
Network Working Group S. Shenker
Request for Comments: 2212 Xerox
Category: Standards Track C. Partridge
 BBN
 R. Guerin
 IBM
 September 1997

 Specification of Guaranteed Quality of Service

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This memo describes the network element behavior required to deliver
 a guaranteed service (guaranteed delay and bandwidth) in the
 Internet. Guaranteed service provides firm (mathematically provable)
 bounds on end-to-end datagram queueing delays. This service makes it
 possible to provide a service that guarantees both delay and
 bandwidth. This specification follows the service specification
 template described in [1].

Introduction

 This document defines the requirements for network elements that
 support guaranteed service. This memo is one of a series of
 documents that specify the network element behavior required to
 support various qualities of service in IP internetworks. Services
 described in these documents are useful both in the global Internet
 and private IP networks.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

 This document is based on the service specification template given in
 [1]. Please refer to that document for definitions and additional
 information about the specification of qualities of service within
 the IP protocol family.

Shenker, et. al. Standards Track [Page 1]

RFC 2212 Guaranteed Quality of Service September 1997

 In brief, the concept behind this memo is that a flow is described
 using a token bucket and given this description of a flow, a service
 element (a router, a subnet, etc) computes various parameters
 describing how the service element will handle the flow’s data. By
 combining the parameters from the various service elements in a path,
 it is possible to compute the maximum delay a piece of data will
 experience when transmitted via that path.

 It is important to note three characteristics of this memo and the
 service it specifies:

 1. While the requirements a setup mechanism must follow to achieve
 a guaranteed reservation are carefully specified, neither the
 setup mechanism itself nor the method for identifying flows is
 specified. One can create a guaranteed reservation using a
 protocol like RSVP, manual configuration of relevant routers or a
 network management protocol like SNMP. This specification is
 intentionally independent of setup mechanism.

 2. To achieve a bounded delay requires that every service element
 in the path supports guaranteed service or adequately mimics
 guaranteed service. However this requirement does not imply that
 guaranteed service must be deployed throughout the Internet to be
 useful. Guaranteed service can have clear benefits even when
 partially deployed. If fully deployed in an intranet, that
 intranet can support guaranteed service internally. And an ISP
 can put guaranteed service in its backbone and provide guaranteed
 service between customers (or between POPs).

 3. Because service elements produce a delay bound as a result
 rather than take a delay bound as an input to be achieved, it is
 sometimes assumed that applications cannot control the delay. In
 reality, guaranteed service gives applications considerable
 control over their delay.

 In brief, delay has two parts: a fixed delay (transmission delays,
 etc) and a queueing delay. The fixed delay is a property of the
 chosen path, which is determined not by guaranteed service but by
 the setup mechanism. Only queueing delay is determined by
 guaranteed service. And (as the equations later in this memo
 show) the queueing delay is primarily a function of two
 parameters: the token bucket (in particular, the bucket size b)

Shenker, et. al. Standards Track [Page 2]

RFC 2212 Guaranteed Quality of Service September 1997

 and the data rate (R) the application requests. These two values
 are completely under the application’s control. In other words,
 an application can usually accurately estimate, a priori, what
 queueing delay guaranteed service will likely promise.
 Furthermore, if the delay is larger than expected, the application
 can modify its token bucket and data rate in predictable ways to
 achieve a lower delay.

End-to-End Behavior

 The end-to-end behavior provided by a series of network elements that
 conform to this document is an assured level of bandwidth that, when
 used by a policed flow, produces a delay-bounded service with no
 queueing loss for all conforming datagrams (assuming no failure of
 network components or changes in routing during the life of the
 flow).

 The end-to-end behavior conforms to the fluid model (described under
 Network Element Data Handling below) in that the delivered queueing
 delays do not exceed the fluid delays by more than the specified
 error bounds. More precisely, the end-to-end delay bound is [(b-
 M)/R*(p-R)/(p-r)]+(M+Ctot)/R+Dtot for p>R>=r, and (M+Ctot)/R+Dtot for
 r<=p<=R, (where b, r, p, M, R, Ctot, and Dtot are defined later in
 this document).

 NOTE: While the per-hop error terms needed to compute the end-to-
 end delays are exported by the service module (see Exported
 Information below), the mechanisms needed to collect per-hop
 bounds and make the end-to-end quantities Ctot and Dtot known to
 the applications are not described in this specification. These
 functions are provided by reservation setup protocols, routing
 protocols or other network management functions and are outside
 the scope of this document.

 The maximum end-to-end queueing delay (as characterized by Ctot and
 Dtot) and bandwidth (characterized by R) provided along a path will
 be stable. That is, they will not change as long as the end-to-end
 path does not change.

 Guaranteed service does not control the minimal or average delay of
 datagrams, merely the maximal queueing delay. Furthermore, to
 compute the maximum delay a datagram will experience, the latency of
 the path MUST be determined and added to the guaranteed queueing
 delay. (However, as noted below, a conservative bound of the latency
 can be computed by observing the delay experienced by any one
 packet).

 This service is subject to admission control.

Shenker, et. al. Standards Track [Page 3]

RFC 2212 Guaranteed Quality of Service September 1997

Motivation

 Guaranteed service guarantees that datagrams will arrive within the
 guaranteed delivery time and will not be discarded due to queue
 overflows, provided the flow’s traffic stays within its specified
 traffic parameters. This service is intended for applications which
 need a firm guarantee that a datagram will arrive no later than a
 certain time after it was transmitted by its source. For example,
 some audio and video "play-back" applications are intolerant of any
 datagram arriving after their play-back time. Applications that have
 hard real-time requirements will also require guaranteed service.

 This service does not attempt to minimize the jitter (the difference
 between the minimal and maximal datagram delays); it merely controls
 the maximal queueing delay. Because the guaranteed delay bound is a
 firm one, the delay has to be set large enough to cover extremely
 rare cases of long queueing delays. Several studies have shown that
 the actual delay for the vast majority of datagrams can be far lower
 than the guaranteed delay. Therefore, authors of playback
 applications should note that datagrams will often arrive far earlier
 than the delivery deadline and will have to be buffered at the
 receiving system until it is time for the application to process
 them.

 This service represents one extreme end of delay control for
 networks. Most other services providing delay control provide much
 weaker assurances about the resulting delays. In order to provide
 this high level of assurance, guaranteed service is typically only
 useful if provided by every network element along the path (i.e. by
 both routers and the links that interconnect the routers). Moreover,
 as described in the Exported Information section, effective provision
 and use of the service requires that the set-up protocol or other
 mechanism used to request service provides service characterizations
 to intermediate routers and to the endpoints.

Network Element Data Handling Requirements

 The network element MUST ensure that the service approximates the
 "fluid model" of service. The fluid model at service rate R is
 essentially the service that would be provided by a dedicated wire of
 bandwidth R between the source and receiver. Thus, in the fluid
 model of service at a fixed rate R, the flow’s service is completely
 independent of that of any other flow.

Shenker, et. al. Standards Track [Page 4]

RFC 2212 Guaranteed Quality of Service September 1997

 The flow’s level of service is characterized at each network element
 by a bandwidth (or service rate) R and a buffer size B. R represents
 the share of the link’s bandwidth the flow is entitled to and B
 represents the buffer space in the network element that the flow may
 consume. The network element MUST ensure that its service matches
 the fluid model at that same rate to within a sharp error bound.

 The definition of guaranteed service relies on the result that the
 fluid delay of a flow obeying a token bucket (r,b) and being served
 by a line with bandwidth R is bounded by b/R as long as R is no less
 than r. Guaranteed service with a service rate R, where now R is a
 share of bandwidth rather than the bandwidth of a dedicated line,
 approximates this behavior.

 Consequently, the network element MUST ensure that the queueing delay
 of any datagram be less than b/R+C/R+D, where C and D describe the
 maximal local deviation away from the fluid model. It is important
 to emphasize that C and D are maximums. So, for instance, if an
 implementation has occasional gaps in service (perhaps due to
 processing routing updates), D needs to be large enough to account
 for the time a datagram may lose during the gap in service. (C and D
 are described in more detail in the section on Exported Information).

 NOTE: Strictly speaking, this memo requires only that the service
 a flow receives is never worse than it would receive under this
 approximation of the fluid model. It is perfectly acceptable to
 give better service. For instance, if a flow is currently not
 using its share, R, algorithms such as Weighted Fair Queueing that
 temporarily give other flows the unused bandwidth, are perfectly
 acceptable (indeed, are encouraged).

 Links are not permitted to fragment datagrams as part of guaranteed
 service. Datagrams larger than the MTU of the link MUST be policed
 as nonconformant which means that they will be policed according to
 the rules described in the Policing section below.

Invocation Information

 Guaranteed service is invoked by specifying the traffic (TSpec) and
 the desired service (RSpec) to the network element. A service
 request for an existing flow that has a new TSpec and/or RSpec SHOULD
 be treated as a new invocation, in the sense that admission control
 SHOULD be reapplied to the flow. Flows that reduce their TSpec
 and/or their RSpec (i.e., their new TSpec/RSpec is strictly smaller
 than the old TSpec/RSpec according to the ordering rules described in
 the section on Ordering below) SHOULD never be denied service.

Shenker, et. al. Standards Track [Page 5]

RFC 2212 Guaranteed Quality of Service September 1997

 The TSpec takes the form of a token bucket plus a peak rate (p), a
 minimum policed unit (m), and a maximum datagram size (M).

 The token bucket has a bucket depth, b, and a bucket rate, r. Both b
 and r MUST be positive. The rate, r, is measured in bytes of IP
 datagrams per second, and can range from 1 byte per second to as
 large as 40 terabytes per second (or close to what is believed to be
 the maximum theoretical bandwidth of a single strand of fiber).
 Clearly, particularly for large bandwidths, only the first few digits
 are significant and so the use of floating point representations,
 accurate to at least 0.1% is encouraged.

 The bucket depth, b, is also measured in bytes and can range from 1
 byte to 250 gigabytes. Again, floating point representations
 accurate to at least 0.1% are encouraged.

 The range of values is intentionally large to allow for the future
 bandwidths. The range is not intended to imply that a network
 element has to support the entire range.

 The peak rate, p, is measured in bytes of IP datagrams per second and
 has the same range and suggested representation as the bucket rate.
 The peak rate is the maximum rate at which the source and any
 reshaping points (reshaping points are defined below) may inject
 bursts of traffic into the network. More precisely, it is a
 requirement that for all time periods the amount of data sent cannot
 exceed M+pT where M is the maximum datagram size and T is the length
 of the time period. Furthermore, p MUST be greater than or equal to
 the token bucket rate, r. If the peak rate is unknown or
 unspecified, then p MUST be set to infinity.

 The minimum policed unit, m, is an integer measured in bytes. All IP
 datagrams less than size m will be counted, when policed and tested
 for conformance to the TSpec, as being of size m. The maximum
 datagram size, M, is the biggest datagram that will conform to the
 traffic specification; it is also measured in bytes. The flow MUST
 be rejected if the requested maximum datagram size is larger than the
 MTU of the link. Both m and M MUST be positive, and m MUST be less
 than or equal to M.

 The guaranteed service uses the general TOKEN_BUCKET_TSPEC
 parameter defined in Reference [8] to describe a data flow’s
 traffic characteristics. The description above is of that
 parameter. The TOKEN_BUCKET_TSPEC is general parameter number
 127. Use of this parameter for the guaranteed service TSpec
 simplifies the use of guaranteed Service in a multi-service
 environment.

Shenker, et. al. Standards Track [Page 6]

RFC 2212 Guaranteed Quality of Service September 1997

 The RSpec is a rate R and a slack term S, where R MUST be greater
 than or equal to r and S MUST be nonnegative. The rate R is again
 measured in bytes of IP datagrams per second and has the same range
 and suggested representation as the bucket and the peak rates. The
 slack term S is in microseconds. The RSpec rate can be bigger than
 the TSpec rate because higher rates will reduce queueing delay. The
 slack term signifies the difference between the desired delay and the
 delay obtained by using a reservation level R. This slack term can
 be utilized by the network element to reduce its resource reservation
 for this flow. When a network element chooses to utilize some of the
 slack in the RSpec, it MUST follow specific rules in updating the R
 and S fields of the RSpec; these rules are specified in the Ordering
 and Merging section. If at the time of service invocation no slack
 is specified, the slack term, S, is set to zero. No buffer
 specification is included in the RSpec because the network element is
 expected to derive the required buffer space to ensure no queueing
 loss from the token bucket and peak rate in the TSpec, the reserved
 rate and slack in the RSpec, the exported information received at the
 network element, i.e., Ctot and Dtot or Csum and Dsum, combined with
 internal information about how the element manages its traffic.

 The TSpec can be represented by three floating point numbers in
 single-precision IEEE floating point format followed by two 32-bit
 integers in network byte order. The first floating point value is
 the rate (r), the second floating point value is the bucket size (b),
 the third floating point is the peak rate (p), the first integer is
 the minimum policed unit (m), and the second integer is the maximum
 datagram size (M).

 The RSpec rate term, R, can also be represented using single-
 precision IEEE floating point.

 The Slack term, S, can be represented as a 32-bit integer. Its value
 can range from 0 to (2**32)-1 microseconds.

 When r, b, p, and R terms are represented as IEEE floating point
 values, the sign bit MUST be zero (all values MUST be non-negative).
 Exponents less than 127 (i.e., 0) are prohibited. Exponents greater
 than 162 (i.e., positive 35) are discouraged, except for specifying a
 peak rate of infinity. Infinity is represented with an exponent of
 all ones (255) and a sign bit and mantissa of all zeroes.

Exported Information

 Each guaranteed service module MUST export at least the following
 information. All of the parameters described below are
 characterization parameters.

Shenker, et. al. Standards Track [Page 7]

RFC 2212 Guaranteed Quality of Service September 1997

 A network element’s implementation of guaranteed service is
 characterized by two error terms, C and D, which represent how the
 element’s implementation of the guaranteed service deviates from the
 fluid model. These two parameters have an additive composition rule.

 The error term C is the rate-dependent error term. It represents the
 delay a datagram in the flow might experience due to the rate
 parameters of the flow. An example of such an error term is the need
 to account for the time taken serializing a datagram broken up into
 ATM cells, with the cells sent at a frequency of 1/r.

 NOTE: It is important to observe that when computing the delay
 bound, parameter C is divided by the reservation rate R. This
 division is done because, as with the example of serializing the
 datagram, the effect of the C term is a function of the
 transmission rate. Implementors should take care to confirm that
 their C values, when divided by various rates, give appropriate
 results. Delay values that are not dependent on the rate SHOULD
 be incorporated into the value for the D parameter.

 The error term D is the rate-independent, per-element error term and
 represents the worst case non-rate-based transit time variation
 through the service element. It is generally determined or set at
 boot or configuration time. An example of D is a slotted network, in
 which guaranteed flows are assigned particular slots in a cycle of
 slots. Some part of the per-flow delay may be determined by which
 slots in the cycle are allocated to the flow. In this case, D would
 measure the maximum amount of time a flow’s data, once ready to be
 sent, might have to wait for a slot. (Observe that this value can be
 computed before slots are assigned and thus can be advertised. For
 instance, imagine there are 100 slots. In the worst case, a flow
 might get all of its N slots clustered together, such that if a
 packet was made ready to send just after the cluster ended, the
 packet might have to wait 100-N slot times before transmitting. In
 this case one can easily approximate this delay by setting D to 100
 slot times).

 If the composition function is applied along the entire path to
 compute the end-to-end sums of C and D (Ctot and Dtot) and the
 resulting values are then provided to the end nodes (by presumably
 the setup protocol), the end nodes can compute the maximal datagram
 queueing delays. Moreover, if the partial sums (Csum and Dsum) from
 the most recent reshaping point (reshaping points are defined below)
 downstream towards receivers are handed to each network element then
 these network elements can compute the buffer allocations necessary

Shenker, et. al. Standards Track [Page 8]

RFC 2212 Guaranteed Quality of Service September 1997

 to achieve no datagram loss, as detailed in the section Guidelines
 for Implementors. The proper use and provision of this service
 requires that the quantities Ctot and Dtot, and the quantities Csum
 and Dsum be computed. Therefore, we assume that usage of guaranteed
 service will be primarily in contexts where these quantities are made
 available to end nodes and network elements.

 The error term C is measured in units of bytes. An individual
 element can advertise a C value between 1 and 2**28 (a little over
 250 megabytes) and the total added over all elements can range as
 high as (2**32)-1. Should the sum of the different elements delay
 exceed (2**32)-1, the end-to-end error term MUST be set to (2**32)-1.

 The error term D is measured in units of one microsecond. An
 individual element can advertise a delay value between 1 and 2**28
 (somewhat over two minutes) and the total delay added over all
 elements can range as high as (2**32)-1. Should the sum of the
 different elements delay exceed (2**32)-1, the end-to-end delay MUST
 be set to (2**32)-1.

 The guaranteed service is service_name 2.

 The RSpec parameter is numbered 130.

 Error characterization parameters C and D are numbered 131 and 132.
 The end-to-end composed values for C and D (Ctot and Dtot) are
 numbered 133 and 134. The since-last-reshaping point composed values
 for C and D (Csum and Dsum) are numbered 135 and 136.

Policing

 There are two forms of policing in guaranteed service. One form is
 simple policing (hereafter just called policing to be consistent with
 other documents), in which arriving traffic is compared against a
 TSpec. The other form is reshaping, where an attempt is made to
 restore (possibly distorted) traffic’s shape to conform to the TSpec,
 and the fact that traffic is in violation of the TSpec is discovered
 because the reshaping fails (the reshaping buffer overflows).

 Policing is done at the edge of the network. Reshaping is done at
 all heterogeneous source branch points and at all source merge
 points. A heterogeneous source branch point is a spot where the
 multicast distribution tree from a source branches to multiple
 distinct paths, and the TSpec’s of the reservations on the various
 outgoing links are not all the same. Reshaping need only be done if
 the TSpec on the outgoing link is "less than" (in the sense described
 in the Ordering section) the TSpec reserved on the immediately
 upstream link. A source merge point is where the distribution paths

Shenker, et. al. Standards Track [Page 9]

RFC 2212 Guaranteed Quality of Service September 1997

 or trees from two different sources (sharing the same reservation)
 merge. It is the responsibility of the invoker of the service (a
 setup protocol, local configuration tool, or similar mechanism) to
 identify points where policing is required. Reshaping may be done at
 other points as well as those described above. Policing MUST not be
 done except at the edge of the network.

 The token bucket and peak rate parameters require that traffic MUST
 obey the rule that over all time periods, the amount of data sent
 cannot exceed M+min[pT, rT+b-M], where r and b are the token bucket
 parameters, M is the maximum datagram size, and T is the length of
 the time period (note that when p is infinite this reduces to the
 standard token bucket requirement). For the purposes of this
 accounting, links MUST count datagrams which are smaller than the
 minimum policing unit to be of size m. Datagrams which arrive at an
 element and cause a violation of the the M+min[pT, rT+b-M] bound are
 considered non-conformant.

 At the edge of the network, traffic is policed to ensure it conforms
 to the token bucket. Non-conforming datagrams SHOULD be treated as
 best-effort datagrams. [If and when a marking ability becomes
 available, these non-conformant datagrams SHOULD be ’’marked’’ as
 being non-compliant and then treated as best effort datagrams at all
 subsequent routers.]

 Best effort service is defined as the default service a network
 element would give to a datagram that is not part of a flow and was
 sent between the flow’s source and destination. Among other
 implications, this definition means that if a flow’s datagram is
 changed to a best effort datagram, all flow control (e.g., RED [2])
 that is normally applied to best effort datagrams is applied to that
 datagram too.

 NOTE: There may be situations outside the scope of this document,
 such as when a service module’s implementation of guaranteed
 service is being used to implement traffic sharing rather than a
 quality of service, where the desired action is to discard non-
 conforming datagrams. To allow for such uses, implementors SHOULD
 ensure that the action to be taken for non-conforming datagrams is
 configurable.

 Inside the network, policing does not produce the desired results,
 because queueing effects will occasionally cause a flow’s traffic
 that entered the network as conformant to be no longer conformant at
 some downstream network element. Therefore, inside the network,
 network elements that wish to police traffic MUST do so by reshaping
 traffic to the token bucket. Reshaping entails delaying datagrams
 until they are within conformance of the TSpec.

Shenker, et. al. Standards Track [Page 10]

RFC 2212 Guaranteed Quality of Service September 1997

 Reshaping is done by combining a buffer with a token bucket and peak
 rate regulator and buffering data until it can be sent in conformance
 with the token bucket and peak rate parameters. (The token bucket
 regulator MUST start with its token bucket full of tokens). Under
 guaranteed service, the amount of buffering required to reshape any
 conforming traffic back to its original token bucket shape is
 b+Csum+(Dsum*r), where Csum and Dsum are the sums of the parameters C
 and D between the last reshaping point and the current reshaping
 point. Note that the knowledge of the peak rate at the reshapers can
 be used to reduce these buffer requirements (see the section on
 "Guidelines for Implementors" below). A network element MUST provide
 the necessary buffers to ensure that conforming traffic is not lost
 at the reshaper.

 NOTE: Observe that a router that is not reshaping can still
 identify non-conforming datagrams (and discard them or schedule
 them at lower priority) by observing when queued traffic for the
 flow exceeds b+Csum+(Dsum*r).

 If a datagram arrives to discover the reshaping buffer is full, then
 the datagram is non-conforming. Observe this means that a reshaper
 is effectively policing too. As with a policer, the reshaper SHOULD
 relegate non-conforming datagrams to best effort. [If marking is
 available, the non-conforming datagrams SHOULD be marked]

 NOTE: As with policers, it SHOULD be possible to configure how
 reshapers handle non-conforming datagrams.

 Note that while the large buffer makes it appear that reshapers add
 considerable delay, this is not the case. Given a valid TSpec that
 accurately describes the traffic, reshaping will cause little extra
 actual delay at the reshaping point (and will not affect the delay
 bound at all). Furthermore, in the normal case, reshaping will not
 cause the loss of any data.

 However, (typically at merge or branch points), it may happen that
 the TSpec is smaller than the actual traffic. If this happens,
 reshaping will cause a large queue to develop at the reshaping point,
 which both causes substantial additional delays and forces some
 datagrams to be treated as non-conforming. This scenario makes an
 unpleasant denial of service attack possible, in which a receiver who
 is successfully receiving a flow’s traffic via best effort service is
 pre-empted by a new receiver who requests a reservation for the flow,
 but with an inadequate TSpec and RSpec. The flow’s traffic will now
 be policed and possibly reshaped. If the policing function was
 chosen to discard datagrams, the best-effort receiver would stop
 receiving traffic. For this reason, in the normal case, policers are
 simply to treat non-conforming datagrams as best effort (and marking

Shenker, et. al. Standards Track [Page 11]

RFC 2212 Guaranteed Quality of Service September 1997

 them if marking is implemented). While this protects against denial
 of service, it is still true that the bad TSpec may cause queueing
 delays to increase.

 NOTE: To minimize problems of reordering datagrams, reshaping
 points may wish to forward a best-effort datagram from the front
 of the reshaping queue when a new datagram arrives and the
 reshaping buffer is full.

 Readers should also observe that reclassifying datagrams as best
 effort (as opposed to dropping the datagrams) also makes support
 for elastic flows easier. They can reserve a modest token bucket
 and when their traffic exceeds the token bucket, the excess
 traffic will be sent best effort.

 A related issue is that at all network elements, datagrams bigger
 than the MTU of the network element MUST be considered non-conformant
 and SHOULD be classified as best effort (and will then either be
 fragmented or dropped according to the element’s handling of best
 effort traffic). [Again, if marking is available, these reclassified
 datagrams SHOULD be marked.]

Ordering and Merging

 TSpec’s are ordered according to the following rules.

 TSpec A is a substitute ("as good or better than") for TSpec B if (1)
 both the token rate r and bucket depth b for TSpec A are greater than
 or equal to those of TSpec B; (2) the peak rate p is at least as
 large in TSpec A as it is in TSpec B; (3) the minimum policed unit m
 is at least as small for TSpec A as it is for TSpec B; and (4) the
 maximum datagram size M is at least as large for TSpec A as it is for
 TSpec B.

 TSpec A is "less than or equal" to TSpec B if (1) both the token rate
 r and bucket depth b for TSpec A are less than or equal to those of
 TSpec B; (2) the peak rate p in TSpec A is at least as small as the
 peak rate in TSpec B; (3) the minimum policed unit m is at least as
 large for TSpec A as it is for TSpec B; and (4) the maximum datagram
 size M is at least as small for TSpec A as it is for TSpec B.

 A merged TSpec may be calculated over a set of TSpecs by taking (1)
 the largest token bucket rate, (2) the largest bucket size, (3) the
 largest peak rate, (4) the smallest minimum policed unit, and (5) the
 smallest maximum datagram size across all members of the set. This
 use of the word "merging" is similar to that in the RSVP protocol
 [10]; a merged TSpec is one which is adequate to describe the traffic
 from any one of constituent TSpecs.

Shenker, et. al. Standards Track [Page 12]

RFC 2212 Guaranteed Quality of Service September 1997

 A summed TSpec may be calculated over a set of TSpecs by computing
 (1) the sum of the token bucket rates, (2) the sum of the bucket
 sizes, (3) the sum of the peak rates, (4) the smallest minimum
 policed unit, and (5) the maximum datagram size parameter.

 A least common TSpec is one that is sufficient to describe the
 traffic of any one in a set of traffic flows. A least common TSpec
 may be calculated over a set of TSpecs by computing: (1) the largest
 token bucket rate, (2) the largest bucket size, (3) the largest peak
 rate, (4) the smallest minimum policed unit, and (5) the largest
 maximum datagram size across all members of the set.

 The minimum of two TSpecs differs according to whether the TSpecs can
 be ordered. If one TSpec is less than the other TSpec, the smaller
 TSpec is the minimum. Otherwise, the minimum TSpec of two TSpecs is
 determined by comparing the respective values in the two TSpecs and
 choosing (1) the smaller token bucket rate, (2) the larger token
 bucket size (3) the smaller peak rate, (4) the smaller minimum
 policed unit, and (5) the smaller maximum datagram size.

 The RSpec’s are merged in a similar manner as the TSpecs, i.e. a set
 of RSpecs is merged onto a single RSpec by taking the largest rate R,
 and the smallest slack S. More precisely, RSpec A is a substitute
 for RSpec B if the value of reserved service rate, R, in RSpec A is
 greater than or equal to the value in RSpec B, and the value of the
 slack, S, in RSpec A is smaller than or equal to that in RSpec B.

 Each network element receives a service request of the form (TSpec,
 RSpec), where the RSpec is of the form (Rin, Sin). The network
 element processes this request and performs one of two actions:

 a. it accepts the request and returns a new Rspec of the form
 (Rout, Sout);
 b. it rejects the request.

 The processing rules for generating the new RSpec are governed by the
 delay constraint:

 Sout + b/Rout + Ctoti/Rout <= Sin + b/Rin + Ctoti/Rin,

 where Ctoti is the cumulative sum of the error terms, C, for all the
 network elements that are upstream of and including the current
 element, i. In other words, this element consumes (Sin - Sout) of
 slack and can use it to reduce its reservation level, provided that
 the above inequality is satisfied. Rin and Rout MUST also satisfy
 the constraint:

 r <= Rout <= Rin.

Shenker, et. al. Standards Track [Page 13]

RFC 2212 Guaranteed Quality of Service September 1997

 When several RSpec’s, each with rate Rj, j=1,2..., are to be merged
 at a split point, the value of Rout is the maximum over all the rates
 Rj, and the value of Sout is the minimum over all the slack terms Sj.

 NOTE: The various TSpec functions described above are used by
 applications which desire to combine TSpecs. It is important to
 observe, however, that the properties of the actual reservation
 are determined by combining the TSpec with the RSpec rate (R).

 Because the guaranteed reservation requires both the TSpec and the
 RSpec rate, there exist some difficult problems for shared
 reservations in RSVP, particularly where two or more source
 streams meet. Upstream of the meeting point, it would be
 desirable to reduce the TSpec and RSpec to use only as much
 bandwidth and buffering as is required by the individual source’s
 traffic. (Indeed, it may be necessary if the sender is
 transmitting over a low bandwidth link).

 However, the RSpec’s rate is set to achieve a particular delay
 bound (and is notjust a function of the TSpec), so changing the
 RSpec may cause the reservation to fail to meet the receiver’s
 delay requirements. At the same time, not adjusting the RSpec
 rate means that "shared" RSVP reservations using guaranteed
 service will fail whenever the bandwidth available at a particular
 link is less than the receiver’s requested rate R, even if the
 bandwidth is adequate to support the number of senders actually
 using the link. At this time, this limitation is an open problem
 in using the guaranteed service with RSVP.

Guidelines for Implementors

 This section discusses a number of important implementation issues in
 no particular order.

 It is important to note that individual subnetworks are network
 elements and both routers and subnetworks MUST support the guaranteed
 service model to achieve guaranteed service. Since subnetworks
 typically are not capable of negotiating service using IP-based
 protocols, as part of providing guaranteed service, routers will have
 to act as proxies for the subnetworks they are attached to.

 In some cases, this proxy service will be easy. For instance, on
 leased line managed by a WFQ scheduler on the upstream node, the
 proxy need simply ensure that the sum of all the flows’ RSpec rates
 does not exceed the bandwidth of the line, and needs to advertise the
 rate-based and non-rate-based delays of the link as the values of C
 and D.

Shenker, et. al. Standards Track [Page 14]

RFC 2212 Guaranteed Quality of Service September 1997

 In other cases, this proxy service will be complex. In an ATM
 network, for example, it may require establishing an ATM VC for the
 flow and computing the C and D terms for that VC. Readers may
 observe that the token bucket and peak rate used by guaranteed
 service map directly to the Sustained Cell Rate, Burst Size, and Peak
 Cell Rate of ATM’s Q.2931 QoS parameters for Variable Bit Rate
 traffic.

 The assurance that datagrams will not be lost is obtained by setting
 the router buffer space B to be equal to the token bucket b plus some
 error term (described below).

 Another issue related to subnetworks is that the TSpec’s token bucket
 rates measure IP traffic and do not (and cannot) account for link
 level headers. So the subnetwork network elements MUST adjust the
 rate and possibly the bucket size to account for adding link level
 headers. Tunnels MUST also account for the additional IP headers
 that they add.

 For datagram networks, a maximum header rate can usually be computed
 by dividing the rate and bucket sizes by the minimum policed unit.
 For networks that do internal fragmentation, such as ATM, the
 computation may be more complex, since one MUST account for both
 per-fragment overhead and any wastage (padding bytes transmitted) due
 to mismatches between datagram sizes and fragment sizes. For
 instance, a conservative estimate of the additional data rate imposed
 by ATM AAL5 plus ATM segmentation and reassembly is

 ((r/48)*5)+((r/m)*(8+52))

 which represents the rate divided into 48-byte cells multiplied by
 the 5-byte ATM header, plus the maximum datagram rate (r/m)
 multiplied by the cost of the 8-byte AAL5 header plus the maximum
 space that can be wasted by ATM segmentation of a datagram (which is
 the 52 bytes wasted in a cell that contains one byte). But this
 estimate is likely to be wildly high, especially if m is small, since
 ATM wastage is usually much less than 52 bytes. (ATM implementors
 should be warned that the token bucket may also have to be scaled
 when setting the VC parameters for call setup and that this example
 does not account for overhead incurred by encapsulations such as
 those specified in RFC 1483).

 To ensure no loss, network elements will have to allocate some
 buffering for bursts. If every hop implemented the fluid model
 perfectly, this buffering would simply be b (the token bucket size).
 However, as noted in the discussion of reshaping earlier,
 implementations are approximations and we expect that traffic will
 become more bursty as it goes through the network. However, as with

Shenker, et. al. Standards Track [Page 15]

RFC 2212 Guaranteed Quality of Service September 1997

 shaping the amount of buffering required to handle the burstiness is
 bounded by b+Csum+Dsum*R. If one accounts for the peak rate, this
 can be further reduced to

 M + (b-M)(p-X)/(p-r) + (Csum/R + Dsum)X

 where X is set to r if (b-M)/(p-r) is less than Csum/R+Dsum and X is
 R if (b-M)/(p-r) is greater than or equal to Csum/R+Dsum and p>R;
 otherwise, X is set to p. This reduction comes from the fact that
 the peak rate limits the rate at which the burst, b, can be placed in
 the network. Conversely, if a non-zero slack term, Sout, is returned
 by the network element, the buffer requirements are increased by
 adding Sout to Dsum.

 While sending applications are encouraged to set the peak rate
 parameter and reshaping points are required to conform to it, it is
 always acceptable to ignore the peak rate for the purposes of
 computing buffer requirements and end-to-end delays. The result is
 simply an overestimate of the buffering and delay. As noted above,
 if the peak rate is unknown (and thus potentially infinite), the
 buffering required is b+Csum+Dsum*R. The end-to-end delay without
 the peak rate is b/R+Ctot/R+Dtot.

 The parameter D for each network element SHOULD be set to the maximum
 datagram transfer delay variation (independent of rate and bucket
 size) through the network element. For instance, in a simple router,
 one might compute the difference between the worst case and best case
 times it takes for a datagram to get through the input interface to
 the processor, and add it to any variation that may occur in how long
 it would take to get from the processor to the outbound link
 scheduler (assuming the queueing schemes work correctly).

 For weighted fair queueing in a datagram environment, D is set to the
 link MTU divided by the link bandwidth, to account for the
 possibility that a packet arrives just as a maximum-sized packet
 begins to be transmitted, and that the arriving packet should have
 departed before the maximum-sized packet. For a frame-based, slotted
 system such as Stop and Go queueing, D is the maximum number of slots
 a datagram may have to wait before getting a chance to be
 transmitted.

 Note that multicasting may make determining D more difficult. In
 many subnets, ATM being one example, the properties of the subnet may
 depend on the path taken from the multicast sender to the receiver.
 There are a number of possible approaches to this problem. One is to

Shenker, et. al. Standards Track [Page 16]

RFC 2212 Guaranteed Quality of Service September 1997

 choose a representative latency for the overall subnet and set D to
 the (non-negative) difference from that latency. Another is to
 estimate subnet properties at exit points from the subnet, since the
 exit point presumably is best placed to compute the properties of its
 path from the source.

 NOTE: It is important to note that there is no fixed set of rules
 about how a subnet determines its properties, and each subnet
 technology will have to develop its own set of procedures to
 accurately compute C and D and slack values.

 D is intended to be distinct from the latency through the network
 element. Latency is the minimum time through the device (the speed
 of light delay in a fiber or the absolute minimum time it would take
 to move a packet through a router), while parameter D is intended to
 bound the variability in non-rate-based delay. In practice, this
 distinction is sometimes arbitrary (the latency may be minimal) -- in
 such cases it is perfectly reasonable to combine the latency with D
 and to advertise any latency as zero.

 NOTE: It is implicit in this scheme that to get a complete
 guarantee of the maximum delay a packet might experience, a user
 of this service will need to know both the queueing delay
 (provided by C and D) and the latency. The latency is not
 advertised by this service but is a general characterization
 parameter (advertised as specified in [8]).

 However, even if latency is not advertised, this service can still
 be used. The simplest approach is to measure the delay
 experienced by the first packet (or the minimum delay of the first
 few packets) received and treat this delay value as an upper bound
 on the latency.

 The parameter C is the data backlog resulting from the vagaries of
 how a specific implementation deviates from a strict bit-by-bit
 service. So, for instance, for datagramized weighted fair queueing, C
 is set to M to account for packetization effects.

 If a network element uses a certain amount of slack, Si, to reduce
 the amount of resources that it has reserved for a particular flow,
 i, the value Si SHOULD be stored at the network element.
 Subsequently, if reservation refreshes are received for flow i, the
 network element MUST use the same slack Si without any further
 computation. This guarantees consistency in the reservation process.

Shenker, et. al. Standards Track [Page 17]

RFC 2212 Guaranteed Quality of Service September 1997

 As an example for the use of the slack term, consider the case where
 the required end-to-end delay, Dreq, is larger than the maximum delay
 of the fluid flow system. The latter is obtained by setting R=r in
 the fluid delay formula (for stability, R>=r must be true), and is
 given by

 b/r + Ctot/r + Dtot.

 In this case the slack term is

 S = Dreq - (b/r + Ctot/r + Dtot).

 The slack term may be used by the network elements to adjust their
 local reservations, so that they can admit flows that would otherwise
 have been rejected. A network element at an intermediate network
 element that can internally differentiate between delay and rate
 guarantees can now take advantage of this information to lower the
 amount of resources allocated to this flow. For example, by taking an
 amount of slack s <= S, an RCSD scheduler [5] can increase the local
 delay bound, d, assigned to the flow, to d+s. Given an RSpec, (Rin,
 Sin), it would do so by setting Rout = Rin and Sout = Sin - s.

 Similarly, a network element using a WFQ scheduler can decrease its
 local reservation from Rin to Rout by using some of the slack in the
 RSpec. This can be accomplished by using the transformation rules
 given in the previous section, that ensure that the reduced
 reservation level will not increase the overall end-to-end delay.

Evaluation Criteria

 The scheduling algorithm and admission control algorithm of the
 element MUST ensure that the delay bounds are never violated and
 datagrams are not lost, when a source’s traffic conforms to the
 TSpec. Furthermore, the element MUST ensure that misbehaving flows
 do not affect the service given to other flows. Vendors are
 encouraged to formally prove that their implementation is an
 approximation of the fluid model.

Examples of Implementation

 Several algorithms and implementations exist that approximate the
 fluid model. They include Weighted Fair Queueing (WFQ) [2], Jitter-
 EDD [3], Virtual Clock [4] and a scheme proposed by IBM [5]. A nice
 theoretical presentation that shows these schemes are part of a large
 class of algorithms can be found in [6].

Shenker, et. al. Standards Track [Page 18]

RFC 2212 Guaranteed Quality of Service September 1997

Examples of Use

 Consider an application that is intolerant of any lost or late
 datagrams. It uses the advertised values Ctot and Dtot and the TSpec
 of the flow, to compute the resulting delay bound from a service
 request with rate R. Assuming R < p, it then sets its playback point
 to [(b-M)/R*(p-R)/(p-r)]+(M+Ctot)/R+Dtot.

Security Considerations

 This memo discusses how this service could be abused to permit denial
 of service attacks. The service, as defined, does not allow denial
 of service (although service may degrade under certain
 circumstances).

Appendix 1: Use of the Guaranteed service with RSVP

 The use of guaranteed service in conjunction with the RSVP resource
 reservation setup protocol is specified in reference [9]. This
 document gives the format of RSVP FLOWSPEC, SENDER_TSPEC, and ADSPEC
 objects needed to support applications desiring guaranteed service
 and gives information about how RSVP processes those objects. The
 RSVP protocol itself is specified in Reference [10].

References

 [1] Shenker, S., and J. Wroclawski, "Network Element Service
 Specification Template", RFC 2216, September 1997.

 [2] A. Demers, S. Keshav and S. Shenker, "Analysis and Simulation of
 a Fair Queueing Algorithm," in Internetworking: Research and
 Experience, Vol 1, No. 1., pp. 3-26.

 [3] L. Zhang, "Virtual Clock: A New Traffic Control Algorithm for
 Packet Switching Networks," in Proc. ACM SIGCOMM ’90, pp. 19-29.

 [4] D. Verma, H. Zhang, and D. Ferrari, "Guaranteeing Delay Jitter
 Bounds in Packet Switching Networks," in Proc. Tricomm ’91.

 [5] L. Georgiadis, R. Guerin, V. Peris, and K. N. Sivarajan,
 "Efficient Network QoS Provisioning Based on per Node Traffic
 Shaping," IBM Research Report No. RC-20064.

 [6] P. Goyal, S.S. Lam and H.M. Vin, "Determining End-to-End Delay
 Bounds in Heterogeneous Networks," in Proc. 5th Intl. Workshop on
 Network and Operating System Support for Digital Audio and Video,
 April 1995.

Shenker, et. al. Standards Track [Page 19]

RFC 2212 Guaranteed Quality of Service September 1997

 [7] A.K.J. Parekh, A Generalized Processor Sharing Approach to Flow
 Control in Integrated Services Networks, MIT Laboratory for
 Information and Decision Systems, Report LIDS-TH-2089, February 1992.

 [8] Shenker, S., and J. Wroclawski, "General Characterization
 Parameters for Integrated Service Network Elements", RFC 2215,
 September 1997.

 [9] Wroclawski, J., "Use of RSVP with IETF Integrated Services", RFC
 2210, September 1997.

 [10] Braden, R., Ed., et. al., "Resource Reservation Protocol (RSVP)
 - Version 1 Functional Specification", RFC 2205, September 1997.

Authors’ Addresses

 Scott Shenker
 Xerox PARC
 3333 Coyote Hill Road
 Palo Alto, CA 94304-1314

 Phone: 415-812-4840
 Fax: 415-812-4471
 EMail: shenker@parc.xerox.com

 Craig Partridge
 BBN
 2370 Amherst St
 Palo Alto CA 94306

 EMail: craig@bbn.com

 Roch Guerin
 IBM T.J. Watson Research Center
 Yorktown Heights, NY 10598

 Phone: 914-784-7038
 Fax: 914-784-6318
 EMail: guerin@watson.ibm.com

Shenker, et. al. Standards Track [Page 20]

