
Network Working Group B. Noble
Request for Comments: 2041 Carnegie Mellon University
Category: Informational G. Nguyen
 University of California, Berkeley
 M. Satyanarayanan
 Carnegie Mellon University
 R. Katz
 University of California, Berkeley
 October 1996

 Mobile Network Tracing

Status of this Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Abstract

 Mobile networks are both poorly understood and difficult to
 experiment with. This RFC argues that mobile network tracing
 provides both tools to improve our understanding of wireless
 channels, as well as to build realistic, repeatable testbeds for
 mobile software and systems. The RFC is a status report on our work
 tracing mobile networks. Our goal is to begin discussion on a
 standard format for mobile network tracing as well as a testbed for
 mobile systems research. We present our format for collecting mobile
 network traces, and tools to produce from such traces analytical
 models of mobile network behavior.

 We also describe a set of tools to provide network modulation based
 on collected traces. Modulation allows the emulation of wireless
 channel latency, bandwidth, loss, and error rates on private, wired
 networks. This allows system designers to test systems in a
 realistic yet repeatable manner.

Noble, et. al. Informational [Page 1]

RFC 2041 Mobile Network Tracing October 1996

1. Introduction

 How does one accurately capture and reproduce the observed behavior
 of a network? This is an especially challenging problem in mobile
 computing because the network quality experienced by a mobile host
 can vary dramatically over time and space. Neither long-term average
 measures nor simple analytical models can capture the variations in
 bandwidth, latency, and signal degradation observed by such a host.
 In this RFC, we describe a solution based on network tracing. Our
 solution consists of two phases: trace recording and trace
 modulation.

 In the trace recording phase, an experimenter with an instrumented
 mobile host physically traverses a path of interest to him. During
 the traversal, packets from a known workload are generated from a
 static host. The mobile host records observations of both packets
 received from the known workload as well as the device
 characteristics during the workload. At the end of the traversal,
 the list of observations represents an accurate trace of the observed
 network behavior for this traversal. By performing multiple
 traversals of the same path, and by using different workloads, one
 can obtain a trace family that collectively characterizes network
 quality on that path.

 In the trace modulation phase, mobile system and application software
 is subjected to the network behavior observed in a recorded trace.
 The mobile software is run on a LAN-attached host whose kernel is
 modified to read a file containing the trace (possibly postprocessed
 for efficiency,) and to delay, drop or otherwise degrade packets in
 accordance with the behavior described by the trace. The mobile
 software thus experiences network quality indistinguishable from that
 recorded in the trace. It is important to note that trace modulation
 is fully transparent to mobile software --- no source or binary
 changes have to be made.

 Trace-based approaches have proved to be of great value in areas such
 as file system design [2, 10, 11] and computer architecture. [1, 5,
 13] Similarly, we anticipate that network tracing will prove valuable
 in many aspects of mobile system design and implementation. For
 example, detailed analyses of traces can provide insights into the
 behavior of mobile networks and validate predictive models. As
 another example, it can play an important role in stress testing and
 debugging by providing the opportunity to reproduce the network
 conditions under which a bug was originally uncovered. As a third
 example, it enables a system under development to be subjected to
 network conditions observed in distant real-life environments. As a
 final example, a set of traces can be used as a benchmark family for
 evaluating and comparing the adaptive capabilities of alternative

Noble, et. al. Informational [Page 2]

RFC 2041 Mobile Network Tracing October 1996

 mobile system designs.

 Our goal in writing this RFC is to encourage the development of a
 widely-accepted standard format for network traces. Such
 standardization will allow traces to be easily shared. It will also
 foster the development and widespread use of trace-based benchmarks.
 While wireless mobile networks are the primary motivation for this
 work, we have made every effort to ensure that our work is applicable
 to other types of networks. For example, the trace format and some
 of the tools may be valuable in analyzing and modeling ATM networks.

 The rest of this RFC is organized as follows. We begin by examining
 the properties of wireless networks and substantiating the claim that
 it is difficult to model such networks. Next, in Section 3, we
 describe the factors that should be taken into account in designing a
 trace format. We present the details of a proposed trace format
 standard in Section 4. Section 5 presents a set of tools that we
 have built for the collection, analysis and replay of traces.
 Finally, we conclude with a discussion of related and future work.

2. Modeling Wireless Networks

 Wireless channels are particularly complex to model, because of their
 inherent dependence on the physical properties of radio waves (such
 as reflections from "hard" surfaces, diffraction around corners, and
 scattering caused by small objects) and the site specific geometries
 in which the channel is formed. They are usually modeled as a time-
 and distance-varying signal strength, capturing the statistical
 nature of the interaction among reflected radio waves. The signal
 strength can vary by several orders of magnitude (+ or - 20-30 dB)
 within a short distance. While there have been many efforts to
 obtain general models of radio propagation inside buildings and over
 the wide area, these efforts have yielded inherently inaccurate
 models that can vary from actual measurements by an order of
 magnitude or more.

 Signal-to-noise ratio, or SNR, is a measure of the received signal
 quality. If the SNR is too low, the received signal will not be
 detected at the receiver, yielding bit errors and packet losses. But
 SNR is not the only effect that can lead to losses. Another is
 inter-symbol interference caused by delay spread, that is, the
 delayed arrival of an earlier transmitted symbol that took a
 circuitous propagation path to arrive at the receiver, thereby
 (partially) canceling out the current symbol. Yet another problem is
 doppler shift, which causes frequency shifts in the arrived signal
 due to relative velocities of the transmitter and the receiver,
 thereby complicating the successful reception of the signal. If
 coherent reception is being used, receiver synchronization can be

Noble, et. al. Informational [Page 3]

RFC 2041 Mobile Network Tracing October 1996

 lost.

 More empirically, it has been observed that wireless channels adhere
 to a two state error model. In other words, channels are usually
 well behaved but occasionally go into a bad state in which many burst
 errors occur within a small time interval.

 Developers of network protocols and mobility algorithms must
 experiment with realistic channel parameters. It is highly desirable
 that the wireless network be modeled in a thoroughly reproducible
 fashion. This would allow an algorithm and its variations to be
 evaluated in a controlled and repeatable way. Yet the above
 discussion makes it clear that whether analytical models are used or
 even actual experimentation with the network itself, the results will
 be either inaccurate or unlikely to be reproducible. A trace-based
 approach alleviates these problems.

3. Desirable Trace Format Properties

 In designing our trace format, we have been guided by three
 principles. First, the format should be extensible. Second, it
 should be self-describing. Third, traces should be easy to manage.
 This section describes how each of these principles has affected our
 design.

 Although we have found several interesting uses for network traces,
 it is certain that more will evolve over time. As the traces are
 used in new ways, it may be necessary to add new data to the trace
 format. Rather than force the trace format to be redesigned, we have
 structured the format to be extensible. There is a built-in
 mechanism to add to the kinds of data that can be recorded in network
 traces.

 This extensibility is of little use if the tool set needs to change
 as the trace format is extended. Recognizing this, we have made the
 format -- particularly the extensible portions -- self-describing.
 Thus, old versions of tools can continue to work with extended
 traces, if perhaps in a less than optimal way.

 In our experience with other tracing systems, management of trace
 files is often difficult at best. Common problems include the need
 to manage multiple trace files as a unit, not easily being able to
 extract the salient features of large trace files, and having to use
 dedicated trace management tools to perform even the simplest tasks.
 To help cope with file management, we have designed the the traces to
 be split or merged easily. To reduce dependence on specialized
 tools, we’ve chosen to store some descriptive information as ASCII
 strings, allowing minimal access to the standard UNIX tool suite.

Noble, et. al. Informational [Page 4]

RFC 2041 Mobile Network Tracing October 1996

4. Trace Format

 This section describes the format for network traces. We begin by
 presenting the basic abstractions that are key to the trace format:
 the record, and the track, a collection of related records. We then
 describe the records at the beginning and end of a trace, the header
 and footer. The bulk of the section describes the three kinds of
 record tracks: packet, device, and general. These also make up the
 bulk of the actual trace. We conclude the section with a discussion
 of two special purpose records: the annotation and the trace data
 loss records.

4.1. Basic Abstractions

4.1.1. Records

 A record is the smallest unit of trace data. There are several
 different types of records, each of which is discussed in Sections
 4.2 through 4.7. All of the records share several features in
 common; these features are described here.

 Records are composed of fields, which are stored in network order.
 Most of the fields in our records are word-sized. Although this may
 be wasteful in space, we chose to leave room to grow and keep trace
 management simple.

 The first field in each record is a magic word, a random 32 bit
 pattern that both identifies the record’s type and lends some
 confidence that the record is well formed. Many record types have
 both required and optional fields; thus they can be of variable size.
 We place every record’s size in its second field. By comparing the
 size of a record to the known constraints for the record’s type, we
 can gain further confidence that a record is well-formed. This basic
 record structure is illustrated in Figure 1.

 All records also contain a two-word timestamp. This timestamp can
 take one of two formats: timeval or timespec. Only one of the two
 formats is used in any given trace, and the format is specified at
 the start of a trace file. The first word in either format is the
 number of seconds that have elapsed since midnight, January 1, 1970.
 The second word is the additional fractions of a second. In the
 timeval format, these fractions are expressed in microseconds, in the
 same way that many current operating systems express time. In the
 timespec format, these fractions are expressed in nanoseconds, the
 POSIX time standard. We’ve chosen these two values since they are
 convenient, cover most current and anticipated systems’ notions of
 time, and offer appropriate granularity for measuring network events.

Noble, et. al. Informational [Page 5]

RFC 2041 Mobile Network Tracing October 1996

 +------------------+
 | Magic Number |
 | Size of Record |
 +------------------+
 | Required Fields |
 | ... |
 +------------------+
 | Optional Fields |
 | ... |
 +------------------+

 Figure 1: Record format

4.1.2. Tracks

 Many of the record types have both fixed, required fields, as well as
 a set of optional fields. It is these options that provide
 extensibility to our trace format. However, to provide a self-
 describing trace, we need some compact way of determining which
 optional fields are present in a given record. To do this, we group
 related sets of packets into tracks. For example, a set of records
 that captured packet activity for a single protocol between two
 machines might be put together into a track. A track is a header
 followed by some number of related records; the header completely
 describes the format of the individual records. Records from
 separate tracks can be interleaved with one another, so long as the
 header for each individual track appears before any of the track’s
 records. Figure 2 shows an example of how records from different
 tracks might be interleaved.

 Track headers describe their records’ content through property lists.
 An entry in a property list is a two-element tuple consisting of a
 name and a value. The name is a word which identifies the property
 defined by this entry. Some of these properties are measured only
 once for a track, for example, the address of a one-hop router in a
 track recording packets from that router. Others are measured once
 per record in that track, such as the signal strength of a device
 which changes over time. The former, which we call header-only
 properties, have their most significant name bit set. The value
 field of a header-only property holds the measured value of the
 property. Otherwise, the value field holds the number of words used
 in each of the track’s records.

Noble, et. al. Informational [Page 6]

RFC 2041 Mobile Network Tracing October 1996

 +----------++----------++----------++----------++----------+
 | Track #1 || Track #1 || Track #2 || Track #1 || Track #2 |
 | Header || Entry || Header || Entry || Entry |
 +----------++----------++----------++----------++----------+

 Figure 2: Interleaved track records

 Those properties measured in each record in the track are grouped
 together in a value list at the end of each such record. They appear
 in the same order that was specified in the track header’s property
 list so that tools can properly attribute data. Thus, even if a tool
 doesn’t know what property a particular name represents, it can
 identify which parts of a trace record are measuring that property,
 and ignore them.

Noble, et. al. Informational [Page 7]

RFC 2041 Mobile Network Tracing October 1996

4.2. Trace Headers and Footers

 Trace files begin with a trace header, and end with a trace footer.
 The formats of these appear in Figure 3. The header specifies
 whether this trace was collected on a single machine, or was merged
 from several other traces. In the former case, the IP address and
 host name of the machine are recorded. In the latter, the IP address
 is taken from the family of Class E address, which are invalid. We
 use a family of invalid addresses so that even if we cannot identify
 a number of hosts participating in the trace we can still distinguish
 records from distinct hosts.

 #define TR_DATESZ 32
 #define TR_NAMESZ 64

 struct tr_header_t {
 u_int32_t h_magic;
 u_int32_t h_size;
 u_int32_t h_time_fmt; /* usec or nsec */
 struct tr_time_t h_ts; /* starting time */
 char h_date[TR_DATESZ]; /* Date collected */
 char h_agent[TR_NAMESZ]; /* DNS name */
 u_int32_t h_agent_ip;
 char h_desc[0]; /* variable size */
 };

 struct tr_end_t {
 u_int32_t e_magic;
 u_int32_t e_size;
 struct tr_time_t e_ts; /* end time */
 char e_date[32]; /* Date end written */
 };

 Figure 3: Trace header and footer records

 The trace header also specifies which time stamp format is used in
 the trace, and the time at which the trace begins. There is a
 variable-length description that is a string meant to provide details
 of how the trace was collected. The trace footer contains only the
 time at which the trace ended; it serves primarily as a marker to
 show the trace is complete.

 Unlike other kinds of records in the trace format, the header and
 footer records have several ASCII fields. This is to allow standard
 utilities some access to the contents of the trace, without resorting
 to specialized tools.

Noble, et. al. Informational [Page 8]

RFC 2041 Mobile Network Tracing October 1996

4.3. Packet Tracks

 Measuring packet activity is the main focus of the network tracing
 project. Packet activity is recorded in tracks, with a packet header
 and a set of packet entries. A single track is meant to capture the
 activity of a single protocol, traffic from a single router, or some
 other subset of the total traffic seen by a machine. The required
 portions of packet headers and entries are presented in Figure 4.

 Packet track headers identify which host generated the trace records
 for that track, as well as the time at which the track began. It
 records the device on which these packets are received or sent, and
 the protocol used to ship the packet; these allow interpretation of
 device-specific or protocol-specific options. The header concludes
 with the property list for the track.

 struct tr_pkt_hdr_t {
 u_int32_t ph_magic;
 u_int32_t ph_size;
 u_int32_t ph_defines; /* magic number defined */
 struct tr_time_t ph_ts;
 u_int32_t ph_ip; /* host generating stream */
 u_int32_t ph_dev_type; /* device collected from */
 u_int32_t ph_protocol; /* protocol */
 struct tr_prop_lst_t ph_plist[0]; /* variable size */
 };

 struct tr_pkt_ent_t {
 u_int32_t pe_magic;
 u_int32_t pe_size;
 struct tr_time_t pe_ts;
 u_int32_t pe_psize; /* packet size */
 u_int32_t pe_vlist[0]; /* variable size */
 };

 Figure 4: Packet header and entry records

 A packet entry is generated for every traced packet. It contains the
 size of the traced packet, the time at which the packet was sent or
 received, and the list of property measurements as specified in the
 track header.

 The options we have defined to date are in Table 1. Several of these
 have played an important role in our early experiments. ADDR_PEER
 identifies the senders of traffic during the experiment. We can
 determine network performance using either PKT_SENTTIME for one-way
 traffic between two hosts with closely synchronized clocks, or round

Noble, et. al. Informational [Page 9]

RFC 2041 Mobile Network Tracing October 1996

 trip ICMP ECHO traffic and the ICMP_PINGTIME option. Tracking
 PKT_SEQUENCE numbers sheds light on both loss rates and patterns.
 Section 5 discusses how these measurements are used.

4.4. Device Tracks

 Our trace format records details of the devices which carry network
 traffic. To date, we’ve found this most useful for correlating lost
 packets with various signal parameters provided by wireless devices.
 The required portions of device header and entry records appear in
 Figure 5, and are quite simple. Device track headers identify the
 host generating the track’s records, the time at which the
 observation starts, and the type of device that is being traced.
 Each entry contains the time of the observation, and the list of
 optional characteristics.

 +---------------+---+
ADDR_PEER	Address of peer host
ADDR_LINK	Address of one-hop router
BS_LOC_X	One-hop router’s X coordinate (header only)
BS_LOC_Y	One-hop router’s Y coordinate (header only)
PKT_SEQUENCE	Sequence number of packet
PKT_SENTTIME	Time packet was sent
PKT_HOPS	Number of hops packet took
SOCK_PORTS	Sending and receiving ports
IP_PROTO	Protocol number of an IP packet
ICMP_PINGTIME	Roundtrip time of an ICMP ECHO/REPLY pair
ICMP_KIND	Type and code of an ICMP packet
ICMP_ID	The id field of an ICMP packet
PROTO_FLAGS	Protocol-specific flags
PROTO_ERRLIST	Protocol-specific status/error words
 +---------------+---+
 Table 1: Current optional fields for packet entries

Noble, et. al. Informational [Page 10]

RFC 2041 Mobile Network Tracing October 1996

 struct tr_dev_hdr_t {
 u_int32_t dh_magic;
 u_int32_t dh_size;
 u_int32_t dh_defines; /* Magic number defined */
 struct tr_time_t dh_ts;
 u_int32_t dh_ip; /* host generating stream */
 u_int32_t dh_dev_type; /* device described */
 struct tr_prop_lst_t dh_plist[0]; /* Variable size */
 };

 struct tr_dev_ent_t {
 u_int32_t de_magic;
 u_int32_t de_size;
 struct tr_time_t de_ts;
 u_int32_t de_vlist[0]; /* Variable size */
 };

 Figure 5: Device header and entry records

 These optional characteristics, listed in Table 2, are mostly
 concerned with the signal parameters of the wireless interfaces we
 have available. Interpreting these parameters is heavily device-
 dependent. We give examples of how we’ve used device observations in
 Section 5.

 +-----------------+--+
DEV_ID	Major and minor number of device (header only)
DEV_STATUS	Device specific status registers
WVLN_SIGTONOISE	Signal to noise ratio reported by WaveLAN
WVLN_SIGQUALITY	Signal quality reported by WaveLAN
WVLN_SILENCELVL	WaveLAN silence level
 +-----------------+--+
 Table 2: Current optional fields for packet entries

4.5. Miscellaneous Tracks

 We use miscellaneous, or general, tracks to record things that don’t
 fit clearly in either the packet or device model. At the moment,
 physical location of a mobile host is the only attribute tracked in
 general trace records. The required portion of the general header
 and entry records is shown in Figure 6, the two optional properties
 are in Table 3. In addition to the property list, general headers
 have only the IP address of the host generating the record and the
 time at which observations began. General entries have only a
 timestamp, and the optional fields.

Noble, et. al. Informational [Page 11]

RFC 2041 Mobile Network Tracing October 1996

4.6. Annotations

 An experimenter may occasionally want to embed arbitrary descriptive
 text into a trace. We include annotation records to provide for
 this. Such records are not part of a track; they stand alone. The
 structure of an annotation record is shown in Figure 7. Annotations
 include the time at which the annotation was inserted in the trace,
 the host which inserted the annotation, and the variable-sized text
 of the annotation itself.

 struct tr_gen_hdr_t {
 u_int32_t gh_magic;
 u_int32_t gh_size;
 u_int32_t gh_defines;
 struct tr_time_t gh_ts;
 u_int32_t gh_ip;
 struct tr_prop_lst_t gh_plist[0]; /* Variable size */
 };

 struct tr_gen_ent_t {
 u_int32_t ge_magic;
 u_int32_t ge_size;
 struct tr_time_t ge_ts;
 u_int32_t ge_vlist[0]; /* Variable size */
 };

 Figure 6: General header and entry records

 +------------+--+
 | MH_LOC_X | Mobile host’s X coordinate (map-relative) |
 | MH_LOC_Y | Mobile host’s Y coordinate (map-relative) |
 | MH_LOC_LAT | Mobile host’s GPS latitude |
 | MH_LOC_LON | Mobile host’s GPS longitude |
 +------------+--+
 Table 3: Current optional fields for general entries

 struct tr_annote_t {
 u_int32_t a_magic;
 u_int32_t a_size;
 struct tr_time_t a_ts;
 u_int32_t a_ip;
 char a_text[0]; /* variable size */
 };

 Figure 7: Annotation records

Noble, et. al. Informational [Page 12]

RFC 2041 Mobile Network Tracing October 1996

4.7. Lost Trace Data

 It is possible that, during collection, some trace records may be
 lost due to trace buffer overflow or other reasons. Rather than
 throw such traces away, or worse, ignoring the lost data, we’ve
 included a loss record to count the types of other records which are
 lost in the course of trace collection. Loss records are shown in
 Figure 8.

 struct tr_loss_t {
 u_int32_t l_magic;
 u_int32_t l_size;
 struct tr_time_t l_ts;
 u_int32_t l_ip;
 u_int32_t l_pkthdr;
 u_int32_t l_pktent;
 u_int32_t l_devhdr;
 u_int32_t l_devent;
 u_int32_t l_annote;
 };

 Figure 8: Loss records

5. Software Components

 In this section, we describe the set of tools that have been built to
 date for mobile network tracing. We believe many of these tools are
 widely applicable to network tracing tasks, but some have particular
 application to mobile network tracing. We begin with an overview of
 the tools, their applicability, and the platforms on which they are
 currently supported, as well as those they are being ported to. This
 information is summarized in Table 4.

 We have made every effort to minimize dependencies of our software on
 anything other than protocol and device specifications. As a result,
 we expect ports to other BSD-derived systems to be straightforward;
 ports to other UNIX systems may be more complicated, but feasible.

 There are three categories into which our tracing tools can be
 placed: trace collection, trace modulation, and trace analysis.
 Trace collection tools are used for generating new traces. They
 record information about the general networking facilities, as well
 as data specific to mobile situations: mobile host location, base
 station location, and wireless device characteristics. These tools
 are currently supported on BSDI, and are being ported to NetBSD. We
 describe these tools in Section 5.1.

Noble, et. al. Informational [Page 13]

RFC 2041 Mobile Network Tracing October 1996

 Trace modulation tools emulate the performance of a traced wireless
 network on a private wired network. The trace modulation tools,
 discussed in Section 5.2, are currently supported on NetBSD
 platforms. They are geared toward replaying low speed/quality
 networks on faster and more reliable ones, and are thus most
 applicable to reproducing mobile environments.

 In Section 5.3, we conclude with a set of trace processing and
 analysis tools, which are currently supported on both NetBSD and BSDI
 platforms. Our analyses to date have focused on properties of
 wireless networks, and are most directly applicable to mobile traces.
 The processing tools, however, are of general utility.

 +--------------+--------------+--------------+
 | Collection | Modulation | Analysis |
 +-----------+--------------+--------------+--------------+
 | NetBSD | In Progress | Supported | Supported |
 | BSDI | Supported | Planned | Supported |
 +-----------+--------------+--------------+--------------+
This table summarizes the currently supported platforms for the tracing
tool suites, and the platforms to which ports are underway.

 Table 4: Tool Availability

5.1. Trace Collection Tools

 The network trace collection facility comprises two key components:
 the trace agent and the trace collector. They are shown in Figure 9.

 The trace agent resides in the kernel where it can obtain data that
 is either expensive to obtain or inaccessible from the user level.
 The agent collects and buffers data in kernel memory; the user-level
 trace collector periodically extracts data from this kernel buffer
 and writes it to disk. The buffer amortizes the fixed costs of data
 transfer across a large number of records, minimizing the impact of
 data transfer on system performance. The trace collector retrieves
 data through a pseudo-device, ensuring that only a single -- and
 therefore complete -- trace file is being generated from a single
 experiment. To provide simplicity and efficiency, the collector does
 not interpret extracted data; it is instead processed off-line by the
 post-processing and analysis tools described in Sections 5.2 and 5.3.

 There are three sorts of data collected by the tracing tools: network
 traffic, network device characteristics, and mobile host location.
 The first two are collected in much the same way; we describe the
 methodology in Section 5.1.1. The last is collected in two novel
 ways. These collection methods are addressed in Section 5.1.2.

Noble, et. al. Informational [Page 14]

RFC 2041 Mobile Network Tracing October 1996

 +-----------+ write to disk
 | Trace | ==============>
 | Collector |
 +-----------+
 A
 ==|===== kernel boundary
 +-----------------+ |
 | Transport Layer | |
 |-----------------| +------------------+
 | Network Layer |------------>| Trace +------+ | | |
 |-----------------| | Agent |buffer| |
 | NI | NI | NI |------------>| +------+ |
 +-----------------+ +------------------+
 This figure illustrates the components of trace collection. The NI’s
 are network interfaces.

 Figure 9: Components of trace collection

5.1.1. Traffic and Device Collection

 The trace agent exports a set of function calls for traffic and
 device data collection. Traffic data is collected on a per-packet
 basis. This is done via a function called from device drivers with
 the packet and a device identifier as arguments. For each packet,
 the trace record contains the source and destination address options.
 Since our trace format assembles related packets into tracks, common
 information, such as the destination address, is recorded in the
 track header to reduce the record size for each packet entry. We
 also record the size of each packet.

 Information beyond packet size and address information is typically
 protocol-dependent. For transport protocols such as UDP and TCP, for
 example, we record the source and destination port numbers; TCP
 packet records also contain the sequence number. For ICMP packets,
 we record their type, code and additional type-dependent data. As
 explained in Section 5.2.3, we record the identifier, sequence number
 and time stamp for ICMP ECHOREPLY packets.

 Before appending the record to the trace buffer, we check to see if
 it is the first record in a track. If so, we create a new packet
 track header, and write it to the buffer prior the packet entry.

 Our trace collection facility provides similar mechanisms to record
 device-specific data such as signal quality, signal level, and noise
 level. Hooks to these facilities can be easily added to the device
 drivers to invoke these tracing mechanisms. The extensible and
 self-describing features of our trace format allow us to capture a
 wide variety of data specific to particular network interfaces.

Noble, et. al. Informational [Page 15]

RFC 2041 Mobile Network Tracing October 1996

 For wireless network devices, we record several signal quality
 measurements that the interfaces provide. Although some interfaces,
 such as NCR’s WaveLAN, can supply this of information for every
 packet received, most devices average their measurements over a
 longer period of time. As a result, we only trace these measurements
 periodically. It is up to the device drivers to determine the
 frequency at which data is reported to the trace agent.

 When devices support it, we also trace status and error events. The
 types of errors, such as CRC or buffer overflow, allow us to
 determine causes for some observed packet losses. For example, we
 can attribute loss to either the wireless channel or the network
 interface.

5.1.2. Location Tracing

 At first thought, recording the position of a mobile host seems
 straightforward. It can be approximated by recording the base
 station (BS) with which the mobile host is communicating. However,
 due to the large coverage area provided by most radio interfaces,
 this information provides a loose approximation at best. In
 commercial deployments, we may not be able to reliably record the
 base station with which a mobile host communicates. This section
 outlines our collection strategy for location information in both
 outdoor and indoor environments.

 The solution that we have considered for wide-area, outdoor
 environments makes use of the Global Positioning System (GPS). The
 longitude and latitude information provided by the GPS device is
 recorded in a general track.

 Indoor environments require a different approach because the
 satellite signals cannot reach a GPS device inside a building. We
 considered deploying an infrared network similar to the Active Badge
 [14] or the ParcTab [12]; however, this significant addition to the
 wireless infrastructure is not an option for most research groups.

 As an alternative, we have developed a graphical tool that displays
 the image of a building map and expects the user to "click" their
 location as they move; the coordinates on the map are recorded in one
 or more general tracks. The header of such tracks can also record
 the coordinates of the base stations if they are known.

 An extension can be easily added to this tool to permit multiple
 maps. As the user requests that a new map be loaded into the
 graphical tracing tool, a new location track is created along with an
 annotation record that captures the file name of that image.
 Locations of new base stations can be recorded in this new track

Noble, et. al. Informational [Page 16]

RFC 2041 Mobile Network Tracing October 1996

 header. Each location track should represent a different physical
 and wireless environment.

5.2. Trace Modulation Tools

 A key tool we have built around our trace format is PaM, the Packet
 Modulator. The idea behind PaM is to take traces that were collected
 by a mobile host and distill them into modulation traces. These
 modulation traces capture the networking environment seen by the
 traced host, and are used by a PaM kernel to delay, drop, or corrupt
 incoming and outgoing packets. With PaM, we’ve built a testbed that
 can repeatably, reliably mimic live systems under certain mobile
 scenarios.

 There are three main components to PaM. First, we’ve built a kernel
 capable of delaying, dropping, and corrupting packets to match the
 characteristics of some observed network. Second, we’ve defined a
 modulation trace format to describe how such a kernel should modulate
 packets. Third, we’ve built a tool to generate modulation traces
 from certain classes of raw traces collected by mobile hosts.

5.2.1. Packet Modulation

 The PaM modulation tool has been placed in the kernel between the IP
 layer and the underlying interfaces. The tool intercepts incoming
 and outgoing packets, and may choose to drop it, corrupt it, or delay
 it. Dropping an incoming or outgoing packet is easy, simply don’t
 forward it along. Similarly, we can corrupt a packet by flipping
 some bits in the packet before forwarding it.

 Correctly delaying a packet is slightly more complicated. We model
 the delay a packet experiences as the time it takes the sender to put
 the packet onto the network interface plus the time it takes for the
 last byte to propagate to the receiver. The former, the transmission
 time, is the size of the packet divided by the available bandwidth;
 the latter is latency.

 Our approach at delay modulation is simple -- we assume that the
 actual network over which packets travel is much faster and of better
 quality than the one we are trying to emulate, and can thus ignore
 it. We delay the packet according to our latency and bandwidth
 targets, and then decide whether to drop or corrupt it. We take care
 to ensure that packet modulation does not unduly penalize other
 system activity, using the internal system clock to schedule packets.
 Since this clock is at a large granularity compared to delay
 resolution, we try to keep the average error in scheduling to a
 minimum, rather than scheduling each packet at exactly the right
 time.

Noble, et. al. Informational [Page 17]

RFC 2041 Mobile Network Tracing October 1996

5.2.2. Modulation Traces

 To tell the PaM kernel how the modulation parameters change over
 time, we provide it with a series of modulation-trace entries. Each
 of these entries sets loss and corruption percentages, as well as
 network latency and inter-byte time, which is 1/bandwidth. These
 entries are stored in a trace file, the format of which is much
 simpler than record-format traces, and is designed for efficiency in
 playback. The format of modulation traces is shown in Figure 10.

 struct tr_rep_hdr_t {
 u_int32_t rh_magic;
 u_int32_t rh_size;
 u_int32_t rh_time_fmt; /* nsec or used */
 struct tr_time_t rh_ts;
 char rh_date[TR_DATESZ];
 char rh_agent[TR_NAMESZ];
 u_int32_t rh_ip;
 u_int32_t rh_ibt_ticks; /* units/sec, ibt */
 u_int32_t rh_lat_ticks; /* units/sec, lat */
 u_int32_t rh_loss_max; /* max loss rate */
 u_int32_t rh_crpt_max; /* max corrupt rate */
 char rh_desc[0]; /* variable size */
 };

 struct tr_rep_ent_t {
 u_int32_t re_magic;
 struct tr_time_t re_dur; /* duration of entry */
 u_int32_t re_lat; /* latency */
 u_int32_t re_ibt; /* inter-byte time */
 u_int32_t re_loss; /* loss rate */
 u_int32_t re_crpt; /* corrupt rate */
 };

 Figure 10: Modulation trace format

 Modulation traces begin with a header that is much like that found in
 record-format trace headers. Modulation headers additionally carry
 the units in which latency and inter-byte time are expressed, and the
 maximum values for loss and corruption rates. Individual entries
 contain the length of time for which the entry applies as well as the
 latency, inter-byte time, loss rate, and corruption rate.

Noble, et. al. Informational [Page 18]

RFC 2041 Mobile Network Tracing October 1996

5.2.3. Trace Transformation

 How can we generate these descriptive modulation traces from the
 recorded observational traces described in Section 4? To ensure a
 high-quality modulation trace, we limit ourselves to a very narrow
 set of source traces. As our experience with modulation traces is
 limited, we use a simple but tunable algorithm to generate them.

 Our basic strategy for determining latency and bandwidth is tied
 closely to our model of packet delays: delay is equal to
 transmission time plus latency. We further assume that packets which
 traversed the network near one another in time experienced the same
 latency and bandwidth during transit. Given this, we look for two
 packets of different size that were sent close to one another along
 the same path; from the transit times and sizes of these packets, we
 can determine the near-instantaneous bandwidth and latency of the
 end-to-end path covered by those packets. If traced packet traffic
 contains sequence numbers, loss rates are fairly easy to calculate.
 Likewise, if the protocol is capable of marking corrupt packets,
 corruption information can be stored and then extracted from recorded
 traces.

 Using timestamped packet observations to derive network latency and
 bandwidth requires very accurate timing. Unfortunately, the laptops
 we have on hand have clocks that drift non-negligibly. We have
 chosen not to use protocols such as NTP [9] for two reasons. First,
 they produce network traffic above and beyond that in the known
 traced workload. Second, and perhaps more importantly, they can
 cause the clock to speed up or slow down during adjustment. Such
 clock movements can play havoc with careful measurement.

 As a result, we can only depend on the timestamps of a single machine
 to determine packet transit times. So, we use the ICMP ECHO service
 to provide workloads on traced machines; the ECHO request is
 timestamped on it’s way out, and the corresponding ECHOREPLY is
 traced. We have modified the ping program to alternate between small
 and large packets. Traces that capture such altered ping traffic can
 then be subject to our transformation tool.

 The tool itself uses a simple sliding window scheme to generate
 modulation entries. For each window position in the recorded trace,
 we determine the loss rate, and the average latency and bandwidth
 experienced by pairs of ICMP ECHO packets. The size and granularity
 of the sliding window are parameters of the transformation; as we
 gain experience both in analysis and modulation of wireless traces,
 we expect to be able to recommend good window sizes.

Noble, et. al. Informational [Page 19]

RFC 2041 Mobile Network Tracing October 1996

 Unfortunately, our wireless devices do not report corrupt packets;
 they are dropped by the hardware without operating system
 notification. However, our modulation system will also coerce any
 such corruptions to an increased loss rate, duplicating the behavior
 in the original network.

5.3. Trace Analysis Tools

 A trace is only as useful as its processing tools. The requirements
 for such tools tools include robustness, flexibility, and
 portability. Having an extensible trace format places additional
 emphasis on the ability to work with future versions. To this end,
 we provide a general processing library as a framework for users to
 easily develop customized processing tools; this library is designed
 to provide both high portability and good performance.

 In this section, we first present the trace library. We then
 describe a set of tools for simple post-processing and preparing the
 trace for further analyses. We conclude with a brief description of
 our analysis tools that are applied to this minimally processed data.

5.3.1. Trace Library

 The trace library provides an interface that applications can use to
 simplify interaction with network traces, including functions to
 read, write, and print trace records. The trace reading and writing
 functions manage byte swapping as well as optional integrity checking
 of the trace as it is read or written. The library employs a
 buffering strategy that is optimized to trace I/O. Trace printing
 facilities are provided for both debugging and parsing purposes.

5.3.2. Processing Tools

 The processing tools are generally the simplest set of tools we have
 built around the trace format. By far the most complicated one is
 the modulation-trace transformation tool described in Section 5.2.3;
 the remainder are quite simple in comparison. The first such tool is
 a parser that prints the content of an entire trace. With the trace
 library, it is less than a single page of C code. For each record,
 it prints the known data fields along with their textual names,
 followed by all the optional properties and values.

 Since many analysis tasks tend to work with records of the same type,
 an enhanced version of the parser can split the trace data by tracks
 into many files, one per track. Each line of the output text files
 contains a time stamp followed by the integer values of all the
 optional data in a track entry; in this form traces are amenable to
 further analysis be scripts written in an interpreted language such

Noble, et. al. Informational [Page 20]

RFC 2041 Mobile Network Tracing October 1996

 as perl.

 We have developed a small suite of tools providing simple functions
 such as listing all the track headers and changing the trace
 description as they have been needed. With the trace library, each
 such tool is trivial to construct.

5.3.3. Analysis Tools

 Analysis tools depend greatly on the kind of information an
 experimenter wants to extract from the trace; our tools show our own
 biases in experimentation. Most analyses derive common statistical
 descriptions of traces, or establish some correlation between the
 trace data sets.

 As early users of the trace format and collection tools, we have
 developed a few analysis tools to study the behavior of the wireless
 networks at our disposal. We have been particularly interested in
 loss characteristics of wireless channels and their relation to
 signal quality and the position of the mobile host. In this section,
 we briefly present some of these tools to hint at the kind of
 experimentation possible with our trace format.

 Loss characteristics are among the most interesting aspects of
 wireless networks, and certainly among the least well understood. To
 shed light on this area, we have created tools to extract the loss
 information from collected traces; in addition to calculating the
 standard parameters such as the packet loss rate, the tool also
 derives transitional probabilities for a two-state error model.

 This has proven to be a simple yet powerful model for capturing the
 burstiness observed in wireless loss rates due to fading signals. To
 help visualize the channel behavior in the presence of mobility, our
 tool can replay the movement of the mobile host while plotting the
 loss rate as it changes with time. It also allows us to zoom in the
 locations along the path and obtain detailed statistics over
 arbitrary time intervals.

 Our traces can be further analyzed to understand the relationship
 between channel behavior and the signal quality. For wireless
 devices like the NCR WaveLAN, we can easily obtain measurements of
 signal quality, signal strength, and noise level. We have developed
 a simple statistical tool to test the correlation between measured
 signal and the loss characteristics. Variations of this test are
 also possible using different combinations of the three signal
 measurements and the movement of the host.

Noble, et. al. Informational [Page 21]

RFC 2041 Mobile Network Tracing October 1996

 The question of just how mobile such mobile hosts are can also be
 investigated through our traces. Position data are provided by
 traces that either involved GPS or user-supplied positions with our
 trace collection tools. This data is valuable for comparing and
 validating various mobility prediction algorithms. Given adequate
 network infrastructure and good signal measurements, we can determine
 the mobile location within a region that is significantly smaller
 than the cell size. We are developing a tool to combine position
 information and signal measurement from many traces to identify the
 "signal quality" signature for different regions inside a building.
 Once this signature database is completed and validated, it can be
 used to generate position information for other traces that contain
 only the signal quality information.

6. Related Work

 The previous work most relevant to mobile network tracing falls into
 two camps. The first, chiefly exemplified by tcpdump [7] and the BSD
 Packet Filter, or BPF [8], collect network traffic data. The second,
 notably Delayline [6], and the later Probe/Fault Injection Tool [4],
 and the University of Lancaster’s netowrk emulator [3], provide
 network modulation similar to PaM.

 There are many systems that record network packet traffic; the de
 facto standard is tcpdump, which works in concert with a packet
 filter such as BPF. The packet filter is given a small piece of code
 that describes packets of interest, and the first several bytes of
 each packet found to be interesting is copied to a buffer for tcpdump
 to consume. This architecture is efficient, flexible, and has
 rightly found great favor with the networking community.

 However, tcpdump cpatures only traffic data. It records neither
 information concerning mobile networking devices nor mobile host
 location. Rather than adding seperate software components to a host
 running tcpdump to capture this additional data, we have chosen to
 follow an integrative approach to ease trace file administration. We
 have kept the lessons of tcpdump and BPF to heart; namely copying
 only the information necessary, and transferring data up to user
 level in batches. It may well pay to investigate either
 incorporating device and location information directly into BPF, or
 taking the flexible filtering mechanism of BPF and including it in
 our trace collection software. For the moment, we do not know
 exactly what data we will need to explore the properties of mobile
 networks, and therefore do not exclude any data.

 There are three notable systems that provide packet modulation
 similar to PaM. The earliest such work is Delayline, a system
 designed to emulate wide-area networks atop local-area ones; a goal

Noble, et. al. Informational [Page 22]

RFC 2041 Mobile Network Tracing October 1996

 similar to PaM’s. The most striking difference between Delayline and
 PaM is that Delayline’s emulation takes place entirely at the user-
 level, and requires applications to be recompiled against a library
 emulating the BSD socket system and library calls. While this is a
 portable approach that works well in the absence of kernel-level
 source access, it has the disadvantage that not all network traffic
 passes through the emulation layer; such traffic may have a profound
 impact on the performance of the final system. Delayline also
 differs from PaM in that the emulated network uses a single set of
 parameters for each emulated connection; performance remains fairly
 constant, and cannot change much over time.

 The Lancaster network emulator was designed explicitly to model
 mobile networks. Rather than providing per-host modulation, it uses
 a single, central server through which all network traffic from
 instrumented applications passes. While this system also does not
 capture all traffic into and out of a particular host, it does allow
 modulation based on multiple hosts sharing a single emulated medium.
 There is a mechanism to change the parameters of emulation between
 hosts, though it is fairly cumbersome. The system uses a
 configuration file that can be changed and re-read while the system
 is running.

 The system closest in spirit to PaM is the Probe/Fault Injection
 Tool. This system’s design philosophy allows an arbitrary protocol
 layer -- including device drivers -- to be encapsulated by a layer
 below to modulate existing traffic, and a layer above to generate
 test traffic. The parameters of modulation are provided by a script
 in an interpreted language, presently Tcl, providing considerable
 flexibility. However, there is no mechanism to synthesize such
 scripts -- they must be explicitly designed. Furthermore, the use of
 an interpreted language such as Tcl limits the use of PFI to user-
 level implementations of network drivers, and may have performance
 implications.

7. Future Work

 This work is very much in its infancy; we have only begun to explore
 the possible uses for mobile network traces. We have uncovered
 several areas of further work.

 The trace format as it stands is very IP-centric. While one could
 imagine using unknown IP addresses for non-IP hosts, while using
 header-only properties to encode other addressing schemes, this is
 cumbersome at best. We are looking into ways to more conveniently
 encode other addressing schemes, but are content to focus on IP
 networks for the moment.

Noble, et. al. Informational [Page 23]

RFC 2041 Mobile Network Tracing October 1996

 Two obvious questions concerning wireless media are the following.
 How does a group of machines perform when sharing the same bandwidth?
 How asymmetric is the performance of real-world wireless channels?
 While we do have tools for merging traces taken from multiple hosts
 into a single trace file, we’ve not yet begun to examine such
 multiple-host scenarios in depth. We are also looking into
 instrumenting wireless base stations as well as end-point hosts.

 Much of our planned work involves the PaM testbed. First and
 foremost, many wireless channels are known to be asymmetric;
 splitting the replay trace into incoming and outgoing modulation
 entries is of paramount importance. We would like to extend PaM to
 handle multiple emulated interfaces as well as applying different
 modulation parameters to packets from or to different destinations.
 One could also imagine tracing performance from several different
 networking environments, and switching between such environments
 under application control. For example, consider a set of traces
 showing radio performance at various altitudes; an airplane simulator
 in a dive would switch from high-altitude modulation traces to low-
 altitude ones.

 Finally, we are anxious to begin exploring the properties of real-
 world mobile networks, and subjecting our own mobile system designs
 to PaM to see how they perform. We hope others can make use of our
 tools to do the same.

Acknowledgements

 The authors wish to thank Dave Johnson, who provided early pointers
 to related work and helped us immeasurably in RFC formatting. We
 also wish to thank those who offered comments on early drafts of the
 document: Mike Davis, Barbara Denny, Mark Lewis, and Hui Zhang.
 Finally, we would like to thank Bruce Maggs and Chris Hobbs, our
 first customers!

 This research was supported by the Air Force Materiel Command (AFMC)
 and ARPA under contract numbers F196828-93-C-0193 and DAAB07-95-C-
 D154, and the State of California MICRO Program. Additional support
 was provided by AT&T, Hughes Aircraft, IBM Corp., Intel Corp., and
 Metricom. The views and conclusions contained here are those of the
 authors and should not be interpreted as necessarily representing the
 official policies or endorsements, either express or implied, of
 AFMC, ARPA, AT&T, Hughes, IBM, Intel, Metricom, Carnegie Mellon
 University, the University of California, the State of California, or
 the U.S. Government.

Noble, et. al. Informational [Page 24]

RFC 2041 Mobile Network Tracing October 1996

Security Considerations

 This RFC raises no security considerations.

Authors’ Addresses

 Questions about this document can be directed to the authors:

 Brian D. Noble
 Computer Science Department
 Carnegie Mellon University
 5000 Forbes Avenue
 Pittsburgh, PA 15213-3891

 Phone: +1-412-268-7399
 Fax: +1-412-268-5576
 EMail: bnoble@cs.cmu.edu

 Giao T. Nguyen
 Room 473 Soda Hall #1776 (Research Office)
 University of California, Berkeley
 Berkeley, CA 94720-1776

 Phone: +1-510-642-8919
 Fax: +1-510-642-5775
 EMail: gnguyen@cs.berkeley.edu

 Mahadev Satyanarayanan
 Computer Science Department
 Carnegie Mellon University
 5000 Forbes Avenue
 Pittsburgh, PA 15213-3891

 Phone: +1-412-268-3743
 Fax: +1-412-268-5576
 EMail: satya@cs.cmu.edu

 Randy H. Katz
 Room 231 Soda Hall #1770 (Administrative Office)
 University of California, Berkeley
 Berkeley, CA 94720-1770

 Phone: +1-510-642-0253
 Fax: +1-510-642-2845
 EMail: randy@cs.berkeley.edu

Noble, et. al. Informational [Page 25]

RFC 2041 Mobile Network Tracing October 1996

References

 [1] Chen, J. B., and Bershad, B. N. The Impact of Operating System
 Structure on Memory System Performance. In Proceedings of the
 14th ACM Symposium on Operating System Principles (Asheville,
 NC, December 1993).

 [2] Dahlin, M., Mather, C., Wang, R., Anderson, T., and Patterson,
 D. A Quantitative Analysis of Cache Policies for Scalable
 Network File Systems. In Proceedings of the 1994 ACM SIGMETRICS
 Conference on Measurement and Modeling of Computer Systems
 (Nashville, TN, May 1994).

 [3] Davies, N., Blair, G. S., Cheverst, K., and Friday, A. A
 Network Emulator to Support the Development of Adaptive
 Applications. In Proceedings of the 2nd USENIX Symposium on
 Mobile and Location Independent Computing (April 10-11 1995).

 [4] Dawson, S., and Jahanian, F. Probing and Fault Injection of
 Dependable Distributed Protocols. The Computer Jouranl 38, 4
 (1995).

 [5] Gloy, N., Young, C., Chen, J. B., and Smith, M. D. An Analysis
 of Dynamic Branch Prediction Schemes on System Workloads. In
 The Proceedings of the 23rd Annual International Symposium on
 Computer Architecture (May 1996).

 [6] Ingham, D. B., and Parrington, G. D. Delayline: A Wide-Area
 Network Emulation Tool. Computing Systems 7, 3 (1994).

 [7] Jacobson, V., Leres, C., and McCanne, S. The Tcpdump Manual
 Page. Lawrence Berkeley Laboratory, Berkeley, CA.

 [8] McCanne, S., and Jacobson, V. The BSD Packet Filter: A New
 Architecture for User-level Packet Capture. In Proceedings of
 the 1993 Winter USENIX Technical Conference (San Deigo, CA,
 January 1993).

 [9] Mills, D. L. Improved Algorithms for Synchronizing Computer
 Network Clocks. IEEE/ACM Transactions on Networking 3, 3 (June
 1995).

 [10] Mummert, L. B., Ebling, M. R., and Satyanarayanan, M.
 Exploiting Weak Connectivity for Mobile File Access. In
 Proceedings of the 15th Symposium on Operating System Prinicples
 (Copper Mountain, CO, December 1995).

Noble, et. al. Informational [Page 26]

RFC 2041 Mobile Network Tracing October 1996

 [11] Nelson, M. N., Welch, B. B., and Ousterhout, J. K. Caching in
 the Sprite Network File System. ACM Transactions on Computer
 Systems 6, 1 (February 1988).

 [12] Schilit, B., Adams, N., Gold, R., Tso, M., and Want, R. The
 PARCTAB Mobile Computing System. In Proceedings of the 4th IEEE
 Workshop on Workstation Operating Systems (Napa, CA, October
 1993), pp. 34--39.

 [13] Uhlig, R., Nagle, D., Stanley, T., Mudge, T., Sechrest, S., and
 Brown, R. Design Tradeoffs for Software-Managed TLBs. ACM
 Transactions on Computer Systems 12, 3 (August 1994).

 [14] Want, R., Hopper, A., Falcao, V., and Gibbons, J. The Active
 Badge Location System. ACM Transactions on Information Systems
 10, 1 (January 1992), 91--102.

Noble, et. al. Informational [Page 27]

