the attribute if necessary. For LDAP_MOD_DELETE
 modifications, the given values are deleted from the entry, removing
 the attribute if no values remain. If the entire attribute is to be
 deleted, the mod_vals field should be set to NULL. For
 LDAP_MOD_REPLACE modifications, the attribute will have the listed
 values after the modification, having been created if necessary. All
 modifications are performed in the order in which they are listed.

 ldap_modify_s() returns the LDAP error code resulting from the
 modify operation. This code can be interpreted by ldap_perror()
 and friends.

 ldap_modify() returns the message id of the request it initiates, or
 -1 on error. The result of the operation can be obtained by calling
 ldap_result().

4.8. Modifying the RDN of an entry

 The ldap_modrdn() and ldap_modrdn_s() routines are used to change the
 name of an LDAP entry.

 int ldap_modrdn(
 LDAP *ld,
 char *dn,
 char *newrdn,
 int deleteoldrdn
);
 int ldap_modrdn_s(
 LDAP *ld,
 char *dn,
 char *newrdn,
 int deleteoldrdn
);

 Parameters are:

 ld The connection handle;

 dn The name of the entry whose RDN is to be changed;

 newrdn The new RDN to give the entry;

 deleteoldrdn A boolean value, if non-zero indicating that the old
 RDN value(s) should be removed, if zero indicating that
 the old RDN value(s) should be retained as non-
 distinguished values of the entry.

Howes & Smith Informational [Page 9]

RFC 1823 LDAP API August 1995

 The ldap_modrdn_s() routine is synchronous, returning the LDAP error
 code indicating the outcome of the operation.

 The ldap_modrdn() routine is asynchronous, returning the message id
 of the operation it initiates, or -1 in case of trouble. The result
 of the operation can be obtained by calling ldap_result().

4.9. Adding an entry

 ldap_add() and ldap_add_s() are used to add entries to the LDAP
 directory.

 int ldap_add(LDAP *ld, char *dn, LDAPMod *attrs[]);

 int ldap_add_s(LDAP *ld, char *dn, LDAPMod *attrs[]);

 Parameters are:

 ld The connection handle;

 dn The name of the entry to add;

 attrs The entry’s attributes, specified using the LDAPMod structure
 defined for ldap_modify(). The mod_type and mod_vals fields
 should be filled in. The mod_op field is ignored unless ORed
 with the constant LDAP_MOD_BVALUES, used to select the
 mod_bvalues case of the mod_vals union.

 Note that the parent of the entry must already exist.

 ldap_add_s() is synchronous, returning the LDAP error code indicating
 the outcome of the operation.

 ldap_add() is asynchronous, returning the message id of the operation
 it initiates, or -1 in case of trouble. The result of the operation
 can be obtained by calling ldap_result().

4.10. Deleting an entry

 ldap_delete() and ldap_delete_s() are used to delete entries from the
 LDAP directory.

 int ldap_delete(LDAP *ld, char *dn);

 int ldap_delete_s(LDAP *ld, char *dn);

Howes & Smith Informational [Page 10]

RFC 1823 LDAP API August 1995

 Parameters are:

 ld The connection handle;

 dn The name of the entry to delete.

 Note that the entry to delete must be a leaf entry (i.e., it must
 have no children). Deletion of entire subtrees is not supported by
 LDAP.

 ldap_delete_s() is synchronous, returning the LDAP error code
 indicating the outcome of the operation.

 ldap_delete() is asynchronous, returning the message id of the
 operation it initiates, or -1 in case of trouble. The result of the
 operation can be obtained by calling ldap_result().

5. Calls for abandoning an operation

 ldap_abandon() is used to abandon an operation in progress.

 int ldap_abandon(LDAP *ld, int msgid);

 ldap_abandon() abandons the operation with message id msgid. It
 returns zero if the abandon was successful, -1 otherwise. After a
 successful call to ldap_abandon(), results with the given message id
 are never returned from a call to ldap_result().

6. Calls for obtaining results

 ldap_result() is used to obtain the result of a previous
 asynchronously initiated operation. ldap_msgfree() frees the results
 obtained from a previous call to ldap_result(), or a synchronous
 search routine.

 int ldap_result(
 LDAP *ld,
 int msgid,
 int all,
 struct timeval *timeout,
 LDAPMessage **res
);

 int ldap_msgfree(LDAPMessage *res);

Howes & Smith Informational [Page 11]

RFC 1823 LDAP API August 1995

 Parameters are:

 ld The connection handle;

 msgid The message id of the operation whose results are to be
 returned, or the constant LDAP_RES_ANY if any result is
 desired;

 all A boolean parameter that only has meaning for search
 results. If non-zero it indicates that all results of a
 search should be retrieved before any are returned. If zero,
 search results (entries) will be returned one at a time as
 they arrive;

 timeout A timeout specifying how long to wait for results to be
 returned. A NULL value causes ldap_result() to block until
 results are available. A timeout value of zero second
 specifies a polling behavior;

 res For ldap_result(), a result parameter that will contain the
 result(s) of the operation. For ldap_msgfree(), the result
 chain to be freed, obtained from a previous call to
 ldap_result() or ldap_search_s() or ldap_search_st().

 Upon successful completion, ldap_result() returns the type of the
 result returned in the res parameter. This will be one of the
 following constants.

 LDAP_RES_BIND
 LDAP_RES_SEARCH_ENTRY
 LDAP_RES_SEARCH_RESULT
 LDAP_RES_MODIFY
 LDAP_RES_ADD
 LDAP_RES_DELETE
 LDAP_RES_MODRDN
 LDAP_RES_COMPARE

 ldap_result() returns 0 if the timeout expired and -1 if an error
 occurs, in which case the ld_errno field of the ld structure will be
 set accordingly.

 ldap_msgfree() frees the result structure pointed to be res and
 returns the type of the message it freed.

Howes & Smith Informational [Page 12]

RFC 1823 LDAP API August 1995

7. Calls for error handling

 The following calls are used to interpret errors returned by other
 LDAP API routines.

 int ldap_result2error(
 LDAP *ld,
 LDAPMessage *res,
 int freeit
);

 char *ldap_err2string(int err);

 void ldap_perror(LDAP *ld, char *msg);

 Parameters are:

 ld The connection handle;

 res The result of an LDAP operation as returned by ldap_result()
 or one of the synchronous API operation calls;

 freeit A boolean parameter indicating whether the res parameter
 should be freed (non-zero) or not (zero);

 err An LDAP error code, as returned by ldap_result2error() or
 one of the synchronous API operation calls;

 msg A message to be displayed before the LDAP error message.

 ldap_result2error() is used to convert the LDAP result message
 obtained from ldap_result(), or the res parameter returned by one of
 the synchronous API operation calls, into a numeric LDAP error code.
 It also parses the ld_matched and ld_error portions of the result
 message and puts them into the connection handle information. All the
 synchronous operation routines call ldap_result2error() before
 returning, ensuring that these fields are set correctly. The relevant
 fields in the connection structue are:

 ld_matched In the event of an LDAP_NO_SUCH_OBJECT error return, this
 parameter contains the extent of the DN matched;

 ld_error This parameter contains the error message sent in the
 result by the LDAP server.

 ld_errno The LDAP error code indicating the outcome of the
 operation. It is one of the following constants:

Howes & Smith Informational [Page 13]

RFC 1823 LDAP API August 1995

 LDAP_SUCCESS
 LDAP_OPERATIONS_ERROR
 LDAP_PROTOCOL_ERROR
 LDAP_TIMELIMIT_EXCEEDED
 LDAP_SIZELIMIT_EXCEEDED
 LDAP_COMPARE_FALSE
 LDAP_COMPARE_TRUE
 LDAP_STRONG_AUTH_NOT_SUPPORTED
 LDAP_STRONG_AUTH_REQUIRED
 LDAP_NO_SUCH_ATTRIBUTE
 LDAP_UNDEFINED_TYPE
 LDAP_INAPPROPRIATE_MATCHING
 LDAP_CONSTRAINT_VIOLATION
 LDAP_TYPE_OR_VALUE_EXISTS
 LDAP_INVALID_SYNTAX
 LDAP_NO_SUCH_OBJECT
 LDAP_ALIAS_PROBLEM
 LDAP_INVALID_DN_SYNTAX
 LDAP_IS_LEAF
 LDAP_ALIAS_DEREF_PROBLEM
 LDAP_INAPPROPRIATE_AUTH
 LDAP_INVALID_CREDENTIALS
 LDAP_INSUFFICIENT_ACCESS
 LDAP_BUSY
 LDAP_UNAVAILABLE
 LDAP_UNWILLING_TO_PERFORM
 LDAP_LOOP_DETECT
 LDAP_NAMING_VIOLATION
 LDAP_OBJECT_CLASS_VIOLATION
 LDAP_NOT_ALLOWED_ON_NONLEAF
 LDAP_NOT_ALLOWED_ON_RDN
 LDAP_ALREADY_EXISTS
 LDAP_NO_OBJECT_CLASS_MODS
 LDAP_RESULTS_TOO_LARGE
 LDAP_OTHER
 LDAP_SERVER_DOWN
 LDAP_LOCAL_ERROR
 LDAP_ENCODING_ERROR
 LDAP_DECODING_ERROR
 LDAP_TIMEOUT
 LDAP_AUTH_UNKNOWN
 LDAP_FILTER_ERROR
 LDAP_USER_CANCELLED
 LDAP_PARAM_ERROR
 LDAP_NO_MEMORY

Howes & Smith Informational [Page 14]

RFC 1823 LDAP API August 1995

 ldap_err2string() is used to convert a numeric LDAP error code, as
 returned by ldap_result2error() or one of the synchronous API
 operation calls, into an informative NULL-terminated character string
 message describing the error. It returns a pointer to static data.

 ldap_perror() is used to print the message supplied in msg, followed
 by an indication of the error contained in the ld_errno field of the
 ld connection handle, to standard error.

8. Calls for parsing search entries

 The following calls are used to parse the entries returned by
 ldap_search() and friends. These entries are returned in an opaque
 structure that should only be accessed by calling the routines
 described below. Routines are provided to step through the entries
 returned, step through the attributes of an entry, retrieve the name
 of an entry, and retrieve the values associated with a given
 attribute in an entry.

8.1. Stepping through a set of entries

 The ldap_first_entry() and ldap_next_entry() routines are used to
 step through a set of entries in a search result.
 ldap_count_entries() is used to count the number of entries returned.

 LDAPMesage *ldap_first_entry(LDAP *ld, LDAPMessage *res);

 LDAPMesage *ldap_next_entry(LDAP *ld, LDAPMessage *entry);

 int ldap_count_entries(LDAP *ld, LDAPMessage *res);

 Parameters are:

 ld The connection handle;

 res The search result, as obtained by a call to one of the syn-
 chronous search routines or ldap_result();

 entry The entry returned by a previous call to ldap_first_entry() or
 ldap_next_entry().

 ldap_first_entry() and ldap_next_entry() will return NULL when no
 more entries exist to be returned. NULL is also returned if an error
 occurs while stepping through the entries, in which case the ld_errno
 field of the ld connection handle will be set to indicate the error.

 ldap_count_entries() returns the number of entries contained in a
 chain of entries. It can also be used to count the number of entries

Howes & Smith Informational [Page 15]

RFC 1823 LDAP API August 1995

 that remain in a chain if called with an entry returned by
 ldap_first_entry() or ldap_next_entry().

8.2. Stepping through the attributes of an entry

 The ldap_first_attribute() and ldap_next_attribute() calls are used
 to step through the list of attribute types returned with an entry.

 char *ldap_first_attribute(
 LDAP *ld,
 LDAPMessage *entry,
 void **ptr
);
 char *ldap_next_attribute(
 LDAP *ld,
 LDAPMessage *entry,
 void *ptr
);

 Parameters are:

 ld The connection handle;

 entry The entry whose attributes are to be stepped through, as
 returned by ldap_first_entry() or ldap_next_entry();

 ptr In ldap_first_attribute(), the address of a pointer used
 internally to keep track of the current position in the entry.
 In ldap_next_attribute(), the pointer returned by a previous
 call to ldap_first_attribute().

 ldap_first_attribute() and ldap_next_attribute() will return NULL
 when the end of the attributes is reached, or if there is an error,
 in which case the ld_errno field in the ld connection handle will be
 set to indicate the error.

 Both routines return a pointer to a per-connection buffer containing
 the current attribute name. This should be treated like static data.
 ldap_first_attribute() will allocate and return in ptr a pointer to a
 BerElement used to keep track of the current position. This pointer
 should be passed in subsequent calls to ldap_next_attribute() to step
 through the entry’s attributes.

 The attribute names returned are suitable for passing in a call to
 ldap_get_values() and friends to retrieve the associated values.

Howes & Smith Informational [Page 16]

RFC 1823 LDAP API August 1995

8.3. Retrieving the values of an attribute

 ldap_get_values() and ldap_get_values_len() are used to retrieve the
 values of a given attribute from an entry. ldap_count_values() and
 ldap_count_values_len() are used to count the returned values.
 ldap_value_free() and ldap_value_free_len() are used to free the
 values.

 typedef struct berval {
 unsigned long bv_len;
 char *bv_val;
 };

 char **ldap_get_values(
 LDAP *ld,
 LDAPMessage *entry,
 char *attr
);

 struct berval **ldap_get_values_len(
 LDAP *ld,
 LDAPMessage *entry,
 char *attr
);

 int ldap_count_values(char **vals);

 int ldap_count_values_len(struct berval **vals);

 int ldap_value_free(char **vals);

 int ldap_value_free_len(struct berval **vals);

 Parameters are:

 ld The connection handle;

 entry The entry from which to retrieve values, as returned by
 ldap_first_entry() or ldap_next_entry();

 attr The attribute whose values are to be retrieved, as returned by
 ldap_first_attribute() or ldap_next_attribute(), or a caller-
 supplied string (e.g., "mail");

 vals The values returned by a previous call to ldap_get_values() or
 ldap_get_values_len().

Howes & Smith Informational [Page 17]

RFC 1823 LDAP API August 1995

 Two forms of the various calls are provided. The first form is only
 suitable for use with non-binary character string data only. The
 second _len form is used with any kind of data.

 Note that the values returned are malloc’ed and should be freed by
 calling either ldap_value_free() or ldap_value_free_len() when no
 longer in use.

8.4. Retrieving the name of an entry

 ldap_get_dn() is used to retrieve the name of an entry.
 ldap_explode_dn() is used to break up the name into its component
 parts. ldap_dn2ufn() is used to convert the name into a more "user
 friendly" format.

 char *ldap_get_dn(LDAP *ld, LDAPMessage *entry);

 char **ldap_explode_dn(char *dn, int notypes);

 char *ldap_dn2ufn(char *dn);

 Parameters are:

 ld The connection handle;

 entry The entry whose name is to be retrieved, as returned by
 ldap_first_entry() or ldap_next_entry();

 dn The dn to explode, as returned by ldap_get_dn();

 notypes A boolean parameter, if non-zero indicating that the dn com-
 ponents should have their type information stripped off
 (i.e., "cn=Babs" would become "Babs").

 ldap_get_dn() will return NULL if there is some error parsing the dn,
 setting ld_errno in the ld connection handle to indicate the error.
 It returns a pointer to malloc’ed space that the caller should free
 by calling free() when it is no longer in use. Note the format of
 the DNs returned is given by [4].

 ldap_explode_dn() returns a char * array containing the RDN
 components of the DN supplied, with or without types as indicated by
 the notypes parameter. The array returned should be freed when it is
 no longer in use by calling ldap_value_free().

 ldap_dn2ufn() converts the DN into the user friendly format described
 in [5]. The UFN returned is malloc’ed space that should be freed by a
 call to free() when no longer in use.

Howes & Smith Informational [Page 18]

RFC 1823 LDAP API August 1995

9. Security Considerations

 LDAP supports minimal security during connection authentication.

10. Acknowledgements

 This material is based upon work supported by the National Science
 Foundation under Grant No. NCR-9416667.

11. Bibliography

 [1] The Directory: Selected Attribute Syntaxes. CCITT,
 Recommendation X.520.

 [2] Howes, T., Kille, S., Yeong, W., and C. Robbins, "The String
 Representation of Standard Attribute Syntaxes", University of
 Michigan, ISODE Consortium, Performance Systems International,
 NeXor Ltd., RFC 1778, March 1995.

 [3] Howes, T., "A String Representation of LDAP Search Filters", RFC
 1558, University of Michigan, December 1993.

 [4] Kille, S., "A String Representation of Distinguished Names", RFC
 1779, ISODE Consortium, March 1995.

 [5] Kille, S., "Using the OSI Directory to Achieve User Friendly
 Naming", RFC 1781, ISODE Consortium, March 1995.

 [6] S.P. Miller, B.C. Neuman, J.I. Schiller, J.H. Saltzer, "Kerberos
 Authentication and Authorization System", MIT Project Athena
 Documentation Section E.2.1, December 1987

 [7] Yeong, W., Howes, T., and S. Kille, "Lightweight Directory Access
 Protocol," RFC 1777, Performance Systems International,
 University of Michigan, ISODE Consortium, March 1995.

Howes & Smith Informational [Page 19]

RFC 1823 LDAP API August 1995

12. Authors’ Addresses

 Tim Howes
 University of Michigan
 ITD Research Systems
 535 W William St.
 Ann Arbor, MI 48103-4943
 USA

 Phone: +1 313 747-4454
 EMail: tim@umich.edu

 Mark Smith
 University of Michigan
 ITD Research Systems
 535 W William St.
 Ann Arbor, MI 48103-4943
 USA

 Phone: +1 313 764-2277
 EMail: mcs@umich.edu

Howes & Smith Informational [Page 20]

RFC 1823 LDAP API August 1995

13. Appendix A - Sample LDAP API Code

 #include <ldap.h>

 main()
 {
 LDAP *ld;
 LDAPMessage *res, *e;
 int i;
 char *a, *dn;
 void *ptr;
 char **vals;

 /* open a connection */
 if ((ld = ldap_open("dotted.host.name", LDAP_PORT))
 == NULL)
 exit(1);

 /* authenticate as nobody */
 if (ldap_simple_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_simple_bind_s");
 exit(1);
 }

 /* search for entries with cn of "Babs Jensen",
 return all attrs */
 if (ldap_search_s(ld, "o=University of Michigan, c=US",
 LDAP_SCOPE_SUBTREE, "(cn=Babs Jensen)", NULL, 0, &res)
 != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_search_s");
 exit(1);
 }

 /* step through each entry returned */
 for (e = ldap_first_entry(ld, res); e != NULL;
 e = ldap_next_entry(ld, e)) {
 /* print its name */
 dn = ldap_get_dn(ld, e);
 printf("dn: %s0, dn);
 free(dn);

 /* print each attribute */
 for (a = ldap_first_attribute(ld, e, &ptr);
 a != NULL;
 a = ldap_next_attribute(ld, e, ptr)) {
 printf("attribute: %s0, a);

 /* print each value */

Howes & Smith Informational [Page 21]

RFC 1823 LDAP API August 1995

 vals = ldap_get_values(ld, e, a);
 for (i = 0; vals[i] != NULL; i++) {
 printf("value: %s0, vals[i]);
 }
 ldap_value_free(vals);
 }
 }
 /* free the search results */
 ldap_msgfree(res);

 /* close and free connection resources */
 ldap_unbind(ld);
 }

Howes & Smith Informational [Page 22]

