
Network Working Group A. Emberson
Request for Comments: 2090 Lanworks Technologies Inc.
Category: Experimental February 1997

 TFTP Multicast Option

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. This memo does not specify an Internet standard of any
 kind. Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Abstract

 The Trivial File Transfer Protocol [1] is a simple, lock-step, file
 transfer protocol which allows a client to get or put a file onto a
 remote host.

 This document describes a new TFTP option. This new option will allow
 the multiple clients to receive the same file concurrently through
 the use of Multicast packets. The TFTP Option Extension mechanism is
 described in [2].

 Often when similar computers are booting remotely they will each
 download the same image file. By adding multicast into the TFTP
 option set, two or more computers can download a file
 concurrently, thus increasing network efficiency.

 This document assumes that the reader is familiar with the
 terminology and notation of both [1] and [2].

Multicast Option Specification

 The TFTP Read Request packet is modified to include the multicast
 option as follows:

 +--------+----˜˜----+---+--˜˜--+---+-----------+---+---+
 | opc=1 | filename | 0 | mode | 0 | multicast | 0 | 0 |
 +--------+----˜˜----+---+--˜˜--+---+-----------+---+---+

 opc
 The opcode field contains a 1, for Read Requests, as defined
 in [1].

Emberson Experimental [Page 1]

RFC 2090 TFTP Multicast Option February 1997

 filename
 The name of the file to be read, as defined in [1]. This is a
 NULL-terminated field.

 mode
 The mode of the file transfer: "netascii", "octet", or
 "mail", as defined in [1]. This is a NULL-terminated field.

 multicast
 Request for multicast transmission of the file option,
 "multicast" (case insensitive). This is a NULL-terminated
 field. The value for this option request is a string of zero
 length.

 If the server is willing to accept the multicast option, it
 sends an Option Acknowledgment (OACK) to the client including
 the multicast option, as defined in [2]. The OACK to the client
 will specify the multicast address and flag to indicate whether
 that client should send block acknowledgments (ACK).

 +-------+-----------+---+-------˜˜-------+---+
 | opc | multicast | 0 | addr, port, mc | 0 |
 +-------+-----------+---+-------˜˜-------+---+

 opc
 The opcode field contains the number 6, for Option
 Acknowledgment, as defined in [2].

 multicast
 Acknowledges the multicast option. This is a NULL-terminated
 field.

 addr
 The addr field contains the multicast IP address. This field
 is terminated with a comma.

 port
 The port field contains the destination port of the multicast
 packets. The use of Registered Port number 1758 (tftp-mcast)
 is recommended. This field is terminated with a comma.

 mc
 This field will be either 0 or 1, to tell the client whether
 it is the master client, that is, it is responsible for
 sending ACKs to the server. This is NULL-terminated field.

Emberson Experimental [Page 2]

RFC 2090 TFTP Multicast Option February 1997

Data Transfer

 After the OACK is received by the client it will send an ACK for
 packet zero, as in [2]. With the multicast option being accepted this
 ACK will indicate to the server that the client wants the first
 packet. In other words the ACKs may now be seen as a request for the
 n+1th block of data. This enables each a client to request any block
 within the file that it may be missing.

 To manage the data transfer the server will maintain a list of
 clients. Typically the oldest client on the list, from here on
 referred to as the Master Client, will be responsible for sending
 ACKs. When the master client is finished, the server will send
 another OACK to the next oldest client, telling it to start sending
 ACKs. Upon receipt of this OACK the new master client will send an
 ACK for the block immediately before the first block required to
 complete its download.

 Any subsequent clients can start receiving blocks of a file during a
 transfer and then request any missing blocks when that client becomes
 the master client. When the current master client is finished, the
 server will notify the next client with an OACK making it the new
 master client. The new master client can start requesting missed
 packets. Each client must terminate the transfer by sending an
 acknowledgment of the last packet or by sending an error message to
 server. This termination can occur even if the client is not the
 master client.

 Any subsequent OACKs to a client may have an empty multicast address
 and port fields, since this information will already be held by that
 client. In the event a client fails to respond in a timely manner to
 a OACK enabling it as the master client, the server shall select the
 next oldest client to be the master client. The server shall
 reattempt to send a OACK to the non- responding client when the new
 master client is finished. The server may cease communication with a
 client after a reasonable number of attempts.

 Each transfer will be given a multicast address for use to distribute
 the data packets. Since there can be multiple servers on a given
 network or a limited number of addresses available to a given server,
 it is possible that their might be more than one transfer using a
 multicast address. To ensure that a client only accepts the correct
 packets, each transfer must use a unique port on the server. The
 source IP address and port number will identify the data packets for
 the transfer. Thus the server must send the unicast OACK packet to
 the client using the same port as will be used for sending the
 multicast data packets.

Emberson Experimental [Page 3]

RFC 2090 TFTP Multicast Option February 1997

 At any point if a client, other than the master client, sends a ACK
 to the server, the server will respond with another OACK with the mc
 field holding a value of zero. If this client persists in sending
 erroneous ACKs, the server may send an error packet to the client,
 discontinuing the file transfer for that client.

 The server may also send unicast packets to a lone client to reduce
 adverse effects on other machines. As it is possible that machines
 may be forced to process many extraneous multicast packets when
 attempting to receive a single multicast address.

Example

 clients server message
 --
 1 C1 |1|afile|0|octet|0|multicast|0|0| -> RRQ
 2 C1 <- |6|multicast|224.100.100.100,1758,1| OACK
 3 C1 |4|0| -> ACK
 4 M <- |3|1|1| 512 octets of data| DATA
 5 C1 |4|1| -> ACK
 6 M <- |3|2|1| 512 octets of data| DATA
 7 C2 |1|afile|0|octet|0|multicast|0|0| -> RRQ
 8 C2 <- |6|multicast|224.100.100.100,1758,0| OACK
 9 C2 |4|0| -> ACK
 10 C1 |4|2| -> ACK
 11 M <- |3|3|1| 512 octets of data| DATA
 12 C3 |1|afile|0|octet|0|multicast|0|0| -> RRQ
 13 C3 <- |6|multicast|224.100.100.100,1758,0| OACK
 14 C1 |4|3| -> ACK
 15 C2 |4|0| -> ACK
 16 M (except C2) <- |3|4|1| 512 octets of data| DATA
 17 C1 |4|4| -> ACK
 18 M <- |3|5|1| 512 octets of data| DATA
 19 C1 |4|5| -> ACK
 20 M <- |3|6|1| 100 octets of data| DATA
 21 C1 |4|6| -> ACK
 22 C2 <- |6|multicast|,,1| OACK
 23 C2 |4|0| -> ACK
 24 M <- |3|1|1| 512 octets of data| DATA
 25 C2 |4|1| -> ACK
 26 M <- |3|2|1| 512 octets of data| DATA
 27 C2 |4|3| -> ACK
 28 M <- |3|4|1| 512 octets of data| DATA
 29 C2 |4|6| -> ACK
 30 C3 <- |6|multicast|,,1| OACK
 31 C3 |4|2| -> ACK
 32 M <- |3|3|1| 512 octets of data| DATA
 33 C3 |4|6| -> ACK

Emberson Experimental [Page 4]

RFC 2090 TFTP Multicast Option February 1997

 Comments:
 1 request from client 1
 2 option acknowledgment
 3 acknowledgment for option acknowledgment,
 or request for first block of data
 4 first data packet sent to the multicast address
 7 request from client 2
 8 option acknowledgment to client 2,
 send no acknowledgments
 9 OACK acknowledgment from client 2
 15 OACK acknowledgment from client 3
 16 client 2 fails to receive a packet
 21 client 1 acknowledges receipt of the last block,
 telling the server it is done
 23 option acknowledgment to client 2,
 now the master client
 25 client 2 acknowledging with request for first block
 27 client 2 acknowledges with request for missed block
 29 client 2 signals it is finished
 31 client 3 is master client and asks for missing blocks
 33 client 3 signals it is finished

Conclusion

 With the use of the multicast and blocksize[3] options TFTP will be
 capable of fast and efficient downloads of data. Using TFTP with the
 multicast option will maintain backward compatibility for both
 clients and servers.

Security Considerations

 Security issues are not discussed in this memo.

References

 [1] Sollins, K., "The TFTP Protocol (Revision 2)", STD 33, RFC
 1350, MIT, July 1992.

 [2] Malkin, G., and A. Harkin, "TFTP Option Extension", RFC
 1782, Xylogics, Inc., Hewlett Packard Co., March 1995.

 [3] Malkin, G., and A. Harkin, "TFTP Blocksize Option", RFC
 1783, Xylogics, Inc., Hewlett Packard Co., March 1995.

Emberson Experimental [Page 5]

RFC 2090 TFTP Multicast Option February 1997

Author’s Address

 A. Thomas Emberson
 Lanworks Technologies, Inc.
 2425 Skymark Avenue
 Mississauga, Ontario
 Canada L4W 4Y6

 Phone: (905) 238-5528
 EMail: tom@lanworks.com

Emberson Experimental [Page 6]

