
Network Working Group M. Crispin
Request for Comments: 2062 University of Washington
Category: Informational December 1996

 Internet Message Access Protocol - Obsolete Syntax

Status of this Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Abstract

 This document describes obsolete syntax which may be encountered by
 IMAP4 implementations which deal with older versions of the Internet
 Mail Access Protocol. IMAP4 implementations MAY implement this
 syntax in order to maximize interoperability with older
 implementations.

 This document repeats information from earlier documents, most
 notably RFC 1176 and RFC 1730.

Obsolete Commands and Fetch Data Items

 The following commands are OBSOLETE. It is NOT required to support
 any of these commands or fetch data items in new server
 implementations. These commands are documented here for the benefit
 of implementors who may wish to support them for compatibility with
 old client implementations.

 The section headings of these commands are intended to correspond
 with where they would be located in the main document if they were
 not obsoleted.

6.3.OBS.1. FIND ALL.MAILBOXES Command

 Arguments: mailbox name with possible wildcards

 Data: untagged responses: MAILBOX

 Result: OK - find completed
 NO - find failure: can’t list that name
 BAD - command unknown or arguments invalid

Crispin Informational [Page 1]

RFC 2062 IMAP4 Obsolete December 1996

 The FIND ALL.MAILBOXES command returns a subset of names from the
 complete set of all names available to the user. It returns zero
 or more untagged MAILBOX replies. The mailbox argument to FIND
 ALL.MAILBOXES is similar to that for LIST with an empty reference,
 except that the characters "%" and "?" match a single character.

 Example: C: A002 FIND ALL.MAILBOXES *
 S: * MAILBOX blurdybloop
 S: * MAILBOX INBOX
 S: A002 OK FIND ALL.MAILBOXES completed

6.3.OBS.2. FIND MAILBOXES Command

 Arguments: mailbox name with possible wildcards

 Data: untagged responses: MAILBOX

 Result: OK - find completed
 NO - find failure: can’t list that name
 BAD - command unknown or arguments invalid

 The FIND MAILBOXES command returns a subset of names from the set
 of names that the user has declared as being "active" or
 "subscribed". It returns zero or more untagged MAILBOX replies.
 The mailbox argument to FIND MAILBOXES is similar to that for LSUB
 with an empty reference, except that the characters "%" and "?"
 match a single character.

 Example: C: A002 FIND MAILBOXES *
 S: * MAILBOX blurdybloop
 S: * MAILBOX INBOX
 S: A002 OK FIND MAILBOXES completed

6.3.OBS.3. SUBSCRIBE MAILBOX Command

 Arguments: mailbox name

 Data: no specific data for this command

 Result: OK - subscribe completed
 NO - subscribe failure: can’t subscribe to that name
 BAD - command unknown or arguments invalid

 The SUBSCRIBE MAILBOX command is identical in effect to the
 SUBSCRIBE command. A server which implements this command must be
 able to distinguish between a SUBSCRIBE MAILBOX command and a
 SUBSCRIBE command with a mailbox name argument of "MAILBOX".

Crispin Informational [Page 2]

RFC 2062 IMAP4 Obsolete December 1996

 Example: C: A002 SUBSCRIBE MAILBOX #news.comp.mail.mime
 S: A002 OK SUBSCRIBE MAILBOX to #news.comp.mail.mime
 completed
 C: A003 SUBSCRIBE MAILBOX
 S: A003 OK SUBSCRIBE to MAILBOX completed

6.3.OBS.4. UNSUBSCRIBE MAILBOX Command

 Arguments: mailbox name

 Data: no specific data for this command

 Result: OK - unsubscribe completed
 NO - unsubscribe failure: can’t unsubscribe that name
 BAD - command unknown or arguments invalid

 The UNSUBSCRIBE MAILBOX command is identical in effect to the
 UNSUBSCRIBE command. A server which implements this command must
 be able to distinguish between a UNSUBSCRIBE MAILBOX command and
 an UNSUBSCRIBE command with a mailbox name argument of "MAILBOX".

 Example: C: A002 UNSUBSCRIBE MAILBOX #news.comp.mail.mime
 S: A002 OK UNSUBSCRIBE MAILBOX from #news.comp.mail.mime
 completed
 C: A003 UNSUBSCRIBE MAILBOX
 S: A003 OK UNSUBSCRIBE from MAILBOX completed

6.4.OBS.1 PARTIAL Command

 Arguments: message sequence number
 message data item name
 position of first octet
 number of octets

 Data: untagged responses: FETCH

 Result: OK - partial completed
 NO - partial error: can’t fetch that data
 BAD - command unknown or arguments invalid

 The PARTIAL command is equivalent to the associated FETCH command,
 with the added functionality that only the specified number of
 octets, beginning at the specified starting octet, are returned.
 Only a single message can be fetched at a time. The first octet
 of a message, and hence the minimum for the starting octet, is
 octet 1.

Crispin Informational [Page 3]

RFC 2062 IMAP4 Obsolete December 1996

 The following FETCH items are valid data for PARTIAL: RFC822,
 RFC822.HEADER, RFC822.TEXT, BODY[<section>], as well as any .PEEK
 forms of these.

 Any partial fetch that attempts to read beyond the end of the text
 is truncated as appropriate. If the starting octet is beyond the
 end of the text, an empty string is returned.

 The data are returned with the FETCH response. There is no
 indication of the range of the partial data in this response. It
 is not possible to stream multiple PARTIAL commands of the same
 data item without processing and synchronizing at each step, since
 streamed commands may be executed out of order.

 There is no requirement that partial fetches follow any sequence.
 For example, if a partial fetch of octets 1 through 10000 breaks
 in an awkward place for BASE64 decoding, it is permitted to
 continue with a partial fetch of 9987 through 19987, etc.

 The handling of the \Seen flag is the same as in the associated
 FETCH command.

 Example: C: A005 PARTIAL 4 RFC822 1 1024
 S: * 1 FETCH (RFC822 {1024}
 S: Return-Path: <gray@cac.washington.edu>
 S: ...
 S: FLAGS (\Seen))
 S: A005 OK PARTIAL completed

6.4.5.OBS.1 Obsolete FETCH Data Items

 The following FETCH data items are obsolete:

 BODY[<...>0] A body part number of 0 is the [RFC-822] header of
 the message. BODY[0] is functionally equivalent to
 BODY[HEADER], differing in the syntax of the
 resulting untagged FETCH data (BODY[0] is
 returned).

 RFC822.HEADER.LINES <header_list>
 Functionally equivalent to BODY.PEEK[HEADER.LINES
 <header_list>], differing in the syntax of the
 resulting untagged FETCH data (RFC822.HEADER is
 returned).

Crispin Informational [Page 4]

RFC 2062 IMAP4 Obsolete December 1996

 RFC822.HEADER.LINES.NOT <header_list>
 Functionally equivalent to
 BODY.PEEK[HEADER.LINES.NOT <header_list>],
 differing in the syntax of the resulting untagged
 FETCH data (RFC822.HEADER is returned).

 RFC822.PEEK Functionally equivalent to BODY.PEEK[], except for
 the syntax of the resulting untagged FETCH data
 (RFC822 is returned).

 RFC822.TEXT.PEEK
 Functionally equivalent to BODY.PEEK[TEXT], except
 for the syntax of the resulting untagged FETCH data
 (RFC822.TEXT is returned).

Obsolete Responses

 The following responses are OBSOLETE. Except as noted below, these
 responses MUST NOT be transmitted by new server implementations.
 Client implementations SHOULD accept these responses.

 The section headings of these responses are intended to correspond
 with where they would be located in the main document if they were
 not obsoleted.

7.2.OBS.1. MAILBOX Response

 Data: name

 The MAILBOX response MUST NOT be transmitted by server
 implementations except in response to the obsolete FIND MAILBOXES
 and FIND ALL.MAILBOXES commands. Client implementations that do
 not use these commands MAY ignore this response. It is documented
 here for the benefit of implementors who may wish to support it
 for compatibility with old client implementations.

 This response occurs as a result of the FIND MAILBOXES and FIND
 ALL.MAILBOXES commands. It returns a single name that matches the
 FIND specification. There are no attributes or hierarchy
 delimiter.

 Example: S: * MAILBOX blurdybloop

Crispin Informational [Page 5]

RFC 2062 IMAP4 Obsolete December 1996

7.3.OBS.1. COPY Response

 Data: none

 The COPY response MUST NOT be transmitted by new server
 implementations. Client implementations MUST ignore the COPY
 response. It is documented here for the benefit of client
 implementors who may encounter this response from old server
 implementations.

 In some experimental versions of this protocol, this response was
 returned in response to a COPY command to indicate on a
 per-message basis that the message was copied successfully.

 Example: S: * 44 COPY

7.3.OBS.2. STORE Response

 Data: message data

 The STORE response MUST NOT be transmitted by new server
 implementations. Client implementations MUST treat the STORE
 response as equivalent to the FETCH response. It is documented
 here for the benefit of client implementors who may encounter this
 response from old server implementations.

 In some experimental versions of this protocol, this response was
 returned instead of FETCH in response to a STORE command to report
 the new value of the flags.

 Example: S: * 69 STORE (FLAGS (\Deleted))

Formal Syntax of Obsolete Commands and Responses

 Each obsolete syntax rule that is suffixed with "_old" is added to
 the corresponding name in the formal syntax. For example,
 command_auth_old adds the FIND command to command_auth.

 command_auth_old ::= find

 command_select_old
 ::= partial

 date_year_old ::= 2digit
 ;; (year - 1900)

 date_time_old ::= <"> date_day_fixed "-" date_month "-" date_year
 SPACE time "-" zone_name <">

Crispin Informational [Page 6]

RFC 2062 IMAP4 Obsolete December 1996

 find ::= "FIND" SPACE ["ALL."] "MAILBOXES" SPACE
 list_mailbox

 fetch_att_old ::= "RFC822.HEADER.LINES" [".NOT"] SPACE header_list /
 fetch_text_old

 fetch_text_old ::= "BODY" [".PEEK"] section_old /
 "RFC822" [".HEADER" / ".TEXT" [".PEEK"]]

 msg_data_old ::= "COPY" / ("STORE" SPACE msg_att)

 partial ::= "PARTIAL" SPACE nz_number SPACE fetch_text_old SPACE
 number SPACE number

 section_old ::= "[" (number ["." number]) "]"

 subscribe_old ::= "SUBSCRIBE" SPACE "MAILBOX" SPACE mailbox

 unsubscribe_old ::= "UNSUBSCRIBE" SPACE "MAILBOX" SPACE mailbox

 zone_name ::= "UT" / "GMT" / "Z" / ;; +0000
 "AST" / "EDT" / ;; -0400
 "EST" / "CDT" / ;; -0500
 "CST" / "MDT" / ;; -0600
 "MST" / "PDT" / ;; -0700
 "PST" / "YDT" / ;; -0800
 "YST" / "HDT" / ;; -0900
 "HST" / "BDT" / ;; -1000
 "BST" / ;; -1100
 "A" / "B" / "C" / "D" / "E" / "F" / ;; +1 to +6
 "G" / "H" / "I" / "K" / "L" / "M" / ;; +7 to +12
 "N" / "O" / "P" / "Q" / "R" / "S" / ;; -1 to -6
 "T" / "U" / "V" / "W" / "X" / "Y" ;; -7 to -12

Security Considerations

 Security issues are not discussed in this memo.

Crispin Informational [Page 7]

RFC 2062 IMAP4 Obsolete December 1996

Author’s Address

 Mark R. Crispin
 Networks and Distributed Computing
 University of Washington
 4545 15th Aveneue NE
 Seattle, WA 98105-4527

 Phone: (206) 543-5762
 EMail: MRC@CAC.Washington.EDU

Crispin Informational [Page 8]

