
Network Working Group J. Touch
Request for Comments: 2140 ISI
Category: Informational April 1997

 TCP Control Block Interdependence

Status of this Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Abstract

 This memo makes the case for interdependent TCP control blocks, where
 part of the TCP state is shared among similar concurrent connections,
 or across similar connection instances. TCP state includes a
 combination of parameters, such as connection state, current round-
 trip time estimates, congestion control information, and process
 information. This state is currently maintained on a per-connection
 basis in the TCP control block, but should be shared across
 connections to the same host. The goal is to improve transient
 transport performance, while maintaining backward-compatibility with
 existing implementations.

 This document is a product of the LSAM project at ISI.

Introduction

 TCP is a connection-oriented reliable transport protocol layered over
 IP [9]. Each TCP connection maintains state, usually in a data
 structure called the TCP Control Block (TCB). The TCB contains
 information about the connection state, its associated local process,
 and feedback parameters about the connection’s transmission
 properties. As originally specified and usually implemented, the TCB
 is maintained on a per-connection basis. This document discusses the
 implications of that decision, and argues for an alternate
 implementation that shares some of this state across similar
 connection instances and among similar simultaneous connections. The
 resulting implementation can have better transient performance,
 especially for numerous short-lived and simultaneous connections, as
 often used in the World-Wide Web [1]. These changes affect only the
 TCB initialization, and so have no effect on the long-term behavior
 of TCP after a connection has been established.

Touch Informational [Page 1]

RFC 2140 TCP Control Block Interdependence April 1997

The TCP Control Block (TCB)

 A TCB is associated with each connection, i.e., with each association
 of a pair of applications across the network. The TCB can be
 summarized as containing [9]:

 Local process state

 pointers to send and receive buffers
 pointers to retransmission queue and current segment
 pointers to Internet Protocol (IP) PCB

 Per-connection shared state

 macro-state

 connection state
 timers
 flags
 local and remote host numbers and ports

 micro-state

 send and receive window state (size*, current number)
 round-trip time and variance
 cong. window size*
 cong. window size threshold*
 max windows seen*
 MSS#
 round-trip time and variance#

 The per-connection information is shown as split into macro-state and
 micro-state, terminology borrowed from [5]. Macro-state describes the
 finite state machine; we include the endpoint numbers and components
 (timers, flags) used to help maintain that state. This includes the
 protocol for establishing and maintaining shared state about the
 connection. Micro-state describes the protocol after a connection has
 been established, to maintain the reliability and congestion control
 of the data transferred in the connection.

 We further distinguish two other classes of shared micro-state that
 are associated more with host-pairs than with application pairs. One
 class is clearly host-pair dependent (#, e.g., MSS, RTT), and the
 other is host-pair dependent in its aggregate (*, e.g., cong. window
 info., curr. window sizes).

Touch Informational [Page 2]

RFC 2140 TCP Control Block Interdependence April 1997

TCB Interdependence

 The observation that some TCB state is host-pair specific rather than
 application-pair dependent is not new, and is a common engineering
 decision in layered protocol implementations. A discussion of sharing
 RTT information among protocols layered over IP, including UDP and
 TCP, occurred in [8]. T/TCP uses caches to maintain TCB information
 across instances, e.g., smoothed RTT, RTT variance, congestion
 avoidance threshold, and MSS [3]. These values are in addition to
 connection counts used by T/TCP to accelerate data delivery prior to
 the full three-way handshake during an OPEN. The goal is to aggregate
 TCB components where they reflect one association - that of the
 host-pair, rather than artificially separating those components by
 connection.

 At least one current T/TCP implementation saves the MSS and
 aggregates the RTT parameters across multiple connections, but omits
 caching the congestion window information [4], as originally
 specified in [2]. There may be other values that may be cached, such
 as current window size, to permit new connections full access to
 accumulated channel resources.

 We observe that there are two cases of TCB interdependence. Temporal
 sharing occurs when the TCB of an earlier (now CLOSED) connection to
 a host is used to initialize some parameters of a new connection to
 that same host. Ensemble sharing occurs when a currently active
 connection to a host is used to initialize another (concurrent)
 connection to that host. T/TCP documents considered the temporal
 case; we consider both.

An Example of Temporal Sharing

 Temporal sharing of cached TCB data has been implemented in the SunOS
 4.1.3 T/TCP extensions [4] and the FreeBSD port of same [7]. As
 mentioned before, only the MSS and RTT parameters are cached, as
 originally specified in [2]. Later discussion of T/TCP suggested
 including congestion control parameters in this cache [3].

 The cache is accessed in two ways: it is read to initialize new TCBs,
 and written when more current per-host state is available. New TCBs
 are initialized as follows; snd_cwnd reuse is not yet implemented,
 although discussed in the T/TCP concepts [2]:

Touch Informational [Page 3]

RFC 2140 TCP Control Block Interdependence April 1997

 TEMPORAL SHARING - TCB Initialization

 Cached TCB New TCB
 --
 old-MSS old-MSS

 old-RTT old-RTT

 old-RTTvar old-RTTvar

 old-snd_cwnd old-snd_cwnd (not yet impl.)

 Most cached TCB values are updated when a connection closes. An
 exception is MSS, which is updated whenever the MSS option is
 received in a TCP header.

 TEMPORAL SHARING - Cache Updates

 Cached TCB Current TCB when? New Cached TCB

 old-MSS curr-MSS MSSopt curr-MSS

 old-RTT curr-RTT CLOSE old += (curr - old) >> 2

 old-RTTvar curr-RTTvar CLOSE old += (curr - old) >> 2

 old-snd_cwnd curr-snd_cwnd CLOSE curr-snd_cwnd (not yet impl.)

 MSS caching is trivial; reported values are cached, and the most
 recent value is used. The cache is updated when the MSS option is
 received, so the cache always has the most recent MSS value from any
 connection. The cache is consulted only at connection establishment,
 and not otherwise updated, which means that MSS options do not affect
 current connections. The default MSS is never saved; only reported
 MSS values update the cache, so an explicit override is required to
 reduce the MSS.

 RTT values are updated by a more complicated mechanism [3], [8].
 Dynamic RTT estimation requires a sequence of RTT measurements, even
 though a single T/TCP transaction may not accumulate enough samples.
 As a result, the cached RTT (and its variance) is an average of its
 previous value with the contents of the currently active TCB for that
 host, when a TCB is closed. RTT values are updated only when a
 connection is closed. Further, the method for averaging the RTT
 values is not the same as the method for computing the RTT values
 within a connection, so that the cached value may not be appropriate.

Touch Informational [Page 4]

RFC 2140 TCP Control Block Interdependence April 1997

 For temporal sharing, the cache requires updating only when a
 connection closes, because the cached values will not yet be used to
 initialize a new TCB. For the ensemble sharing, this is not the case,
 as discussed below.

 Other TCB variables may also be cached between sequential instances,
 such as the congestion control window information. Old cache values
 can be overwritten with the current TCB estimates, or a MAX or MIN
 function can be used to merge the results, depending on the optimism
 or pessimism of the reused values. For example, the congestion window
 can be reused if there are no concurrent connections.

An Example of Ensemble Sharing

 Sharing cached TCB data across concurrent connections requires
 attention to the aggregate nature of some of the shared state.
 Although MSS and RTT values can be shared by copying, it may not be
 appropriate to copy congestion window information. At this point, we
 present only the MSS and RTT rules:

 ENSEMBLE SHARING - TCB Initialization

 Cached TCB New TCB

 old-MSS old-MSS

 old-RTT old-RTT

 old-RTTvar old-RTTvar

 ENSEMBLE SHARING - Cache Updates

 Cached TCB Current TCB when? New Cached TCB

 old-MSS curr-MSS MSSopt curr-MSS

 old-RTT curr-RTT update rtt_update(old,curr)

 old-RTTvar curr-RTTvar update rtt_update(old,curr)

 For ensemble sharing, TCB information should be cached as early as
 possible, sometimes before a connection is closed. Otherwise, opening
 multiple concurrent connections may not result in TCB data sharing if
 no connection closes before others open. An optimistic solution would

Touch Informational [Page 5]

RFC 2140 TCP Control Block Interdependence April 1997

 be to update cached data as early as possible, rather than only when
 a connection is closing. Some T/TCP implementations do this for MSS
 when the TCP MSS header option is received [4], although it is not
 addressed specifically in the concepts or functional specification
 [2][3].

 In current T/TCP, RTT values are updated only after a CLOSE, which
 does not benefit concurrent sessions. As mentioned in the temporal
 case, averaging values between concurrent connections requires
 incorporating new RTT measurements. The amount of work involved in
 updating the aggregate average should be minimized, but the resulting
 value should be equivalent to having all values measured within a
 single connection. The function "rtt_update" in the ensemble sharing
 table indicates this operation, which occurs whenever the RTT would
 have been updated in the individual TCP connection. As a result, the
 cache contains the shared RTT variables, which no longer need to
 reside in the TCB [8].

 Congestion window size aggregation is more complicated in the
 concurrent case. When there is an ensemble of connections, we need
 to decide how that ensemble would have shared the congestion window,
 in order to derive initial values for new TCBs. Because concurrent
 connections between two hosts share network paths (usually), they
 also share whatever capacity exists along that path. With regard to
 congestion, the set of connections might behave as if it were
 multiplexed prior to TCP, as if all data were part of a single
 connection. As a result, the current window sizes would maintain a
 constant sum, presuming sufficient offered load. This would go beyond
 caching to truly sharing state, as in the RTT case.

 We pause to note that any assumption of this sharing can be
 incorrect, including this one. In current implementations, new
 congestion windows are set at an initial value of one segment, so
 that the sum of the current windows is increased for any new
 connection. This can have detrimental consequences where several
 connections share a highly congested link, such as in trans-Atlantic
 Web access.

 There are several ways to initialize the congestion window in a new
 TCB among an ensemble of current connections to a host, as shown
 below. Current TCP implementations initialize it to one segment [9],
 and T/TCP hinted that it should be initialized to the old window size
 [3]. In the former, the assumption is that new connections should
 behave as conservatively as possible. In the latter, no accommodation
 is made to concurrent aggregate behavior.

 In either case, the sum of window sizes can increase, rather than
 remain constant. Another solution is to give each pending connection

Touch Informational [Page 6]

RFC 2140 TCP Control Block Interdependence April 1997

 its "fair share" of the available congestion window, and let the
 connections balance from there. The assumption we make here is that
 new connections are implicit requests for an equal share of available
 link bandwidth which should be granted at the expense of current
 connections. This may or may not be the appropriate function; we
 propose that it be examined further.

 ENSEMBLE SHARING - TCB Initialization
 Some Options for Sharing Window-size

 Cached TCB New TCB

 old-snd_cwnd (current) one segment

 (T/TCP hint) old-snd_cwnd

 (proposed) old-snd_cwnd/(N+1)
 subtract old-snd_cwnd/(N+1)/N
 from each concurrent

 ENSEMBLE SHARING - Cache Updates

 Cached TCB Current TCB when? New Cached TCB
 --
 old-snd_cwnd curr-snd_cwnd update (adjust sum as appropriate)

Compatibility Issues

 Current TCP implementations do not use TCB caching, with the
 exception of T/TCP variants [4][7]. New connections use the default
 initial values of all non-instantiated TCB variables. As a result,
 each connection calculates its own RTT measurements, MSS value, and
 congestion information. Eventually these values are updated for each
 connection.

 For the congestion and current window information, the initial values
 may not be consistent with the long-term aggregate behavior of a set
 of concurrent connections. If a single connection has a window of 4
 segments, new connections assume initial windows of 1 segment (the
 minimum), although the current connection’s window doesn’t decrease
 to accommodate this additional load. As a result, connections can
 mutually interfere. One example of this has been seen on trans-
 Atlantic links, where concurrent connections supporting Web traffic
 can collide because their initial windows are too large, even when
 set at one segment.

Touch Informational [Page 7]

RFC 2140 TCP Control Block Interdependence April 1997

 Because this proposal attempts to anticipate the aggregate steady-
 state values of TCB state among a group or over time, it should avoid
 the transient effects of new connections. In addition, because it
 considers the ensemble and temporal properties of those aggregates,
 it should also prevent the transients of short-lived or multiple
 concurrent connections from adversely affecting the overall network
 performance. We are performing analysis and experiments to validate
 these assumptions.

Performance Considerations

 Here we attempt to optimize transient behavior of TCP without
 modifying its long-term properties. The predominant expense is in
 maintaining the cached values, or in using per-host state rather than
 per-connection state. In cases where performance is affected,
 however, we note that the per-host information can be kept in per-
 connection copies (as done now), because with higher performance
 should come less interference between concurrent connections.

 Sharing TCB state can occur only at connection establishment and
 close (to update the cache), to minimize overhead, optimize transient
 behavior, and minimize the effect on the steady-state. It is possible
 that sharing state during a connection, as in the RTT or window-size
 variables, may be of benefit, provided its implementation cost is not
 high.

Implications

 There are several implications to incorporating TCB interdependence
 in TCP implementations. First, it may prevent the need for
 application-layer multiplexing for performance enhancement [6].
 Protocols like persistent-HTTP avoid connection reestablishment costs
 by serializing or multiplexing a set of per-host connections across a
 single TCP connection. This avoids TCP’s per-connection OPEN
 handshake, and also avoids recomputing MSS, RTT, and congestion
 windows. By avoiding the so-called, "slow-start restart," performance
 can be optimized. Our proposal provides the MSS, RTT, and OPEN
 handshake avoidance of T/TCP, and the "slow-start restart avoidance"
 of multiplexing, without requiring a multiplexing mechanism at the
 application layer. This multiplexing will be complicated when
 quality-of-service mechanisms (e.g., "integrated services
 scheduling") are provided later.

 Second, we are attempting to push some of the TCP implementation from
 the traditional transport layer (in the ISO model [10]), to the
 network layer. This acknowledges that some state currently maintained
 as per-connection is in fact per-path, which we simplify as per-
 host-pair. Transport protocols typically manage per-application-pair

Touch Informational [Page 8]

RFC 2140 TCP Control Block Interdependence April 1997

 associations (per stream), and network protocols manage per-path
 associations (routing). Round-trip time, MSS, and congestion
 information is more appropriately handled in a network-layer fashion,
 aggregated among concurrent connections, and shared across connection
 instances.

 An earlier version of RTT sharing suggested implementing RTT state at
 the IP layer, rather than at the TCP layer [8]. Our observations are
 for sharing state among TCP connections, which avoids some of the
 difficulties in an IP-layer solution. One such problem is determining
 the associated prior outgoing packet for an incoming packet, to infer
 RTT from the exchange. Because RTTs are still determined inside the
 TCP layer, this is simpler than at the IP layer. This is a case where
 information should be computed at the transport layer, but shared at
 the network layer.

 We also note that per-host-pair associations are not the limit of
 these techniques. It is possible that TCBs could be similarly shared
 between hosts on a LAN, because the predominant path can be LAN-LAN,
 rather than host-host.

 There may be other information that can be shared between concurrent
 connections. For example, knowing that another connection has just
 tried to expand its window size and failed, a connection may not
 attempt to do the same for some period. The idea is that existing TCP
 implementations infer the behavior of all competing connections,
 including those within the same host or LAN. One possible
 optimization is to make that implicit feedback explicit, via extended
 information in the per-host TCP area.

Security Considerations

 These suggested implementation enhancements do not have additional
 ramifications for direct attacks. These enhancements may be
 susceptible to denial-of-service attacks if not otherwise secured.
 For example, an application can open a connection and set its window
 size to 0, denying service to any other subsequent connection between
 those hosts.

 TCB sharing may be susceptible to denial-of-service attacks, wherever
 the TCB is shared, between connections in a single host, or between
 hosts if TCB sharing is implemented on the LAN (see Implications
 section). Some shared TCB parameters are used only to create new
 TCBs, others are shared among the TCBs of ongoing connections. New
 connections can join the ongoing set, e.g., to optimize send window
 size among a set of connections to the same host.

Touch Informational [Page 9]

RFC 2140 TCP Control Block Interdependence April 1997

 Attacks on parameters used only for initialization affect only the
 transient performance of a TCP connection. For short connections,
 the performance ramification can approach that of a denial-of-service
 attack. E.g., if an application changes its TCB to have a false and
 small window size, subsequent connections would experience
 performance degradation until their window grew appropriately.

 The solution is to limit the effect of compromised TCB values. TCBs
 are compromised when they are modified directly by an application or
 transmitted between hosts via unauthenticated means (e.g., by using a
 dirty flag). TCBs that are not compromised by application
 modification do not have any unique security ramifications. Note that
 the proposed parameters for TCB sharing are not currently modifiable
 by an application.

 All shared TCBs MUST be validated against default minimum parameters
 before used for new connections. This validation would not impact
 performance, because it occurs only at TCB initialization. This
 limits the effect of attacks on new connections, to reducing the
 benefit of TCB sharing, resulting in the current default TCP
 performance. For ongoing connections, the effect of incoming packets
 on shared information should be both limited and validated against
 constraints before use. This is a beneficial precaution for existing
 TCP implementations as well.

 TCBs modified by an application SHOULD not be shared, unless the new
 connection sharing the compromised information has been given
 explicit permission to use such information by the connection API. No
 mechanism for that indication currently exists, but it could be
 supported by an augmented API. This sharing restriction SHOULD be
 implemented in both the host and the LAN. Sharing on a LAN SHOULD
 utilize authentication to prevent undetected tampering of shared TCB
 parameters. These restrictions limit the security impact of modified
 TCBs both for connection initialization and for ongoing connections.

 Finally, shared values MUST be limited to performance factors only.
 Other information, such as TCP sequence numbers, when shared, are
 already known to compromise security.

Acknowledgements

 The author would like to thank the members of the High-Performance
 Computing and Communications Division at ISI, notably Bill Manning,
 Bob Braden, Jon Postel, Ted Faber, and Cliff Neuman for their
 assistance in the development of this memo.

Touch Informational [Page 10]

RFC 2140 TCP Control Block Interdependence April 1997

References

 [1] Berners-Lee, T., et al., "The World-Wide Web," Communications of
 the ACM, V37, Aug. 1994, pp. 76-82.

 [2] Braden, R., "Transaction TCP -- Concepts," RFC-1379,
 USC/Information Sciences Institute, September 1992.

 [3] Braden, R., "T/TCP -- TCP Extensions for Transactions Functional
 Specification," RFC-1644, USC/Information Sciences Institute,
 July 1994.

 [4] Braden, B., "T/TCP -- Transaction TCP: Source Changes for Sun OS
 4.1.3,", Release 1.0, USC/ISI, September 14, 1994.

 [5] Comer, D., and Stevens, D., Internetworking with TCP/IP, V2,
 Prentice-Hall, NJ, 1991.

 [6] Fielding, R., et al., "Hypertext Transfer Protocol -- HTTP/1.1,"
 Work in Progress.

 [7] FreeBSD source code, Release 2.10, <http://www.freebsd.org/>.

 [8] Jacobson, V., (mail to public list "tcp-ip", no archive found),
 1986.

 [9] Postel, Jon, "Transmission Control Protocol," Network Working
 Group RFC-793/STD-7, ISI, Sept. 1981.

 [10] Tannenbaum, A., Computer Networks, Prentice-Hall, NJ, 1988.

Author’s Address

 Joe Touch
 University of Southern California/Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292-6695
 USA
 Phone: +1 310-822-1511 x151
 Fax: +1 310-823-6714
 URL: http://www.isi.edu/˜touch
 Email: touch@isi.edu

Touch Informational [Page 11]

