
Network Working Group N. Freed
Request for Comments: 2045 Innosoft
Obsoletes: 1521, 1522, 1590 N. Borenstein
Category: Standards Track First Virtual
 November 1996

 Multipurpose Internet Mail Extensions
 (MIME) Part One:
 Format of Internet Message Bodies

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 STD 11, RFC 822, defines a message representation protocol specifying
 considerable detail about US-ASCII message headers, and leaves the
 message content, or message body, as flat US-ASCII text. This set of
 documents, collectively called the Multipurpose Internet Mail
 Extensions, or MIME, redefines the format of messages to allow for

 (1) textual message bodies in character sets other than
 US-ASCII,

 (2) an extensible set of different formats for non-textual
 message bodies,

 (3) multi-part message bodies, and

 (4) textual header information in character sets other than
 US-ASCII.

 These documents are based on earlier work documented in RFC 934, STD
 11, and RFC 1049, but extends and revises them. Because RFC 822 said
 so little about message bodies, these documents are largely
 orthogonal to (rather than a revision of) RFC 822.

 This initial document specifies the various headers used to describe
 the structure of MIME messages. The second document, RFC 2046,
 defines the general structure of the MIME media typing system and
 defines an initial set of media types. The third document, RFC 2047,
 describes extensions to RFC 822 to allow non-US-ASCII text data in

Freed & Borenstein Standards Track [Page 1]

RFC 2045 Internet Message Bodies November 1996

 Internet mail header fields. The fourth document, RFC 2048, specifies
 various IANA registration procedures for MIME-related facilities. The
 fifth and final document, RFC 2049, describes MIME conformance
 criteria as well as providing some illustrative examples of MIME
 message formats, acknowledgements, and the bibliography.

 These documents are revisions of RFCs 1521, 1522, and 1590, which
 themselves were revisions of RFCs 1341 and 1342. An appendix in RFC
 2049 describes differences and changes from previous versions.

Table of Contents

 1. Introduction ... 3
 2. Definitions, Conventions, and Generic BNF Grammar 5
 2.1 CRLF .. 5
 2.2 Character Set 6
 2.3 Message ... 6
 2.4 Entity .. 6
 2.5 Body Part ... 7
 2.6 Body .. 7
 2.7 7bit Data ... 7
 2.8 8bit Data ... 7
 2.9 Binary Data ... 7
 2.10 Lines .. 7
 3. MIME Header Fields 8
 4. MIME-Version Header Field 8
 5. Content-Type Header Field 10
 5.1 Syntax of the Content-Type Header Field 12
 5.2 Content-Type Defaults 14
 6. Content-Transfer-Encoding Header Field 14
 6.1 Content-Transfer-Encoding Syntax 14
 6.2 Content-Transfer-Encodings Semantics 15
 6.3 New Content-Transfer-Encodings 16
 6.4 Interpretation and Use 16
 6.5 Translating Encodings 18
 6.6 Canonical Encoding Model 19
 6.7 Quoted-Printable Content-Transfer-Encoding 19
 6.8 Base64 Content-Transfer-Encoding 24
 7. Content-ID Header Field 26
 8. Content-Description Header Field 27
 9. Additional MIME Header Fields 27
 10. Summary ... 27
 11. Security Considerations 27
 12. Authors’ Addresses 28
 A. Collected Grammar 29

Freed & Borenstein Standards Track [Page 2]

RFC 2045 Internet Message Bodies November 1996

1. Introduction

 Since its publication in 1982, RFC 822 has defined the standard
 format of textual mail messages on the Internet. Its success has
 been such that the RFC 822 format has been adopted, wholly or
 partially, well beyond the confines of the Internet and the Internet
 SMTP transport defined by RFC 821. As the format has seen wider use,
 a number of limitations have proven increasingly restrictive for the
 user community.

 RFC 822 was intended to specify a format for text messages. As such,
 non-text messages, such as multimedia messages that might include
 audio or images, are simply not mentioned. Even in the case of text,
 however, RFC 822 is inadequate for the needs of mail users whose
 languages require the use of character sets richer than US-ASCII.
 Since RFC 822 does not specify mechanisms for mail containing audio,
 video, Asian language text, or even text in most European languages,
 additional specifications are needed.

 One of the notable limitations of RFC 821/822 based mail systems is
 the fact that they limit the contents of electronic mail messages to
 relatively short lines (e.g. 1000 characters or less [RFC-821]) of
 7bit US-ASCII. This forces users to convert any non-textual data
 that they may wish to send into seven-bit bytes representable as
 printable US-ASCII characters before invoking a local mail UA (User
 Agent, a program with which human users send and receive mail).
 Examples of such encodings currently used in the Internet include
 pure hexadecimal, uuencode, the 3-in-4 base 64 scheme specified in
 RFC 1421, the Andrew Toolkit Representation [ATK], and many others.

 The limitations of RFC 822 mail become even more apparent as gateways
 are designed to allow for the exchange of mail messages between RFC
 822 hosts and X.400 hosts. X.400 [X400] specifies mechanisms for the
 inclusion of non-textual material within electronic mail messages.
 The current standards for the mapping of X.400 messages to RFC 822
 messages specify either that X.400 non-textual material must be
 converted to (not encoded in) IA5Text format, or that they must be
 discarded, notifying the RFC 822 user that discarding has occurred.
 This is clearly undesirable, as information that a user may wish to
 receive is lost. Even though a user agent may not have the
 capability of dealing with the non-textual material, the user might
 have some mechanism external to the UA that can extract useful
 information from the material. Moreover, it does not allow for the
 fact that the message may eventually be gatewayed back into an X.400
 message handling system (i.e., the X.400 message is "tunneled"
 through Internet mail), where the non-textual information would
 definitely become useful again.

Freed & Borenstein Standards Track [Page 3]

RFC 2045 Internet Message Bodies November 1996

 This document describes several mechanisms that combine to solve most
 of these problems without introducing any serious incompatibilities
 with the existing world of RFC 822 mail. In particular, it
 describes:

 (1) A MIME-Version header field, which uses a version
 number to declare a message to be conformant with MIME
 and allows mail processing agents to distinguish
 between such messages and those generated by older or
 non-conformant software, which are presumed to lack
 such a field.

 (2) A Content-Type header field, generalized from RFC 1049,
 which can be used to specify the media type and subtype
 of data in the body of a message and to fully specify
 the native representation (canonical form) of such
 data.

 (3) A Content-Transfer-Encoding header field, which can be
 used to specify both the encoding transformation that
 was applied to the body and the domain of the result.
 Encoding transformations other than the identity
 transformation are usually applied to data in order to
 allow it to pass through mail transport mechanisms
 which may have data or character set limitations.

 (4) Two additional header fields that can be used to
 further describe the data in a body, the Content-ID and
 Content-Description header fields.

 All of the header fields defined in this document are subject to the
 general syntactic rules for header fields specified in RFC 822. In
 particular, all of these header fields except for Content-Disposition
 can include RFC 822 comments, which have no semantic content and
 should be ignored during MIME processing.

 Finally, to specify and promote interoperability, RFC 2049 provides a
 basic applicability statement for a subset of the above mechanisms
 that defines a minimal level of "conformance" with this document.

 HISTORICAL NOTE: Several of the mechanisms described in this set of
 documents may seem somewhat strange or even baroque at first reading.
 It is important to note that compatibility with existing standards
 AND robustness across existing practice were two of the highest
 priorities of the working group that developed this set of documents.
 In particular, compatibility was always favored over elegance.

Freed & Borenstein Standards Track [Page 4]

RFC 2045 Internet Message Bodies November 1996

 Please refer to the current edition of the "Internet Official
 Protocol Standards" for the standardization state and status of this
 protocol. RFC 822 and STD 3, RFC 1123 also provide essential
 background for MIME since no conforming implementation of MIME can
 violate them. In addition, several other informational RFC documents
 will be of interest to the MIME implementor, in particular RFC 1344,
 RFC 1345, and RFC 1524.

2. Definitions, Conventions, and Generic BNF Grammar

 Although the mechanisms specified in this set of documents are all
 described in prose, most are also described formally in the augmented
 BNF notation of RFC 822. Implementors will need to be familiar with
 this notation in order to understand this set of documents, and are
 referred to RFC 822 for a complete explanation of the augmented BNF
 notation.

 Some of the augmented BNF in this set of documents makes named
 references to syntax rules defined in RFC 822. A complete formal
 grammar, then, is obtained by combining the collected grammar
 appendices in each document in this set with the BNF of RFC 822 plus
 the modifications to RFC 822 defined in RFC 1123 (which specifically
 changes the syntax for ‘return’, ‘date’ and ‘mailbox’).

 All numeric and octet values are given in decimal notation in this
 set of documents. All media type values, subtype values, and
 parameter names as defined are case-insensitive. However, parameter
 values are case-sensitive unless otherwise specified for the specific
 parameter.

 FORMATTING NOTE: Notes, such at this one, provide additional
 nonessential information which may be skipped by the reader without
 missing anything essential. The primary purpose of these non-
 essential notes is to convey information about the rationale of this
 set of documents, or to place these documents in the proper
 historical or evolutionary context. Such information may in
 particular be skipped by those who are focused entirely on building a
 conformant implementation, but may be of use to those who wish to
 understand why certain design choices were made.

2.1. CRLF

 The term CRLF, in this set of documents, refers to the sequence of
 octets corresponding to the two US-ASCII characters CR (decimal value
 13) and LF (decimal value 10) which, taken together, in this order,
 denote a line break in RFC 822 mail.

Freed & Borenstein Standards Track [Page 5]

RFC 2045 Internet Message Bodies November 1996

2.2. Character Set

 The term "character set" is used in MIME to refer to a method of
 converting a sequence of octets into a sequence of characters. Note
 that unconditional and unambiguous conversion in the other direction
 is not required, in that not all characters may be representable by a
 given character set and a character set may provide more than one
 sequence of octets to represent a particular sequence of characters.

 This definition is intended to allow various kinds of character
 encodings, from simple single-table mappings such as US-ASCII to
 complex table switching methods such as those that use ISO 2022’s
 techniques, to be used as character sets. However, the definition
 associated with a MIME character set name must fully specify the
 mapping to be performed. In particular, use of external profiling
 information to determine the exact mapping is not permitted.

 NOTE: The term "character set" was originally to describe such
 straightforward schemes as US-ASCII and ISO-8859-1 which have a
 simple one-to-one mapping from single octets to single characters.
 Multi-octet coded character sets and switching techniques make the
 situation more complex. For example, some communities use the term
 "character encoding" for what MIME calls a "character set", while
 using the phrase "coded character set" to denote an abstract mapping
 from integers (not octets) to characters.

2.3. Message

 The term "message", when not further qualified, means either a
 (complete or "top-level") RFC 822 message being transferred on a
 network, or a message encapsulated in a body of type "message/rfc822"
 or "message/partial".

2.4. Entity

 The term "entity", refers specifically to the MIME-defined header
 fields and contents of either a message or one of the parts in the
 body of a multipart entity. The specification of such entities is
 the essence of MIME. Since the contents of an entity are often
 called the "body", it makes sense to speak about the body of an
 entity. Any sort of field may be present in the header of an entity,
 but only those fields whose names begin with "content-" actually have
 any MIME-related meaning. Note that this does NOT imply thay they
 have no meaning at all -- an entity that is also a message has non-
 MIME header fields whose meanings are defined by RFC 822.

Freed & Borenstein Standards Track [Page 6]

RFC 2045 Internet Message Bodies November 1996

2.5. Body Part

 The term "body part" refers to an entity inside of a multipart
 entity.

2.6. Body

 The term "body", when not further qualified, means the body of an
 entity, that is, the body of either a message or of a body part.

 NOTE: The previous four definitions are clearly circular. This is
 unavoidable, since the overall structure of a MIME message is indeed
 recursive.

2.7. 7bit Data

 "7bit data" refers to data that is all represented as relatively
 short lines with 998 octets or less between CRLF line separation
 sequences [RFC-821]. No octets with decimal values greater than 127
 are allowed and neither are NULs (octets with decimal value 0). CR
 (decimal value 13) and LF (decimal value 10) octets only occur as
 part of CRLF line separation sequences.

2.8. 8bit Data

 "8bit data" refers to data that is all represented as relatively
 short lines with 998 octets or less between CRLF line separation
 sequences [RFC-821]), but octets with decimal values greater than 127
 may be used. As with "7bit data" CR and LF octets only occur as part
 of CRLF line separation sequences and no NULs are allowed.

2.9. Binary Data

 "Binary data" refers to data where any sequence of octets whatsoever
 is allowed.

2.10. Lines

 "Lines" are defined as sequences of octets separated by a CRLF
 sequences. This is consistent with both RFC 821 and RFC 822.
 "Lines" only refers to a unit of data in a message, which may or may
 not correspond to something that is actually displayed by a user
 agent.

Freed & Borenstein Standards Track [Page 7]

RFC 2045 Internet Message Bodies November 1996

3. MIME Header Fields

 MIME defines a number of new RFC 822 header fields that are used to
 describe the content of a MIME entity. These header fields occur in
 at least two contexts:

 (1) As part of a regular RFC 822 message header.

 (2) In a MIME body part header within a multipart
 construct.

 The formal definition of these header fields is as follows:

 entity-headers := [content CRLF]
 [encoding CRLF]
 [id CRLF]
 [description CRLF]
 *(MIME-extension-field CRLF)

 MIME-message-headers := entity-headers
 fields
 version CRLF
 ; The ordering of the header
 ; fields implied by this BNF
 ; definition should be ignored.

 MIME-part-headers := entity-headers
 [fields]
 ; Any field not beginning with
 ; "content-" can have no defined
 ; meaning and may be ignored.
 ; The ordering of the header
 ; fields implied by this BNF
 ; definition should be ignored.

 The syntax of the various specific MIME header fields will be
 described in the following sections.

4. MIME-Version Header Field

 Since RFC 822 was published in 1982, there has really been only one
 format standard for Internet messages, and there has been little
 perceived need to declare the format standard in use. This document
 is an independent specification that complements RFC 822. Although
 the extensions in this document have been defined in such a way as to
 be compatible with RFC 822, there are still circumstances in which it
 might be desirable for a mail-processing agent to know whether a
 message was composed with the new standard in mind.

Freed & Borenstein Standards Track [Page 8]

RFC 2045 Internet Message Bodies November 1996

 Therefore, this document defines a new header field, "MIME-Version",
 which is to be used to declare the version of the Internet message
 body format standard in use.

 Messages composed in accordance with this document MUST include such
 a header field, with the following verbatim text:

 MIME-Version: 1.0

 The presence of this header field is an assertion that the message
 has been composed in compliance with this document.

 Since it is possible that a future document might extend the message
 format standard again, a formal BNF is given for the content of the
 MIME-Version field:

 version := "MIME-Version" ":" 1*DIGIT "." 1*DIGIT

 Thus, future format specifiers, which might replace or extend "1.0",
 are constrained to be two integer fields, separated by a period. If
 a message is received with a MIME-version value other than "1.0", it
 cannot be assumed to conform with this document.

 Note that the MIME-Version header field is required at the top level
 of a message. It is not required for each body part of a multipart
 entity. It is required for the embedded headers of a body of type
 "message/rfc822" or "message/partial" if and only if the embedded
 message is itself claimed to be MIME-conformant.

 It is not possible to fully specify how a mail reader that conforms
 with MIME as defined in this document should treat a message that
 might arrive in the future with some value of MIME-Version other than
 "1.0".

 It is also worth noting that version control for specific media types
 is not accomplished using the MIME-Version mechanism. In particular,
 some formats (such as application/postscript) have version numbering
 conventions that are internal to the media format. Where such
 conventions exist, MIME does nothing to supersede them. Where no
 such conventions exist, a MIME media type might use a "version"
 parameter in the content-type field if necessary.

Freed & Borenstein Standards Track [Page 9]

RFC 2045 Internet Message Bodies November 1996

 NOTE TO IMPLEMENTORS: When checking MIME-Version values any RFC 822
 comment strings that are present must be ignored. In particular, the
 following four MIME-Version fields are equivalent:

 MIME-Version: 1.0

 MIME-Version: 1.0 (produced by MetaSend Vx.x)

 MIME-Version: (produced by MetaSend Vx.x) 1.0

 MIME-Version: 1.(produced by MetaSend Vx.x)0

 In the absence of a MIME-Version field, a receiving mail user agent
 (whether conforming to MIME requirements or not) may optionally
 choose to interpret the body of the message according to local
 conventions. Many such conventions are currently in use and it
 should be noted that in practice non-MIME messages can contain just
 about anything.

 It is impossible to be certain that a non-MIME mail message is
 actually plain text in the US-ASCII character set since it might well
 be a message that, using some set of nonstandard local conventions
 that predate MIME, includes text in another character set or non-
 textual data presented in a manner that cannot be automatically
 recognized (e.g., a uuencoded compressed UNIX tar file).

5. Content-Type Header Field

 The purpose of the Content-Type field is to describe the data
 contained in the body fully enough that the receiving user agent can
 pick an appropriate agent or mechanism to present the data to the
 user, or otherwise deal with the data in an appropriate manner. The
 value in this field is called a media type.

 HISTORICAL NOTE: The Content-Type header field was first defined in
 RFC 1049. RFC 1049 used a simpler and less powerful syntax, but one
 that is largely compatible with the mechanism given here.

 The Content-Type header field specifies the nature of the data in the
 body of an entity by giving media type and subtype identifiers, and
 by providing auxiliary information that may be required for certain
 media types. After the media type and subtype names, the remainder
 of the header field is simply a set of parameters, specified in an
 attribute=value notation. The ordering of parameters is not
 significant.

Freed & Borenstein Standards Track [Page 10]

RFC 2045 Internet Message Bodies November 1996

 In general, the top-level media type is used to declare the general
 type of data, while the subtype specifies a specific format for that
 type of data. Thus, a media type of "image/xyz" is enough to tell a
 user agent that the data is an image, even if the user agent has no
 knowledge of the specific image format "xyz". Such information can
 be used, for example, to decide whether or not to show a user the raw
 data from an unrecognized subtype -- such an action might be
 reasonable for unrecognized subtypes of text, but not for
 unrecognized subtypes of image or audio. For this reason, registered
 subtypes of text, image, audio, and video should not contain embedded
 information that is really of a different type. Such compound
 formats should be represented using the "multipart" or "application"
 types.

 Parameters are modifiers of the media subtype, and as such do not
 fundamentally affect the nature of the content. The set of
 meaningful parameters depends on the media type and subtype. Most
 parameters are associated with a single specific subtype. However, a
 given top-level media type may define parameters which are applicable
 to any subtype of that type. Parameters may be required by their
 defining content type or subtype or they may be optional. MIME
 implementations must ignore any parameters whose names they do not
 recognize.

 For example, the "charset" parameter is applicable to any subtype of
 "text", while the "boundary" parameter is required for any subtype of
 the "multipart" media type.

 There are NO globally-meaningful parameters that apply to all media
 types. Truly global mechanisms are best addressed, in the MIME
 model, by the definition of additional Content-* header fields.

 An initial set of seven top-level media types is defined in RFC 2046.
 Five of these are discrete types whose content is essentially opaque
 as far as MIME processing is concerned. The remaining two are
 composite types whose contents require additional handling by MIME
 processors.

 This set of top-level media types is intended to be substantially
 complete. It is expected that additions to the larger set of
 supported types can generally be accomplished by the creation of new
 subtypes of these initial types. In the future, more top-level types
 may be defined only by a standards-track extension to this standard.
 If another top-level type is to be used for any reason, it must be
 given a name starting with "X-" to indicate its non-standard status
 and to avoid a potential conflict with a future official name.

Freed & Borenstein Standards Track [Page 11]

RFC 2045 Internet Message Bodies November 1996

5.1. Syntax of the Content-Type Header Field

 In the Augmented BNF notation of RFC 822, a Content-Type header field
 value is defined as follows:

 content := "Content-Type" ":" type "/" subtype
 *(";" parameter)
 ; Matching of media type and subtype
 ; is ALWAYS case-insensitive.

 type := discrete-type / composite-type

 discrete-type := "text" / "image" / "audio" / "video" /
 "application" / extension-token

 composite-type := "message" / "multipart" / extension-token

 extension-token := ietf-token / x-token

 ietf-token := <An extension token defined by a
 standards-track RFC and registered
 with IANA.>

 x-token := <The two characters "X-" or "x-" followed, with
 no intervening white space, by any token>

 subtype := extension-token / iana-token

 iana-token := <A publicly-defined extension token. Tokens
 of this form must be registered with IANA
 as specified in RFC 2048.>

 parameter := attribute "=" value

 attribute := token
 ; Matching of attributes
 ; is ALWAYS case-insensitive.

 value := token / quoted-string

 token := 1*<any (US-ASCII) CHAR except SPACE, CTLs,
 or tspecials>

 tspecials := "(" / ")" / "<" / ">" / "@" /
 "," / ";" / ":" / "\" / <">
 "/" / "[" / "]" / "?" / "="
 ; Must be in quoted-string,
 ; to use within parameter values

Freed & Borenstein Standards Track [Page 12]

RFC 2045 Internet Message Bodies November 1996

 Note that the definition of "tspecials" is the same as the RFC 822
 definition of "specials" with the addition of the three characters
 "/", "?", and "=", and the removal of ".".

 Note also that a subtype specification is MANDATORY -- it may not be
 omitted from a Content-Type header field. As such, there are no
 default subtypes.

 The type, subtype, and parameter names are not case sensitive. For
 example, TEXT, Text, and TeXt are all equivalent top-level media
 types. Parameter values are normally case sensitive, but sometimes
 are interpreted in a case-insensitive fashion, depending on the
 intended use. (For example, multipart boundaries are case-sensitive,
 but the "access-type" parameter for message/External-body is not
 case-sensitive.)

 Note that the value of a quoted string parameter does not include the
 quotes. That is, the quotation marks in a quoted-string are not a
 part of the value of the parameter, but are merely used to delimit
 that parameter value. In addition, comments are allowed in
 accordance with RFC 822 rules for structured header fields. Thus the
 following two forms

 Content-type: text/plain; charset=us-ascii (Plain text)

 Content-type: text/plain; charset="us-ascii"

 are completely equivalent.

 Beyond this syntax, the only syntactic constraint on the definition
 of subtype names is the desire that their uses must not conflict.
 That is, it would be undesirable to have two different communities
 using "Content-Type: application/foobar" to mean two different
 things. The process of defining new media subtypes, then, is not
 intended to be a mechanism for imposing restrictions, but simply a
 mechanism for publicizing their definition and usage. There are,
 therefore, two acceptable mechanisms for defining new media subtypes:

 (1) Private values (starting with "X-") may be defined
 bilaterally between two cooperating agents without
 outside registration or standardization. Such values
 cannot be registered or standardized.

 (2) New standard values should be registered with IANA as
 described in RFC 2048.

 The second document in this set, RFC 2046, defines the initial set of
 media types for MIME.

Freed & Borenstein Standards Track [Page 13]

RFC 2045 Internet Message Bodies November 1996

5.2. Content-Type Defaults

 Default RFC 822 messages without a MIME Content-Type header are taken
 by this protocol to be plain text in the US-ASCII character set,
 which can be explicitly specified as:

 Content-type: text/plain; charset=us-ascii

 This default is assumed if no Content-Type header field is specified.
 It is also recommend that this default be assumed when a
 syntactically invalid Content-Type header field is encountered. In
 the presence of a MIME-Version header field and the absence of any
 Content-Type header field, a receiving User Agent can also assume
 that plain US-ASCII text was the sender’s intent. Plain US-ASCII
 text may still be assumed in the absence of a MIME-Version or the
 presence of an syntactically invalid Content-Type header field, but
 the sender’s intent might have been otherwise.

6. Content-Transfer-Encoding Header Field

 Many media types which could be usefully transported via email are
 represented, in their "natural" format, as 8bit character or binary
 data. Such data cannot be transmitted over some transfer protocols.
 For example, RFC 821 (SMTP) restricts mail messages to 7bit US-ASCII
 data with lines no longer than 1000 characters including any trailing
 CRLF line separator.

 It is necessary, therefore, to define a standard mechanism for
 encoding such data into a 7bit short line format. Proper labelling
 of unencoded material in less restrictive formats for direct use over
 less restrictive transports is also desireable. This document
 specifies that such encodings will be indicated by a new "Content-
 Transfer-Encoding" header field. This field has not been defined by
 any previous standard.

6.1. Content-Transfer-Encoding Syntax

 The Content-Transfer-Encoding field’s value is a single token
 specifying the type of encoding, as enumerated below. Formally:

 encoding := "Content-Transfer-Encoding" ":" mechanism

 mechanism := "7bit" / "8bit" / "binary" /
 "quoted-printable" / "base64" /
 ietf-token / x-token

 These values are not case sensitive -- Base64 and BASE64 and bAsE64
 are all equivalent. An encoding type of 7BIT requires that the body

Freed & Borenstein Standards Track [Page 14]

RFC 2045 Internet Message Bodies November 1996

 is already in a 7bit mail-ready representation. This is the default
 value -- that is, "Content-Transfer-Encoding: 7BIT" is assumed if the
 Content-Transfer-Encoding header field is not present.

6.2. Content-Transfer-Encodings Semantics

 This single Content-Transfer-Encoding token actually provides two
 pieces of information. It specifies what sort of encoding
 transformation the body was subjected to and hence what decoding
 operation must be used to restore it to its original form, and it
 specifies what the domain of the result is.

 The transformation part of any Content-Transfer-Encodings specifies,
 either explicitly or implicitly, a single, well-defined decoding
 algorithm, which for any sequence of encoded octets either transforms
 it to the original sequence of octets which was encoded, or shows
 that it is illegal as an encoded sequence. Content-Transfer-
 Encodings transformations never depend on any additional external
 profile information for proper operation. Note that while decoders
 must produce a single, well-defined output for a valid encoding no
 such restrictions exist for encoders: Encoding a given sequence of
 octets to different, equivalent encoded sequences is perfectly legal.

 Three transformations are currently defined: identity, the "quoted-
 printable" encoding, and the "base64" encoding. The domains are
 "binary", "8bit" and "7bit".

 The Content-Transfer-Encoding values "7bit", "8bit", and "binary" all
 mean that the identity (i.e. NO) encoding transformation has been
 performed. As such, they serve simply as indicators of the domain of
 the body data, and provide useful information about the sort of
 encoding that might be needed for transmission in a given transport
 system. The terms "7bit data", "8bit data", and "binary data" are
 all defined in Section 2.

 The quoted-printable and base64 encodings transform their input from
 an arbitrary domain into material in the "7bit" range, thus making it
 safe to carry over restricted transports. The specific definition of
 the transformations are given below.

 The proper Content-Transfer-Encoding label must always be used.
 Labelling unencoded data containing 8bit characters as "7bit" is not
 allowed, nor is labelling unencoded non-line-oriented data as
 anything other than "binary" allowed.

 Unlike media subtypes, a proliferation of Content-Transfer-Encoding
 values is both undesirable and unnecessary. However, establishing
 only a single transformation into the "7bit" domain does not seem

Freed & Borenstein Standards Track [Page 15]

RFC 2045 Internet Message Bodies November 1996

 possible. There is a tradeoff between the desire for a compact and
 efficient encoding of largely- binary data and the desire for a
 somewhat readable encoding of data that is mostly, but not entirely,
 7bit. For this reason, at least two encoding mechanisms are
 necessary: a more or less readable encoding (quoted-printable) and a
 "dense" or "uniform" encoding (base64).

 Mail transport for unencoded 8bit data is defined in RFC 1652. As of
 the initial publication of this document, there are no standardized
 Internet mail transports for which it is legitimate to include
 unencoded binary data in mail bodies. Thus there are no
 circumstances in which the "binary" Content-Transfer-Encoding is
 actually valid in Internet mail. However, in the event that binary
 mail transport becomes a reality in Internet mail, or when MIME is
 used in conjunction with any other binary-capable mail transport
 mechanism, binary bodies must be labelled as such using this
 mechanism.

 NOTE: The five values defined for the Content-Transfer-Encoding field
 imply nothing about the media type other than the algorithm by which
 it was encoded or the transport system requirements if unencoded.

6.3. New Content-Transfer-Encodings

 Implementors may, if necessary, define private Content-Transfer-
 Encoding values, but must use an x-token, which is a name prefixed by
 "X-", to indicate its non-standard status, e.g., "Content-Transfer-
 Encoding: x-my-new-encoding". Additional standardized Content-
 Transfer-Encoding values must be specified by a standards-track RFC.
 The requirements such specifications must meet are given in RFC 2048.
 As such, all content-transfer-encoding namespace except that
 beginning with "X-" is explicitly reserved to the IETF for future
 use.

 Unlike media types and subtypes, the creation of new Content-
 Transfer-Encoding values is STRONGLY discouraged, as it seems likely
 to hinder interoperability with little potential benefit

6.4. Interpretation and Use

 If a Content-Transfer-Encoding header field appears as part of a
 message header, it applies to the entire body of that message. If a
 Content-Transfer-Encoding header field appears as part of an entity’s
 headers, it applies only to the body of that entity. If an entity is
 of type "multipart" the Content-Transfer-Encoding is not permitted to
 have any value other than "7bit", "8bit" or "binary". Even more
 severe restrictions apply to some subtypes of the "message" type.

Freed & Borenstein Standards Track [Page 16]

RFC 2045 Internet Message Bodies November 1996

 It should be noted that most media types are defined in terms of
 octets rather than bits, so that the mechanisms described here are
 mechanisms for encoding arbitrary octet streams, not bit streams. If
 a bit stream is to be encoded via one of these mechanisms, it must
 first be converted to an 8bit byte stream using the network standard
 bit order ("big-endian"), in which the earlier bits in a stream
 become the higher-order bits in a 8bit byte. A bit stream not ending
 at an 8bit boundary must be padded with zeroes. RFC 2046 provides a
 mechanism for noting the addition of such padding in the case of the
 application/octet-stream media type, which has a "padding" parameter.

 The encoding mechanisms defined here explicitly encode all data in
 US-ASCII. Thus, for example, suppose an entity has header fields
 such as:

 Content-Type: text/plain; charset=ISO-8859-1
 Content-transfer-encoding: base64

 This must be interpreted to mean that the body is a base64 US-ASCII
 encoding of data that was originally in ISO-8859-1, and will be in
 that character set again after decoding.

 Certain Content-Transfer-Encoding values may only be used on certain
 media types. In particular, it is EXPRESSLY FORBIDDEN to use any
 encodings other than "7bit", "8bit", or "binary" with any composite
 media type, i.e. one that recursively includes other Content-Type
 fields. Currently the only composite media types are "multipart" and
 "message". All encodings that are desired for bodies of type
 multipart or message must be done at the innermost level, by encoding
 the actual body that needs to be encoded.

 It should also be noted that, by definition, if a composite entity
 has a transfer-encoding value such as "7bit", but one of the enclosed
 entities has a less restrictive value such as "8bit", then either the
 outer "7bit" labelling is in error, because 8bit data are included,
 or the inner "8bit" labelling placed an unnecessarily high demand on
 the transport system because the actual included data were actually
 7bit-safe.

 NOTE ON ENCODING RESTRICTIONS: Though the prohibition against using
 content-transfer-encodings on composite body data may seem overly
 restrictive, it is necessary to prevent nested encodings, in which
 data are passed through an encoding algorithm multiple times, and
 must be decoded multiple times in order to be properly viewed.
 Nested encodings add considerable complexity to user agents: Aside
 from the obvious efficiency problems with such multiple encodings,
 they can obscure the basic structure of a message. In particular,
 they can imply that several decoding operations are necessary simply

Freed & Borenstein Standards Track [Page 17]

RFC 2045 Internet Message Bodies November 1996

 to find out what types of bodies a message contains. Banning nested
 encodings may complicate the job of certain mail gateways, but this
 seems less of a problem than the effect of nested encodings on user
 agents.

 Any entity with an unrecognized Content-Transfer-Encoding must be
 treated as if it has a Content-Type of "application/octet-stream",
 regardless of what the Content-Type header field actually says.

 NOTE ON THE RELATIONSHIP BETWEEN CONTENT-TYPE AND CONTENT-TRANSFER-
 ENCODING: It may seem that the Content-Transfer-Encoding could be
 inferred from the characteristics of the media that is to be encoded,
 or, at the very least, that certain Content-Transfer-Encodings could
 be mandated for use with specific media types. There are several
 reasons why this is not the case. First, given the varying types of
 transports used for mail, some encodings may be appropriate for some
 combinations of media types and transports but not for others. (For
 example, in an 8bit transport, no encoding would be required for text
 in certain character sets, while such encodings are clearly required
 for 7bit SMTP.)

 Second, certain media types may require different types of transfer
 encoding under different circumstances. For example, many PostScript
 bodies might consist entirely of short lines of 7bit data and hence
 require no encoding at all. Other PostScript bodies (especially
 those using Level 2 PostScript’s binary encoding mechanism) may only
 be reasonably represented using a binary transport encoding.
 Finally, since the Content-Type field is intended to be an open-ended
 specification mechanism, strict specification of an association
 between media types and encodings effectively couples the
 specification of an application protocol with a specific lower-level
 transport. This is not desirable since the developers of a media
 type should not have to be aware of all the transports in use and
 what their limitations are.

6.5. Translating Encodings

 The quoted-printable and base64 encodings are designed so that
 conversion between them is possible. The only issue that arises in
 such a conversion is the handling of hard line breaks in quoted-
 printable encoding output. When converting from quoted-printable to
 base64 a hard line break in the quoted-printable form represents a
 CRLF sequence in the canonical form of the data. It must therefore be
 converted to a corresponding encoded CRLF in the base64 form of the
 data. Similarly, a CRLF sequence in the canonical form of the data
 obtained after base64 decoding must be converted to a quoted-
 printable hard line break, but ONLY when converting text data.

Freed & Borenstein Standards Track [Page 18]

RFC 2045 Internet Message Bodies November 1996

6.6. Canonical Encoding Model

 There was some confusion, in the previous versions of this RFC,
 regarding the model for when email data was to be converted to
 canonical form and encoded, and in particular how this process would
 affect the treatment of CRLFs, given that the representation of
 newlines varies greatly from system to system, and the relationship
 between content-transfer-encodings and character sets. A canonical
 model for encoding is presented in RFC 2049 for this reason.

6.7. Quoted-Printable Content-Transfer-Encoding

 The Quoted-Printable encoding is intended to represent data that
 largely consists of octets that correspond to printable characters in
 the US-ASCII character set. It encodes the data in such a way that
 the resulting octets are unlikely to be modified by mail transport.
 If the data being encoded are mostly US-ASCII text, the encoded form
 of the data remains largely recognizable by humans. A body which is
 entirely US-ASCII may also be encoded in Quoted-Printable to ensure
 the integrity of the data should the message pass through a
 character-translating, and/or line-wrapping gateway.

 In this encoding, octets are to be represented as determined by the
 following rules:

 (1) (General 8bit representation) Any octet, except a CR or
 LF that is part of a CRLF line break of the canonical
 (standard) form of the data being encoded, may be
 represented by an "=" followed by a two digit
 hexadecimal representation of the octet’s value. The
 digits of the hexadecimal alphabet, for this purpose,
 are "0123456789ABCDEF". Uppercase letters must be
 used; lowercase letters are not allowed. Thus, for
 example, the decimal value 12 (US-ASCII form feed) can
 be represented by "=0C", and the decimal value 61 (US-
 ASCII EQUAL SIGN) can be represented by "=3D". This
 rule must be followed except when the following rules
 allow an alternative encoding.

 (2) (Literal representation) Octets with decimal values of
 33 through 60 inclusive, and 62 through 126, inclusive,
 MAY be represented as the US-ASCII characters which
 correspond to those octets (EXCLAMATION POINT through
 LESS THAN, and GREATER THAN through TILDE,
 respectively).

 (3) (White Space) Octets with values of 9 and 32 MAY be
 represented as US-ASCII TAB (HT) and SPACE characters,

Freed & Borenstein Standards Track [Page 19]

RFC 2045 Internet Message Bodies November 1996

 respectively, but MUST NOT be so represented at the end
 of an encoded line. Any TAB (HT) or SPACE characters
 on an encoded line MUST thus be followed on that line
 by a printable character. In particular, an "=" at the
 end of an encoded line, indicating a soft line break
 (see rule #5) may follow one or more TAB (HT) or SPACE
 characters. It follows that an octet with decimal
 value 9 or 32 appearing at the end of an encoded line
 must be represented according to Rule #1. This rule is
 necessary because some MTAs (Message Transport Agents,
 programs which transport messages from one user to
 another, or perform a portion of such transfers) are
 known to pad lines of text with SPACEs, and others are
 known to remove "white space" characters from the end
 of a line. Therefore, when decoding a Quoted-Printable
 body, any trailing white space on a line must be
 deleted, as it will necessarily have been added by
 intermediate transport agents.

 (4) (Line Breaks) A line break in a text body, represented
 as a CRLF sequence in the text canonical form, must be
 represented by a (RFC 822) line break, which is also a
 CRLF sequence, in the Quoted-Printable encoding. Since
 the canonical representation of media types other than
 text do not generally include the representation of
 line breaks as CRLF sequences, no hard line breaks
 (i.e. line breaks that are intended to be meaningful
 and to be displayed to the user) can occur in the
 quoted-printable encoding of such types. Sequences
 like "=0D", "=0A", "=0A=0D" and "=0D=0A" will routinely
 appear in non-text data represented in quoted-
 printable, of course.

 Note that many implementations may elect to encode the
 local representation of various content types directly
 rather than converting to canonical form first,
 encoding, and then converting back to local
 representation. In particular, this may apply to plain
 text material on systems that use newline conventions
 other than a CRLF terminator sequence. Such an
 implementation optimization is permissible, but only
 when the combined canonicalization-encoding step is
 equivalent to performing the three steps separately.

 (5) (Soft Line Breaks) The Quoted-Printable encoding
 REQUIRES that encoded lines be no more than 76
 characters long. If longer lines are to be encoded
 with the Quoted-Printable encoding, "soft" line breaks

Freed & Borenstein Standards Track [Page 20]

RFC 2045 Internet Message Bodies November 1996

 must be used. An equal sign as the last character on a
 encoded line indicates such a non-significant ("soft")
 line break in the encoded text.

 Thus if the "raw" form of the line is a single unencoded line that
 says:

 Now’s the time for all folk to come to the aid of their country.

 This can be represented, in the Quoted-Printable encoding, as:

 Now’s the time =
 for all folk to come=
 to the aid of their country.

 This provides a mechanism with which long lines are encoded in such a
 way as to be restored by the user agent. The 76 character limit does
 not count the trailing CRLF, but counts all other characters,
 including any equal signs.

 Since the hyphen character ("-") may be represented as itself in the
 Quoted-Printable encoding, care must be taken, when encapsulating a
 quoted-printable encoded body inside one or more multipart entities,
 to ensure that the boundary delimiter does not appear anywhere in the
 encoded body. (A good strategy is to choose a boundary that includes
 a character sequence such as "=_" which can never appear in a
 quoted-printable body. See the definition of multipart messages in
 RFC 2046.)

 NOTE: The quoted-printable encoding represents something of a
 compromise between readability and reliability in transport. Bodies
 encoded with the quoted-printable encoding will work reliably over
 most mail gateways, but may not work perfectly over a few gateways,
 notably those involving translation into EBCDIC. A higher level of
 confidence is offered by the base64 Content-Transfer-Encoding. A way
 to get reasonably reliable transport through EBCDIC gateways is to
 also quote the US-ASCII characters

 !"#$@[\]^‘{|}˜

 according to rule #1.

 Because quoted-printable data is generally assumed to be line-
 oriented, it is to be expected that the representation of the breaks
 between the lines of quoted-printable data may be altered in
 transport, in the same manner that plain text mail has always been
 altered in Internet mail when passing between systems with differing
 newline conventions. If such alterations are likely to constitute a

Freed & Borenstein Standards Track [Page 21]

RFC 2045 Internet Message Bodies November 1996

 corruption of the data, it is probably more sensible to use the
 base64 encoding rather than the quoted-printable encoding.

 NOTE: Several kinds of substrings cannot be generated according to
 the encoding rules for the quoted-printable content-transfer-
 encoding, and hence are formally illegal if they appear in the output
 of a quoted-printable encoder. This note enumerates these cases and
 suggests ways to handle such illegal substrings if any are
 encountered in quoted-printable data that is to be decoded.

 (1) An "=" followed by two hexadecimal digits, one or both
 of which are lowercase letters in "abcdef", is formally
 illegal. A robust implementation might choose to
 recognize them as the corresponding uppercase letters.

 (2) An "=" followed by a character that is neither a
 hexadecimal digit (including "abcdef") nor the CR
 character of a CRLF pair is illegal. This case can be
 the result of US-ASCII text having been included in a
 quoted-printable part of a message without itself
 having been subjected to quoted-printable encoding. A
 reasonable approach by a robust implementation might be
 to include the "=" character and the following
 character in the decoded data without any
 transformation and, if possible, indicate to the user
 that proper decoding was not possible at this point in
 the data.

 (3) An "=" cannot be the ultimate or penultimate character
 in an encoded object. This could be handled as in case
 (2) above.

 (4) Control characters other than TAB, or CR and LF as
 parts of CRLF pairs, must not appear. The same is true
 for octets with decimal values greater than 126. If
 found in incoming quoted-printable data by a decoder, a
 robust implementation might exclude them from the
 decoded data and warn the user that illegal characters
 were discovered.

 (5) Encoded lines must not be longer than 76 characters,
 not counting the trailing CRLF. If longer lines are
 found in incoming, encoded data, a robust
 implementation might nevertheless decode the lines, and
 might report the erroneous encoding to the user.

Freed & Borenstein Standards Track [Page 22]

RFC 2045 Internet Message Bodies November 1996

 WARNING TO IMPLEMENTORS: If binary data is encoded in quoted-
 printable, care must be taken to encode CR and LF characters as "=0D"
 and "=0A", respectively. In particular, a CRLF sequence in binary
 data should be encoded as "=0D=0A". Otherwise, if CRLF were
 represented as a hard line break, it might be incorrectly decoded on
 platforms with different line break conventions.

 For formalists, the syntax of quoted-printable data is described by
 the following grammar:

 quoted-printable := qp-line *(CRLF qp-line)

 qp-line := *(qp-segment transport-padding CRLF)
 qp-part transport-padding

 qp-part := qp-section
 ; Maximum length of 76 characters

 qp-segment := qp-section *(SPACE / TAB) "="
 ; Maximum length of 76 characters

 qp-section := [*(ptext / SPACE / TAB) ptext]

 ptext := hex-octet / safe-char

 safe-char := <any octet with decimal value of 33 through
 60 inclusive, and 62 through 126>
 ; Characters not listed as "mail-safe" in
 ; RFC 2049 are also not recommended.

 hex-octet := "=" 2(DIGIT / "A" / "B" / "C" / "D" / "E" / "F")
 ; Octet must be used for characters > 127, =,
 ; SPACEs or TABs at the ends of lines, and is
 ; recommended for any character not listed in
 ; RFC 2049 as "mail-safe".

 transport-padding := *LWSP-char
 ; Composers MUST NOT generate
 ; non-zero length transport
 ; padding, but receivers MUST
 ; be able to handle padding
 ; added by message transports.

 IMPORTANT: The addition of LWSP between the elements shown in this
 BNF is NOT allowed since this BNF does not specify a structured
 header field.

Freed & Borenstein Standards Track [Page 23]

RFC 2045 Internet Message Bodies November 1996

6.8. Base64 Content-Transfer-Encoding

 The Base64 Content-Transfer-Encoding is designed to represent
 arbitrary sequences of octets in a form that need not be humanly
 readable. The encoding and decoding algorithms are simple, but the
 encoded data are consistently only about 33 percent larger than the
 unencoded data. This encoding is virtually identical to the one used
 in Privacy Enhanced Mail (PEM) applications, as defined in RFC 1421.

 A 65-character subset of US-ASCII is used, enabling 6 bits to be
 represented per printable character. (The extra 65th character, "=",
 is used to signify a special processing function.)

 NOTE: This subset has the important property that it is represented
 identically in all versions of ISO 646, including US-ASCII, and all
 characters in the subset are also represented identically in all
 versions of EBCDIC. Other popular encodings, such as the encoding
 used by the uuencode utility, Macintosh binhex 4.0 [RFC-1741], and
 the base85 encoding specified as part of Level 2 PostScript, do not
 share these properties, and thus do not fulfill the portability
 requirements a binary transport encoding for mail must meet.

 The encoding process represents 24-bit groups of input bits as output
 strings of 4 encoded characters. Proceeding from left to right, a
 24-bit input group is formed by concatenating 3 8bit input groups.
 These 24 bits are then treated as 4 concatenated 6-bit groups, each
 of which is translated into a single digit in the base64 alphabet.
 When encoding a bit stream via the base64 encoding, the bit stream
 must be presumed to be ordered with the most-significant-bit first.
 That is, the first bit in the stream will be the high-order bit in
 the first 8bit byte, and the eighth bit will be the low-order bit in
 the first 8bit byte, and so on.

 Each 6-bit group is used as an index into an array of 64 printable
 characters. The character referenced by the index is placed in the
 output string. These characters, identified in Table 1, below, are
 selected so as to be universally representable, and the set excludes
 characters with particular significance to SMTP (e.g., ".", CR, LF)
 and to the multipart boundary delimiters defined in RFC 2046 (e.g.,
 "-").

Freed & Borenstein Standards Track [Page 24]

RFC 2045 Internet Message Bodies November 1996

 Table 1: The Base64 Alphabet

 Value Encoding Value Encoding Value Encoding Value Encoding
 0 A 17 R 34 i 51 z
 1 B 18 S 35 j 52 0
 2 C 19 T 36 k 53 1
 3 D 20 U 37 l 54 2
 4 E 21 V 38 m 55 3
 5 F 22 W 39 n 56 4
 6 G 23 X 40 o 57 5
 7 H 24 Y 41 p 58 6
 8 I 25 Z 42 q 59 7
 9 J 26 a 43 r 60 8
 10 K 27 b 44 s 61 9
 11 L 28 c 45 t 62 +
 12 M 29 d 46 u 63 /
 13 N 30 e 47 v
 14 O 31 f 48 w (pad) =
 15 P 32 g 49 x
 16 Q 33 h 50 y

 The encoded output stream must be represented in lines of no more
 than 76 characters each. All line breaks or other characters not
 found in Table 1 must be ignored by decoding software. In base64
 data, characters other than those in Table 1, line breaks, and other
 white space probably indicate a transmission error, about which a
 warning message or even a message rejection might be appropriate
 under some circumstances.

 Special processing is performed if fewer than 24 bits are available
 at the end of the data being encoded. A full encoding quantum is
 always completed at the end of a body. When fewer than 24 input bits
 are available in an input group, zero bits are added (on the right)
 to form an integral number of 6-bit groups. Padding at the end of
 the data is performed using the "=" character. Since all base64
 input is an integral number of octets, only the following cases can
 arise: (1) the final quantum of encoding input is an integral
 multiple of 24 bits; here, the final unit of encoded output will be
 an integral multiple of 4 characters with no "=" padding, (2) the
 final quantum of encoding input is exactly 8 bits; here, the final
 unit of encoded output will be two characters followed by two "="
 padding characters, or (3) the final quantum of encoding input is
 exactly 16 bits; here, the final unit of encoded output will be three
 characters followed by one "=" padding character.

 Because it is used only for padding at the end of the data, the
 occurrence of any "=" characters may be taken as evidence that the
 end of the data has been reached (without truncation in transit). No

Freed & Borenstein Standards Track [Page 25]

RFC 2045 Internet Message Bodies November 1996

 such assurance is possible, however, when the number of octets
 transmitted was a multiple of three and no "=" characters are
 present.

 Any characters outside of the base64 alphabet are to be ignored in
 base64-encoded data.

 Care must be taken to use the proper octets for line breaks if base64
 encoding is applied directly to text material that has not been
 converted to canonical form. In particular, text line breaks must be
 converted into CRLF sequences prior to base64 encoding. The
 important thing to note is that this may be done directly by the
 encoder rather than in a prior canonicalization step in some
 implementations.

 NOTE: There is no need to worry about quoting potential boundary
 delimiters within base64-encoded bodies within multipart entities
 because no hyphen characters are used in the base64 encoding.

7. Content-ID Header Field

 In constructing a high-level user agent, it may be desirable to allow
 one body to make reference to another. Accordingly, bodies may be
 labelled using the "Content-ID" header field, which is syntactically
 identical to the "Message-ID" header field:

 id := "Content-ID" ":" msg-id

 Like the Message-ID values, Content-ID values must be generated to be
 world-unique.

 The Content-ID value may be used for uniquely identifying MIME
 entities in several contexts, particularly for caching data
 referenced by the message/external-body mechanism. Although the
 Content-ID header is generally optional, its use is MANDATORY in
 implementations which generate data of the optional MIME media type
 "message/external-body". That is, each message/external-body entity
 must have a Content-ID field to permit caching of such data.

 It is also worth noting that the Content-ID value has special
 semantics in the case of the multipart/alternative media type. This
 is explained in the section of RFC 2046 dealing with
 multipart/alternative.

Freed & Borenstein Standards Track [Page 26]

RFC 2045 Internet Message Bodies November 1996

8. Content-Description Header Field

 The ability to associate some descriptive information with a given
 body is often desirable. For example, it may be useful to mark an
 "image" body as "a picture of the Space Shuttle Endeavor." Such text
 may be placed in the Content-Description header field. This header
 field is always optional.

 description := "Content-Description" ":" *text

 The description is presumed to be given in the US-ASCII character
 set, although the mechanism specified in RFC 2047 may be used for
 non-US-ASCII Content-Description values.

9. Additional MIME Header Fields

 Future documents may elect to define additional MIME header fields
 for various purposes. Any new header field that further describes
 the content of a message should begin with the string "Content-" to
 allow such fields which appear in a message header to be
 distinguished from ordinary RFC 822 message header fields.

 MIME-extension-field := <Any RFC 822 header field which
 begins with the string
 "Content-">

10. Summary

 Using the MIME-Version, Content-Type, and Content-Transfer-Encoding
 header fields, it is possible to include, in a standardized way,
 arbitrary types of data with RFC 822 conformant mail messages. No
 restrictions imposed by either RFC 821 or RFC 822 are violated, and
 care has been taken to avoid problems caused by additional
 restrictions imposed by the characteristics of some Internet mail
 transport mechanisms (see RFC 2049).

 The next document in this set, RFC 2046, specifies the initial set of
 media types that can be labelled and transported using these headers.

11. Security Considerations

 Security issues are discussed in the second document in this set, RFC
 2046.

Freed & Borenstein Standards Track [Page 27]

RFC 2045 Internet Message Bodies November 1996

12. Authors’ Addresses

 For more information, the authors of this document are best contacted
 via Internet mail:

 Ned Freed
 Innosoft International, Inc.
 1050 East Garvey Avenue South
 West Covina, CA 91790
 USA

 Phone: +1 818 919 3600
 Fax: +1 818 919 3614
 EMail: ned@innosoft.com

 Nathaniel S. Borenstein
 First Virtual Holdings
 25 Washington Avenue
 Morristown, NJ 07960
 USA

 Phone: +1 201 540 8967
 Fax: +1 201 993 3032
 EMail: nsb@nsb.fv.com

 MIME is a result of the work of the Internet Engineering Task Force
 Working Group on RFC 822 Extensions. The chairman of that group,
 Greg Vaudreuil, may be reached at:

 Gregory M. Vaudreuil
 Octel Network Services
 17080 Dallas Parkway
 Dallas, TX 75248-1905
 USA

 EMail: Greg.Vaudreuil@Octel.Com

Freed & Borenstein Standards Track [Page 28]

RFC 2045 Internet Message Bodies November 1996

Appendix A -- Collected Grammar

 This appendix contains the complete BNF grammar for all the syntax
 specified by this document.

 By itself, however, this grammar is incomplete. It refers by name to
 several syntax rules that are defined by RFC 822. Rather than
 reproduce those definitions here, and risk unintentional differences
 between the two, this document simply refers the reader to RFC 822
 for the remaining definitions. Wherever a term is undefined, it
 refers to the RFC 822 definition.

 attribute := token
 ; Matching of attributes
 ; is ALWAYS case-insensitive.

 composite-type := "message" / "multipart" / extension-token

 content := "Content-Type" ":" type "/" subtype
 *(";" parameter)
 ; Matching of media type and subtype
 ; is ALWAYS case-insensitive.

 description := "Content-Description" ":" *text

 discrete-type := "text" / "image" / "audio" / "video" /
 "application" / extension-token

 encoding := "Content-Transfer-Encoding" ":" mechanism

 entity-headers := [content CRLF]
 [encoding CRLF]
 [id CRLF]
 [description CRLF]
 *(MIME-extension-field CRLF)

 extension-token := ietf-token / x-token

 hex-octet := "=" 2(DIGIT / "A" / "B" / "C" / "D" / "E" / "F")
 ; Octet must be used for characters > 127, =,
 ; SPACEs or TABs at the ends of lines, and is
 ; recommended for any character not listed in
 ; RFC 2049 as "mail-safe".

 iana-token := <A publicly-defined extension token. Tokens
 of this form must be registered with IANA
 as specified in RFC 2048.>

Freed & Borenstein Standards Track [Page 29]

RFC 2045 Internet Message Bodies November 1996

 ietf-token := <An extension token defined by a
 standards-track RFC and registered
 with IANA.>

 id := "Content-ID" ":" msg-id

 mechanism := "7bit" / "8bit" / "binary" /
 "quoted-printable" / "base64" /
 ietf-token / x-token

 MIME-extension-field := <Any RFC 822 header field which
 begins with the string
 "Content-">

 MIME-message-headers := entity-headers
 fields
 version CRLF
 ; The ordering of the header
 ; fields implied by this BNF
 ; definition should be ignored.

 MIME-part-headers := entity-headers
 [fields]
 ; Any field not beginning with
 ; "content-" can have no defined
 ; meaning and may be ignored.
 ; The ordering of the header
 ; fields implied by this BNF
 ; definition should be ignored.

 parameter := attribute "=" value

 ptext := hex-octet / safe-char

 qp-line := *(qp-segment transport-padding CRLF)
 qp-part transport-padding

 qp-part := qp-section
 ; Maximum length of 76 characters

 qp-section := [*(ptext / SPACE / TAB) ptext]

 qp-segment := qp-section *(SPACE / TAB) "="
 ; Maximum length of 76 characters

 quoted-printable := qp-line *(CRLF qp-line)

Freed & Borenstein Standards Track [Page 30]

RFC 2045 Internet Message Bodies November 1996

 safe-char := <any octet with decimal value of 33 through
 60 inclusive, and 62 through 126>
 ; Characters not listed as "mail-safe" in
 ; RFC 2049 are also not recommended.

 subtype := extension-token / iana-token

 token := 1*<any (US-ASCII) CHAR except SPACE, CTLs,
 or tspecials>

 transport-padding := *LWSP-char
 ; Composers MUST NOT generate
 ; non-zero length transport
 ; padding, but receivers MUST
 ; be able to handle padding
 ; added by message transports.

 tspecials := "(" / ")" / "<" / ">" / "@" /
 "," / ";" / ":" / "\" / <">
 "/" / "[" / "]" / "?" / "="
 ; Must be in quoted-string,
 ; to use within parameter values

 type := discrete-type / composite-type

 value := token / quoted-string

 version := "MIME-Version" ":" 1*DIGIT "." 1*DIGIT

 x-token := <The two characters "X-" or "x-" followed, with
 no intervening white space, by any token>

Freed & Borenstein Standards Track [Page 31]

