
Network Working Group J. Mogul
Request for Comments: 2227 DECWRL
Category: Standards Track P. Leach
 Microsoft
 October 1997

 Simple Hit-Metering and Usage-Limiting for HTTP

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1997). All Rights Reserved.

ABSTRACT

 This document proposes a simple extension to HTTP, using a new
 "Meter" header, which permits a limited form of demographic
 information (colloquially called "hit-counts") to be reported by
 caches to origin servers, in a more efficient manner than the
 "cache-busting" techniques currently used. It also permits an origin
 server to control the number of times a cache uses a cached response,
 and outlines a technique that origin servers can use to capture
 referral information without "cache-busting."

TABLE OF CONTENTS

 1 Introduction 2
 1.1 Goals, non-goals, and limitations 3
 1.2 Brief summary of the design 4
 1.3 Terminology 5
 2 Overview 5
 2.1 Discussion 7
 3 Design concepts 8
 3.1 Implementation of the "metering subtree" 8
 3.2 Format of the Meter header 10
 3.3 Negotiation of hit-metering and usage-limiting 10
 3.4 Transmission of usage reports 14
 3.5 When to send usage reports 15
 3.6 Subdivision of usage-limits 16

Mogul & Leach Standards Track [Page 1]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 4 Analysis 17
 4.1 Approximation accuracy for counting users 18
 4.2 What about "Network Computers"? 19
 4.3 Critical-path delay analysis 19
 5 Specification 20
 5.1 Specification of Meter header and directives 20
 5.2 Abbreviations for Meter directives 23
 5.3 Counting rules 24
 5.3.1 Counting rules for hit-metering 24
 5.3.2 Counting rules for usage-limiting 25
 5.3.3 Equivalent algorithms are allowed 26
 5.4 Counting rules: interaction with Range requests 27
 5.5 Implementation by non-caching proxies 27
 5.6 Implementation by cooperating caches 28
 6 Examples 28
 6.1 Example of a complete set of exchanges 28
 6.2 Protecting against HTTP/1.0 proxies 30
 6.3 More elaborate examples 30
 7 Interactions with content negotiation 31
 7.1 Treatment of responses carrying a Vary header 31
 7.2 Interaction with Transparent Content Negotiation 32
 8 A Note on Capturing Referrals 32
 9 Alternative proposals 33
 10 Security Considerations 34
 11 Acknowledgments 35
 12 References 35
 13 Authors’ Addresses 36
 14 Full Copyright Statement 37

1 Introduction

 For a variety of reasons, content providers want to be able to
 collect information on the frequency with which their content is
 accessed. This desire leads to some of the "cache-busting" done by
 existing servers. ("Cache-busting" is the use by servers of
 techniques intended to prevent caching of responses; it is unknown
 exactly how common this is.) This kind of cache-busting is done not
 for the purpose of maintaining transparency or security properties,
 but simply to collect demographic information. Some cache-busting is
 also done to provide different advertising images to appear on the
 same page (i.e., each retrieval of the page sees a different ad).

 This proposal supports a model similar to that of publishers of
 hard-copy publications: such publishers (try to) report to their
 advertisers how many people read an issue of a publication at least
 once; they don’t (try to) report how many times a reader re-reads an
 issue. They do this by counting copies published, and then try to
 estimate, for their publication, on average how many people read a

Mogul & Leach Standards Track [Page 2]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 single copy at least once. The key point is that the results aren’t
 exact, but are still useful. Another model is that of coding
 inquiries in such a way that the advertiser can tell which
 publication produced the inquiry.

1.1 Goals, non-goals, and limitations

 HTTP/1.1 already allows origin servers to prevent caching of
 responses, and evidence exists [9] that at least some of the time,
 this is being done for the sole purpose of collecting counts of the
 number of accesses of specific pages. Some of this evidence is
 inferred from the study of proxy traces; some is based on explicit
 statements of the intention of the operators of Web servers.
 Information collected this way might or might not be of actual use to
 the people who collect it; the fact is that they want to collect it,
 or already do so.

 The goal of this proposal is to provide an optional performance
 optimization for this use of HTTP/1.1.

 This specification is:

 - Optional: no server or proxy is required to implement it.

 - Proxy-centered: there is no involvement on the part of
 end-client implementations.

 - Solely a performance optimization: it provides no
 information or functionality that is not already available
 in HTTP/1.1. The intent is to improve performance overall,
 and reduce latency for almost all interactions; latency
 might be increased for a small fraction of HTTP
 interactions.

 - Best-efforts: it does not guarantee the accuracy of the
 reported information, although it does provide accurate
 results in the absence of persistent network failures or
 host crashes.

 - Neutral with respect to privacy: it reveals to servers no
 information about clients that is not already available
 through the existing features of HTTP/1.1.

 The goals of this specification do not include:

 - Solving the entire problem of efficiently obtaining
 extensive information about requests made via proxies.

Mogul & Leach Standards Track [Page 3]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 - Improving the protection of user privacy (although our
 proposal may reduce the transfer of user-specific
 information to servers, it does not prevent it).

 - Preventing or encouraging the use of log-exchange
 mechanisms.

 - Avoiding all forms of "cache-busting", or even all
 cache-busting done for gathering counts.

 This design has certain potential limitations:

 - If it is not deployed widely in both proxies and servers,
 it will provide little benefit.

 - It may, by partially solving the hit-counting problem,
 reduce the pressure to adopt more complete solutions, if
 any become available.

 - Even if widely deployed, it might not be widely used, and
 so might not significantly improve performance.

 These potential limitations might not be problems in actual practice.

1.2 Brief summary of the design

 This section is included for people not wishing to read the entire
 document; it is not a specification for the proposed design, and
 over-simplifies many aspects of the design.

 The goal of this design is to eliminate the need for origin servers
 to use "cache-busting" techniques, when this is done just for the
 purpose of counting the number of users of a resource. (Cache-
 busting includes techniques such as setting immediate Expiration
 dates, or sending "Cache-control: private" in each response.)

 The design adds a new "Meter" header to HTTP; the header is always
 protected by the "Connection" header, and so is always hop-by-hop.
 This mechanism allows the construction of a "metering subtree", which
 is a connected subtree of proxies, rooted at an origin server. Only
 those proxies that explicitly volunteer to join in the metering
 subtree for a resource participate in hit-metering, but those proxies
 that do volunteer are required to make their best effort to provide
 accurate counts. When a hit-metered response is forwarded outside of
 the metering subtree, the forwarding proxy adds "Cache-control: s-
 maxage=0", so that other proxies (outside the metering subtree) are
 forced to forward all requests to a server in the metering subtree.

Mogul & Leach Standards Track [Page 4]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 NOTE: the HTTP/1.1 specification does not currently define a "s-
 maxage" Cache-control directive. The HTTP working group has
 decided to add such a directive to the next revision of the
 HTTP/1.1 specification [7].

 The Meter header carries zero or more directives, similar to the way
 that the Cache-control header carries directives. Proxies may use
 certain Meter directives to volunteer to do hit-metering for a
 resource. If a proxy does volunteer, the server may use certain
 directives to require that a response be hit-metered. Finally,
 proxies use a "count" Meter directive to report the accumulated hit
 counts.

 The Meter mechanism can also be used by a server to limit the number
 of uses that a cache may make of a cached response, before
 revalidating it.

 The full specification includes complete rules for counting "uses" of
 a response (e.g., non-conditional GETs) and "reuses" (conditional
 GETs). These rules ensure that the results are entirely consistent
 in all cases, except when systems or networks fail.

1.3 Terminology

 This document uses terms defined and explained in the HTTP/1.1
 specification [4], including "origin server," "resource," "hop-by-
 hop," "unconditional GET," and "conditional GET." The reader is
 expected to be familiar with the HTTP/1.1 specification and its
 terminology.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
 interpreted as described in RFC 2119 [1].

2 Overview

 The design described in this document introduces several new features
 to HTTP:

 - Hit-metering: allows an origin server to obtain reasonably
 accurate counts of the number of clients using a resource
 instance via a proxy cache, or a hierarchy of proxy caches.

 - Usage-limiting: allows an origin server to control the
 number of times a cached response may be used by a proxy
 cache, or a hierarchy of proxy caches, before revalidation
 with the origin server.

Mogul & Leach Standards Track [Page 5]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 These new non-mandatory features require minimal new protocol
 support, no change in protocol version, relatively little overhead in
 message headers. The design adds no additional network round-trips
 in any critical path that directly affects user-perceived latency
 (see section 4.3 for an analysis).

 The primary goal of hit-metering and usage-limiting is to obviate the
 need for an origin server to send "Cache-control: s-maxage=0" with
 responses for resources whose value is not likely to change
 immediately. In other words, in cases where the only reason for
 contacting the origin server on every request that might otherwise be
 satisfied by a proxy cache entry is to allow the server to collect
 demographic information or to control the number of times a cache
 entry is used, the extension proposed here will avoid a significant
 amount of unnecessary network traffic and latency.

 This design introduces one new "Meter" header, which is used both in
 HTTP request messages and HTTP response messages. The Meter header
 is used to transmit a number of directives and reports. In
 particular, all negotiation of the use of hit-metering and usage
 limits is done using this header. No other changes to the existing
 HTTP/1.1 specification [4] are proposed in this document.

 This design also introduces several new concepts:

 1. The concepts of a "use" of a cache entry, which is when a
 proxy returns its entity-body in response to a conditional
 or non-conditional request, and the "reuse" of a cache
 entry, which is when a proxy returns a 304 (Not Modified)
 response to a conditional request which is satisfied by
 that cache entry.

 2. The concept of a hit-metered resource, for which proxy
 caches make a best-effort attempt to report accurate
 counts of uses and/or reuses to the origin server.

 3. The concept of a usage-limited resource, for which the
 origin server expects proxy caches to limit the number of
 uses and/or reuses.

 The new Meter directives and reports interact to allow proxy caches
 and servers to cooperate in the collection of demographic data. The
 goal is a best-efforts approximation of the true number of uses
 and/or reuses, not a guaranteed exact count.

Mogul & Leach Standards Track [Page 6]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 The new Meter directives also allow a server to bound the inaccuracy
 of a particular hit-count, by bounding the number of uses between
 reports. It can also, for example, bound the number of times the
 same ad is shown because of caching.

 Section 7.1 describes a way to use server-driven content negotiation
 (the Vary header) that allows an HTTP origin server to flexibly
 separate requests into categories and count requests by category.
 Implementation of such a categorized hit counting is likely to be a
 very small modification to most implementations of Vary; some
 implementations may not require any modification at all.

2.1 Discussion

 Mapping this onto the publishing model, a proxy cache would increment
 the use-count for a cache entry once for each unconditional GET done
 for the entry, and once for each conditional GET that results in
 sending a copy of the entry to update a client’s invalid cached copy.
 Conditional GETs that result in 304 (Not Modified) are not included
 in the use-count, because they do not result in a new user seeing the
 page, but instead signify a repeat view by a user that had seen it
 before. However, 304 responses are counted in the reuse-count.
 HEADs are not counted at all, because their responses do not contain
 an entity-body.

 The Meter directives apply only to shared proxy caches, not to end-
 client (or other single-user) caches. Single user caches should not
 use Meter, because their hits will be automatically counted as a
 result of the unconditional GET with which they first fetch the page,
 from either the origin-server or from a proxy cache. Their
 subsequent conditional GETs do not result in a new user seeing the
 page.

 The mechanism specified here counts GETs; other methods either do not
 result in a page for the user to read, aren’t cached, or are
 "written-through" and so can be directly counted by the origin
 server. (If, in the future, a "cachable POST" came into existence,
 whereby the entity-body in the POST request was used to select a
 cached response, then such POSTs would have to be treated just like
 GETs.) The applicability of hit-metering to any new HTTP methods
 that might be defined in the future is currently unspecifiable.

 In the case of multiple caches along a path, a proxy cache does the
 obvious summation when it receives a use-count or reuse-count in a
 request from another cache.

Mogul & Leach Standards Track [Page 7]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

3 Design concepts

 In order to allow the introduction of hit-metering and usage-limiting
 without requiring a protocol revision, and to ensure a reasonably
 close approximation of accurate counts, the negotiation of metering
 and usage-limiting is done hop-by-hop, not end-to-end. If one
 considers the "tree" of proxies that receive, store, and forward a
 specific response, the intent of this design is that within some
 (possibly null) "metering subtree", rooted at the origin server, all
 proxies are using the hit-metering and/or usage-limiting requested by
 the origin server.

 Proxies at the leaves of this subtree will insert a "Cache-control:
 s-maxage=0" directive, which forces all other proxies (below this
 subtree) to check with a leaf of the metering subtree on every
 request. However, it does not prevent them from storing and using
 the response, if the revalidation succeeds.

 No proxy is required to implement hit-metering or usage-limiting.
 However, any proxy that transmits the Meter header in a request MUST
 implement every unconditional requirement of this specification,
 without exception or amendment.

 This is a conservative design, which may sometimes fail to take
 advantage of hit-metering support in proxies outside the metering
 subtree. However, it is likely that without the reliability offered
 by a conservative design, managers of origin servers with
 requirements for accurate approximations will not take advantage of
 any hit-metering proposal.

 The hit-metering/usage-limiting mechanism is designed to avoid any
 extra network round-trips in the critical path of any client request,
 and (as much as possible) to avoid excessively lengthening HTTP
 messages.

 The Meter header is used to transmit both negotiation information and
 numeric information.

 A formal specification for the Meter header appears in section 5; the
 following discussion uses an informal approach to improve clarity.

3.1 Implementation of the "metering subtree"

 The "metering subtree" approach is implemented in a simple,
 straightforward way by defining the new "Meter" header as one that
 MUST always be protected by a Connection header in every request or
 response. I.e., if the Meter header is present in an HTTP message,
 that message:

Mogul & Leach Standards Track [Page 8]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 1. MUST contain "Connection: meter", and MUST be handled
 according to the HTTP/1.1 specification of the Connection
 header.

 2. MUST NOT be sent in response to a request from a client
 whose version number is less than HTTP/1.1.

 3. MUST NOT be accepted from a client whose version number is
 less than HTTP/1.1.

 The reason for the latter two restrictions is to protect against
 proxies that might not properly implement the Connection header.
 Otherwise, a subtree that includes an HTTP/1.0 proxy might
 erroneously appear to be a metering subtree.

 Note: It appears that for the Connection header mechanism to
 function correctly, a system receiving an HTTP/1.0 (or lower-
 version) message that includes a Connection header must act as if
 this header, and all of the headers it protects, ought to have
 been removed from the message by an intermediate proxy.

 Although RFC2068 does not specifically require this behavior, it
 appears to be implied. Otherwise, one could not depend on the
 stated property (section 14.10) that the protected options "MUST
 NOT be communicated by proxies over further connections." This
 should probably be clarified in a subsequent draft of the HTTP/1.1
 specification.

 This specification does not, in any way, propose a modification of
 the specification of the Connection header.

 From the point of view of an origin server, the proxies in a metering
 subtree work together to obey usage limits and to maintain accurate
 usage counts. When an origin server specifies a usage limit, a proxy
 in the metering subtree may subdivide this limit among its children
 in the subtree as it sees fit. Similarly, when a proxy in the
 subtree receives a usage report, it ensures that the hits represented
 by this report are summed properly and reported to the origin server.

 When a proxy forwards a hit-metered or usage-limited response to a
 client (proxy or end-client) not in the metering subtree, it MUST
 omit the Meter header, and it MUST add "Cache-control: s-maxage=0" to
 the response.

Mogul & Leach Standards Track [Page 9]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

3.2 Format of the Meter header

 The Meter header is used to carry zero or more directives. Multiple
 Meter headers may occur in an HTTP message, but according to the
 rules in section 4.2 of the HTTP/1.1 specification [4], they may be
 combined into a single header (and should be so combined, to reduce
 overhead).

 For example, the following sequence of Meter headers

 Meter: max-uses=3
 Meter: max-reuses=10
 Meter: do-report

 may be expressed as

 Meter: max-uses=3, max-reuses=10, do-report

3.3 Negotiation of hit-metering and usage-limiting

 An origin server that wants to collect hit counts for a resource, by
 simply forcing all requests to bypass any proxy caches, would respond
 to requests on the resource with "Cache-control: s-maxage=0". (An
 origin server wishing to prevent HTTP/1.0 proxies from improperly
 caching the response could also send both "Expires: <now>", to
 prevent such caching, and "Cache-control: max-age=NNNN", to allow
 newer proxies to cache the response).

 The purpose of the Meter header is to obviate the need for "Cache-
 control: s-maxage=0" within a metering subtree. Thus, any proxy may
 negotiate the use of hit-metering and/or usage-limiting with the
 next-hop server. If this server is the origin server, or is already
 part of a metering subtree (rooted at the origin server), then it may
 complete the negotiation, thereby extending the metering subtree to
 include the new proxy.

 To start the negotiation, a proxy sends its request with one of the
 following Meter directives:

 will-report-and-limit
 indicates that the proxy is willing and able to
 return usage reports and will obey any usage-limits.

 wont-report indicates that the proxy will obey usage-limits but
 will not send usage reports.

 wont-limit indicates that the proxy will not obey usage-limits
 but will send usage reports.

Mogul & Leach Standards Track [Page 10]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 A proxy willing to neither obey usage-limits nor send usage reports
 MUST NOT transmit a Meter header in the request.

 By definition, an empty Meter header:

 Meter:

 is equivalent to "Meter: will-report-and-limit", and so, by the
 definition of the Connection header (see section 14.10 of the
 HTTP/1.1 specification [4]), a request that contains

 Connection: Meter

 and no explicit Meter header is equivalent to a request that contains

 Connection: Meter
 Meter: will-report-and-limit

 This makes the default case more efficient.

 An origin server that is not interested in metering or usage-limiting
 the requested resource simply ignores the Meter header.

 If the server wants the proxy to do hit-metering and/or usage-
 limiting, its response should include one or more of the following
 Meter directives:

 For hit-metering:

 do-report specifies that the proxy MUST send usage reports to
 the server.

 dont-report specifies that the proxy SHOULD NOT send usage
 reports to the server.

 timeout=NNN sets a metering timeout of NNN minutes, from the time
 that this response was originated, for the reporting
 of a hit-count. If the proxy has a non-zero hit
 count for this response when the timeout expires, it
 MUST send a report to the server at or before that
 time. Implies "do-report".

 By definition, an empty Meter header in a response, or any Meter
 header that does not contain "dont-report", means "Meter: do-report";
 this makes a common case more efficient.

Mogul & Leach Standards Track [Page 11]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 Note: an origin server using the metering timeout mechanism to
 bound the collection period over which hit-counts are obtained
 should adjust the timeout values in the responses it sends so that
 all responses generated within that period reach their metering
 timeouts at or before the end of that period.

 If the origin server simply sends a constant metering timeout T
 with each response for a resource, the reports that it receives
 will reflect activity over a period whose duration is between T
 and N*T (in the worst case), where N is the maximum depth of the
 metering subtree.

 For usage-limiting

 max-uses=NNN sets an upper limit of NNN "uses" of the response,
 not counting its immediate forwarding to the
 requesting end-client, for all proxies in the
 following subtree taken together.

 max-reuses=NNN sets an upper limit of NNN "reuses" of the response
 for all proxies in the following subtree taken
 together.

 When a proxy has exhausted its allocation of "uses" or "reuses" for a
 cache entry, it MUST revalidate the cache entry (using a conditional
 request) before returning it in a response. (The proxy SHOULD use
 this revalidation message to send a usage report, if one was
 requested and it is time to send it. See sections 3.4 and 3.5.)

 These Meter response-directives apply only to the specific response
 that they are attached to.

 Note that the limit on "uses" set by the max-uses directive does
 not include the use of the response to satisfy the end-client
 request that caused the proxy’s request to the server. This
 counting rule supports the notion of a cache-initiated prefetch: a
 cache may issue a prefetch request, receive a max-uses=0 response,
 store that response, and then return that response (without
 revalidation) when a client makes an actual request for the
 resource. However, each such response may be used at most once in
 this way, so the origin server maintains precise control over the
 number of actual uses.

 A server MUST NOT send a Meter header that would require a proxy to
 do something that it has not yet offered to do. A proxy receiving a
 Meter response-directive asking the proxy to do something it did not
 volunteer to do SHOULD ignore that directive.

Mogul & Leach Standards Track [Page 12]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 A proxy receiving a Meter header in a response MUST either obey it,
 or it MUST revalidate the corresponding cache entry on every access.
 (I.e., if it chooses not to obey the Meter header in a response, it
 MUST act as if the response included "Cache-control: s-maxage=0".)

 Note: a proxy that has not sent the Meter header in a request for
 the given resource, and which has therefore not volunteered to
 honor Meter directives in a response, is not required to honor
 them. If, in this situation, the server does send a Meter header
 in a response, this is a protocol error. However, based on the
 robustness principle, the proxy may choose to interpret the Meter
 header as an implicit request to include "Cache-control: s-
 maxage=0" when it forwards the response, since this preserves the
 apparent intention of the server.

 A proxy that receives the Meter header in a request may ignore it
 only to the extent that this is consistent with its own duty to the
 next-hop server. If the received Meter request header is
 inconsistent with that duty, or if no Meter request header is
 received and the response from the next-hop server requests any form
 of metering or limiting, then the proxy MUST add "Cache-control: s-
 maxage=0" to any response it forwards for that request. (A proxy
 SHOULD NOT add or change the Expires header or max-age Cache-control
 directive.)

 For example, if proxy A receives a GET request from proxy B for
 URL X with "Connection: Meter", but proxy A’s cached response for
 URL does not include any Meter directives, then proxy A may ignore
 the metering offer from proxy B.

 However, if proxy A has previously told the origin server "Meter:
 wont-limit" (implying will-report), and the cached response
 contains "Meter: do-report", and proxy B’s request includes
 "Meter: wont-report", then proxy B’s offer is inconsistent with
 proxy A’s duty to the origin server. Therefore, in this case
 proxy A must add "Cache-control: s-maxage=0" when it returns the
 cached response to proxy B, and must not include a Meter header in
 this response.

 If a server does not want to use the Meter mechanism, and will not
 want to use it any time soon, it may send this directive:

 wont-ask recommends that the proxy SHOULD NOT send any Meter
 directives to this server.

Mogul & Leach Standards Track [Page 13]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 The proxy SHOULD remember this fact for up to 24 hours. This avoids
 virtually all unnecessary overheads for servers that do not wish to
 use or support the Meter header. (This directive also implies
 "dont-report".)

3.4 Transmission of usage reports

 To transmit a usage report, a proxy sends the following Meter header
 in a request on the appropriate resource:

 Meter: count=NNN/MMM

 The first integer indicates the count of uses of the cache entry
 since the last report; the second integer indicates the count of
 reuses of the entry (see section 5.3 for rules on counting uses and
 reuses). The transmission of a "count" directive in a request with
 no other Meter directive is also defined as an implicit transmission
 of a "will-report-and-limit" directive, to optimize the common case.
 (A proxy not willing to honor usage-limits would send "Meter:
 count=NNN/MMM, wont-limit" for its reports.)

 Note that when a proxy forwards a client’s request and receives a
 response, the response that the proxy sends immediately to the
 requesting client is not counted as a "use". I.e., the reported
 count is the number of times the cache entry was used, and not the
 number of times that the response was used.

 A proxy SHOULD NOT transmit "Meter: count=0/0", since this conveys no
 useful information.

 Usage reports MUST always be transmitted as part of a conditional
 request (such as a GET or HEAD), since the information in the
 conditional header (e.g., If-Modified-Since or If-None-Match) is
 required for the origin server to know which instance of a resource
 is being counted. Proxys forwarding usage reports up the metering
 subtree MUST NOT change the contents of the conditional header, since
 otherwise this would result in incorrect counting.

 A usage report MUST NOT be transmitted as part of a forwarded request
 that includes multiple entity tags in an If-None-Match or If-Match
 header.

 Note: a proxy that offers its willingness to do hit-metering
 (report usage) must count both uses and reuses. It is not
 possible to negotiate the reporting of one but not the other.

Mogul & Leach Standards Track [Page 14]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

3.5 When to send usage reports

 A proxy that has offered to send usage reports to its parent in the
 metering subtree MUST send a usage report in each of these
 situations:

 1. When it forwards a conditional GET on the resource
 instance on behalf of one of its clients (if the GET is
 conditional on at most one entity-tag).

 2. When it forwards a conditional HEAD on the resource
 instance on behalf of one of its clients.

 3. When it must generate a conditional GET to satisfy a
 client request because the max-uses limit has been
 exceeded.

 4. Upon expiration of a metering timeout associated with a
 cache entry that has a non-zero hit-count.

 5. When it removes the corresponding non-zero hit-count entry
 from its storage for any reason including:

 - the proxy needs the storage space for another
 hit-count entry.

 - the proxy is not able to store more than one response
 per resource, and a request forwarded on behalf of a
 client has resulted in the receipt of a new response
 (one with a different entity-tag or last-modified
 time).

 Note that a cache might continue to store hit-count information
 even after having deleted the body of the response, so it is
 not necessary to report the hit-count when deleting the body;
 it is only necessary to report it if the proxy is about to
 "forget" a non-zero value.

 (Section 5.3 explains how hit-counts become zero or non-zero.)

 If the usage report is being sent because the proxy is about to
 remove the hit-count entry from its storage, or because of an expired
 metering timeout:

 - The proxy MUST send the report as part of a conditional
 HEAD request on the resource instance.

Mogul & Leach Standards Track [Page 15]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 - The proxy is not required to retry the HEAD request if it
 fails (this is a best-efforts design). To improve
 accuracy, however, the proxy SHOULD retry failed HEAD
 requests, subject to resource constraints.

 - The proxy is not required to serialize any other operation
 on the completion of this request.

 Note: proxy implementors are strongly encouraged to batch several
 HEAD-based reports to the same server, when possible, over a
 single persistent connection, to reduce network overhead as much
 as possible. This may involve a non-naive algorithm for
 scheduling the deletion of hit-count entries.

 If the usage count is sent because of an arriving request that also
 carries a "count" directive, the proxy MUST combine its own (possibly
 zero) use and reuse counts with the arriving counts, and then attempt
 to forward the request.

 However, the proxy is not required to forward an arriving request
 with a "count" directive, provided that:

 - it can reply to the request using a cached response, in
 compliance with other requirements of the HTTP
 specification.

 - such a response does not exceed a max-uses limit.

 - it is not required to forward the request because of an
 expired metering timeout.

 If an arriving request carries a "count" directive, and the proxy no
 longer has a cache entry for the resource, the proxy MUST forward the
 "count" directive. (This is, in any case, what a proxy without a
 suitable cache entry would normally do for any valid request it
 receives.)

3.6 Subdivision of usage-limits

 When an origin server specifies a usage limit, a proxy in the
 metering subtree may subdivide this limit among its children in the
 subtree as it sees fit.

 For example, consider the situation with two proxies P1 and P2, each
 of which uses proxy P3 as a way to reach origin server S. Imagine
 that S sends P3 a response with

Mogul & Leach Standards Track [Page 16]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 Meter: max-uses=10

 The proxies use that response to satisfy the current requesting end-
 client. The max-uses directive in this example allows the
 combination of P1, P2, and P3 together to satisfy 10 additional end-
 client uses (unconditional GETs) for the resource.

 This specification does not constrain how P3 divides up that
 allocation among itself and the other proxies. For example, P3 could
 retain all of max-use allocation for itself. In that case, it would
 forward the response to P1 and/or P2 with

 Meter: max-uses=0

 P3 might also divide the allocation equally among P1 and P2,
 retaining none for itself (which may be the right choice if P3 has
 few or no other clients). In this case, it could send

 Meter: max-uses=5

 to the proxy (P1 or P2) that made the initial request, and then
 record in some internal data structure that it "owes" the other proxy
 the rest of the allocation.

 Note that this freedom to choose the max-uses value applies to the
 origin server, as well. There is no requirement that an origin
 server send the same max-uses value to all caches. For example, it
 might make sense to send "max-uses=2" the first time one hears from a
 cache, and then double the value (up to some maximum limit) each time
 one gets a "use-count" from that cache. The idea is that the faster
 a cache is using up its max-use quota, the more likely it will be to
 report a use-count value before removing the cache entry. Also, high
 and frequent use-counts imply a corresponding high efficiency benefit
 from allowing caching.

 Again, the details of such heuristics would be outside the scope of
 this specification.

4 Analysis

 This section includes informal analyses of several aspects of hit-
 metering:

 1. the accuracy of results when applied to counting users
 (section 4.1).

 2. the problem of counting users whose browsers do not
 include caches, such as Network Computers (section 4.2).

Mogul & Leach Standards Track [Page 17]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 3. delays imposed on "critical paths" for HTTP operations
 (section 4.3).

4.1 Approximation accuracy for counting users

 For many (but not all) service operators, the single most important
 aspect of the request stream is the number of distinct users who have
 retrieved a particular entity within a given period (e.g., during a
 given day). The hit-metering mechanism is designed to provide an
 origin server with an approximation of the number of users that
 reference a given resource. The intent of the design is that the
 precision of this approximation is consistent with the goals of
 simplicity and optional implementation.

 Almost all Web users use client software that maintains local caches,
 and the state of the art of local-caching technology is quite
 effective. (Section 4.2 discusses the case where end-client caches
 are small or non-existent.) Therefore, assuming an effective and
 persistent end-client cache, each individual user who retrieves an
 entity does exactly one GET request that results in a 200 or 203
 response, or a 206 response that includes the first byte of the
 entity. If a proxy cache maintains and reports an accurate use-count
 of such retrievals, then its reported use-count will closely
 approximate the number of distinct users who have retrieved the
 entity.

 There are some circumstances under which this approximation can break
 down. For example, if an entity stays in a proxy cache for much
 longer than it persists in the typical client cache, and users often
 re-reference the entity, then this scheme will tend to over-count the
 number of users. Or, if the cache-management policy implemented in
 typical client caches is biased against retaining certain kinds of
 frequently re-referenced entities (such as very large images), the
 use-counts reported will tend to overestimate the user-counts for
 such entities.

 Browser log analysis has shown that when a user revisits a resource,
 this is almost always done very soon after the previous visit, almost
 always with fewer than eight intervening references [11]. Although
 this result might not apply universally, it implies that almost all
 reuses will hit in the end-client cache, and will not be seen as
 unconditional GETs by a proxy cache.

 The existing (HTTP/1.0) "cache-busting" mechanisms for counting
 distinct users will certainly overestimate the number of users behind
 a proxy, since it provides no reliable way to distinguish between a
 user’s initial request and subsequent repeat requests that might have
 been conditional GETs, had not cache-busting been employed. The

Mogul & Leach Standards Track [Page 18]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 "Cache-control: s-maxage=0" feature of HTTP/1.1 does allow the
 separation of use-counts and reuse-counts, provided that no HTTP/1.0
 proxy caches intervene.

 Note that if there is doubt about the validity of the results of
 hit-metering a given set of resources, the server can employ cache-
 busting techniques for short periods, to establish a baseline for
 validating the hit-metering results. Various approaches to this
 problem are discussed in a paper by James Pitkow [9].

4.2 What about "Network Computers"?

 The analysis in section 4.1 assumed that "almost all Web users" have
 client caches. If the Network Computers (NC) model becomes popular,
 however, then this assumption may be faulty: most proposed NCs have
 no disk storage, and relatively little RAM. Many Personal Digital
 Assistants (PDAs), which sometimes have network access, have similar
 constraints. Such client systems may do little or no caching of HTTP
 responses. This means that a single user might well generate many
 unconditional GETs that yield the same response from a proxy cache.

 First note that the hit-metering design in this document, even with
 such clients, provides an approximation no worse than available with
 unmodified HTTP/1.1: the counts that a proxy would return to an
 origin server would represent exactly the number of requests that the
 proxy would forward to the server, if the server simply specifies
 "Cache-control: s-maxage=0".

 However, it may be possible to improve the accuracy of these hit-
 counts by use of some heuristics at the proxy. For example, the
 proxy might note the IP address of the client, and count only one GET
 per client address per response. This is not perfect: for example,
 it fails to distinguish between NCs and certain other kinds of hosts.
 The proxy might also use the heuristic that only those clients that
 never send a conditional GET should be treated this way, although we
 are not at all certain that NCs will never send conditional GETs.

 Since the solution to this problem appears to require heuristics
 based on the actual behavior of NCs (or perhaps a new HTTP protocol
 feature that allows unambiguous detection of cacheless clients), it
 appears to be premature to specify a solution.

4.3 Critical-path delay analysis

 In systems (such as the Web) where latency is at issue, there is
 usually a tree of steps which depend on one another, in such a way
 that the final result cannot be accomplished until all of its
 predecessors have been. Since the tree structure admits some

Mogul & Leach Standards Track [Page 19]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 parallelism, it is not necessary to add up the timings for each step
 to discover the latency for the entire process. But any single path
 through this dependency tree cannot be parallelized, and the longest
 such path is the one whose length (in units of seconds) determines
 the overall latency. This is the "critical path", because no matter
 how much shorter one makes any other path, that cannot change the
 overall latency for the final result.

 If one views the final result, for a Web request, as rendering a page
 at a browser, or otherwise acting on the result of a request, clearly
 some network round trips (e.g., exchanging TCP SYN packets if the
 connection doesn’t already exist) are on the critical path. This
 hit-metering design does add some round-trips for reporting non-zero
 counts when a cache entry is removed, but, by design, these are off
 any critical path: they may be done in parallel with any other
 operation, and require only "best efforts", so a proxy does not have
 to serialize other operations with their success or failure.

 Clearly, anything that changes network utilization (either increasing
 or decreasing it) can indirectly affect user-perceived latency. Our
 expectation is that hit-metering, on average, will reduce loading and
 so even its indirect effects should not add network round-trips in
 any critical path. But there might be a few specific instances where
 the added non-critical-path operations (specifically, usage reports
 upon cache-entry removal) delay an operation on a critical path.
 This is an unavoidable problem in datagram networks.

5 Specification

5.1 Specification of Meter header and directives

 The Meter general-header field is used to:

 - Negotiate the use of hit-metering and usage-limiting among
 origin servers and proxy caches.

 - Report use counts and reuse counts.

 Implementation of the Meter header is optional for both proxies and
 origin servers. However, any proxy that transmits the Meter header
 in a request MUST implement every requirement of this specification,
 without exception or amendment.

 The Meter header MUST always be protected by a Connection header. A
 proxy that does not implement the Meter header MUST NOT pass it
 through to another system (see section 5.5 for how a non-caching
 proxy may comply with this specification). If a Meter header is

Mogul & Leach Standards Track [Page 20]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 received in a message whose version is less than HTTP/1.1, it MUST be
 ignored (because it has clearly flowed through a proxy that does not
 implement Meter).

 A proxy that has received a response with a version less than
 HTTP/1.1, and therefore from a server (or another proxy) that does
 not implement the Meter header, SHOULD NOT send Meter request
 directives to that server, because these would simply waste
 bandwidth. This recommendation does not apply if the proxy is
 currently hit-metering or usage-limiting any responses from that
 server. If the proxy receives a HTTP/1.1 or higher response from
 such a server, it should cease its suppression of the Meter
 directives.

 All proxies sending the Meter header MUST adhere to the "metering
 subtree" design described in section 3.

 Meter = "Meter" ":" 0#meter-directive

 meter-directive = meter-request-directive
 | meter-response-directive
 | meter-report-directive

 meter-request-directive =
 "will-report-and-limit"
 | "wont-report"
 | "wont-limit"

 meter-report-directive =
 | "count" "=" 1*DIGIT "/" 1*DIGIT

 meter-response-directive =
 "max-uses" "=" 1*DIGIT
 | "max-reuses" "=" 1*DIGIT
 | "do-report"
 | "dont-report"
 | "timeout" "=" 1*DIGIT
 | "wont-ask"

 A meter-request-directive or meter-report-directive may only appear
 in an HTTP request message. A meter-response-directive may only
 appear in an HTTP response directive.

 An empty Meter header in a request means "Meter: will-report-and-
 limit". An empty Meter header in a response, or any other response
 including one or more Meter headers without the "dont-report" or
 "wont-ask" directive, implies "Meter: do-report".

Mogul & Leach Standards Track [Page 21]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 The meaning of the meter-request-directives are as follows:

 will-report-and-limit
 indicates that the proxy is willing and able to
 return usage reports and will obey any usage-limits.

 wont-report indicates that the proxy will obey usage-limits but
 will not send usage reports.

 wont-limit indicates that the proxy will not obey usage-limits
 but will send usage reports.

 A proxy willing neither to obey usage-limits nor to send usage
 reports MUST NOT transmit a Meter header in the request.

 The meaning of the meter-report-directives are as follows:

 count "=" 1*DIGIT "/" 1*DIGIT
 Both digit strings encode decimal integers. The
 first integer indicates the count of uses of the
 cache entry since the last report; the second integer
 indicates the count of reuses of the entry.

 Section 5.3 specifies the counting rules.

 The meaning of the meter-response-directives are as follows:

 max-uses "=" 1*DIGIT
 sets an upper limit on the number of "uses" of the
 response, not counting its immediate forwarding to
 the requesting end-client, for all proxies in the
 following subtree taken together.

 max-reuses "=" 1*DIGIT
 sets an upper limit on the number of "reuses" of the
 response for all proxies in the following subtree
 taken together.

 do-report specifies that the proxy MUST send usage reports to
 the server.

 dont-report specifies that the proxy SHOULD NOT send usage
 reports to the server.

 timeout "=" 1*DIGIT
 sets a metering timeout of the specified number of
 minutes (not seconds) after the origination of this
 response (as indicated by its "Date" header). If the

Mogul & Leach Standards Track [Page 22]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 proxy has a non-zero hit count for this response when
 the timeout expires, it MUST send a report to the
 server at or before that time. Timeouts should be
 implemented with an accuracy of plus or minus one
 minute. Implies "do-report".

 wont-ask specifies that the proxy SHOULD NOT send any Meter
 headers to the server. The proxy should forget this
 advice after a period of no more than 24 hours.

 Section 5.3 specifies the counting rules, and in particular specifies
 a somewhat non-obvious interpretation of the max-uses value.

5.2 Abbreviations for Meter directives

 To allow for the most efficient possible encoding of Meter headers,
 we define abbreviated forms of all Meter directives. These are
 exactly semantically equivalent to their non-abbreviated
 counterparts. All systems implementing the Meter header MUST
 implement both the abbreviated and non-abbreviated forms.
 Implementations SHOULD use the abbreviated forms in normal use.

 The abbreviated forms of Meter directive are shown below, with the
 corresponding non-abbreviated literals in the comments:

 Abb-Meter = "Meter" ":" 0#abb-meter-directive

 abb-meter-directive = abb-meter-request-directive
 | abb-meter-response-directive
 | abb-meter-report-directive

 abb-meter-request-directive =
 "w" ; "will-report-and-limit"
 | "x" ; "wont-report"
 | "y" ; "wont-limit"

 abb-meter-report-directive =
 | "c" "=" 1*DIGIT "/" 1*DIGIT ; "count"

 abb-meter-response-directive =
 "u" "=" 1*DIGIT ; "max-uses"
 | "r" "=" 1*DIGIT ; "max-reuses"
 | "d" ; "do-report"
 | "e" ; "dont-report"
 | "t" "=" 1*DIGIT ; "timeout"
 | "n" ; "wont-ask"

Mogul & Leach Standards Track [Page 23]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 Note: although the Abb-Meter BNF rule is defined separately from
 the Meter rule, one may freely mix abbreviated and non-abbreviated
 Meter directives in the same header.

5.3 Counting rules

 Note: please remember that hit-counts and usage-counts are
 associated with individual responses, not with resources. A cache
 entry that, over its lifetime, holds more than one response is
 also not a "response", in this particular sense.

 Let R be a cached response, and V be the value of the Request-URI and
 selecting request-headers (if any, see section 14.43 of the HTTP/1.1
 specification [4]) that would select R if contained in a request. We
 define a "use" of R as occurring when the proxy returns its stored
 copy of R in a response with any of the following status codes: a 200
 (OK) status; a 203 (Non-Authoritative Information) status; or a 206
 (Partial Content) status when the response contains byte #0 of the
 entity (see section 5.4 for a discussion of Range requests).

 Note: when a proxy forwards a client’s request and receives a
 response, the response that the proxy sends immediately to the
 requesting client is not counted as a "use". I.e., the reported
 count is the number of times the cache entry was used, and not the
 number of times that the response was used.

 We define a "reuse" of R as as occurring when the proxy responds to a
 request selecting R with a 304 (Not Modified) status, unless that
 request is a Range request that does not specify byte #0 of the
 entity.

5.3.1 Counting rules for hit-metering

 A proxy participating in hit-metering for a cache response R
 maintains two counters, CU and CR, associated with R. When a proxy
 first stores R in its cache, it sets both CU and CR to 0 (zero).
 When a subsequent client request results in a "use" of R, the proxy
 increments CU. When a subsequent client request results in a "reuse"
 of R, the proxy increments CR. When a subsequent client request
 selecting R (i.e., including V) includes a "count" Meter directive,
 the proxy increments CU and CR using the corresponding values in the
 directive.

 When the proxy sends a request selecting R (i.e., including V) to the
 inbound server, it includes a "count" Meter directive with the
 current CU and CR as the parameter values. If this request was
 caused by the proxy’s receipt of a request from a client, upon
 receipt of the server’s response, the proxy sets CU and CR to the

Mogul & Leach Standards Track [Page 24]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 number of uses and reuses, respectively, that may have occurred while
 the request was in progress. (These numbers are likely, but not
 certain, to be zero.) If the proxy’s request was a final HEAD-based
 report, it need no longer maintain the CU and CR values, but it may
 also set them to the number of intervening uses and reuses and retain
 them.

5.3.2 Counting rules for usage-limiting

 A proxy participating in usage-limiting for a response R maintains
 either or both of two counters TU and TR, as appropriate, for that
 resource. TU and TR are incremented in just the same way as CU and
 CR, respectively. However, TU is zeroed only upon receipt of a
 "max-uses" Meter directive for that response (including the initial
 receipt). Similarly, TR is zeroed only upon receipt of a "max-
 reuses" Meter directive for that response.

 A proxy participating in usage-limiting for a response R also stores
 values MU and/or MR associated with R. When it receives a response
 including only a max-uses value, it sets MU to that value and MR to
 infinity. When it receives a response including only a max-reuses
 value, it sets MR to that value and MU to infinity. When it receives
 a response including both max-reuses and max-reuses values, it sets
 MU and MR to those values, respectively. When it receives a
 subsequent response including neither max-reuses nor max-reuses
 values, it sets both MU and MR to infinity.

 If a proxy participating in usage-limiting for a response R receives
 a request that would cause a "use" of R, and TU >= MU, it MUST
 forward the request to the server. If it receives a request that
 would cause a "reuse" of R, and TR >= MR, it MUST forward the request
 to the server. If (in either case) the proxy has already forwarded a
 previous request to the server and is waiting for the response, it
 should delay further handling of the new request until the response
 arrives (or times out); it SHOULD NOT have two revalidation requests
 pending at once that select the same response, unless these are Range
 requests selecting different subranges.

 There is a special case of this rule for the "max-uses" directive: if
 the proxy receives a response with "max-uses=0" and does not forward
 it to a requesting client, the proxy should set a flag PF associated
 with R. If R is true, then when a request arrives while if TU >= MU,
 if the PF flag is set, then the request need not be forwarded to the
 server (provided that this is not required by other caching rules).
 However, the PF flag MUST be cleared on any use of the response.

Mogul & Leach Standards Track [Page 25]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 Note: the "PF" flag is so named because this feature is useful
 only for caches that could issue a "prefetch" request before an
 actual client request for the response. A proxy not implementing
 prefetching need not implement the PF flag.

5.3.3 Equivalent algorithms are allowed

 Any other algorithm that exhibits the same external behavior (i.e.,
 generates exactly the same requests from the proxy to the server) as
 the one in this section is explicitly allowed.

 Note: in most cases, TU will be equal to CU, and TR will be
 equal to CR. The only two cases where they could differ are:

 1. The proxy issues a non-conditional request for the
 resource using V, while TU and/or TR are non-zero, and
 the server’s response includes a new "max-uses" and/or
 "max-reuses" directive (thus zeroing TU and/or TR, but
 not CU and CR).

 2. The proxy issues a conditional request reporting the
 hit-counts (and thus zeroing CU and CR, but not TU or
 TR), but the server’s response does not include a new
 "max-uses" and/or "max-reuses" directive.

 To solve the first case, the proxy has several implementation
 options

 - Always store TU and TR separately from CU and CR.

 - Create "shadow" copies of TU and TR when this situation
 arises (analogous to "copy on write").

 - Generate a HEAD-based usage report when the
 non-conditional request is sent (or when the
 "max-uses=0" is received), causing CU and CR to be
 zeroed (analogous in some ways to a "memory barrier"
 instruction).

 In the second case, the server implicitly has removed the
 usage-limit(s) on the response (by setting MU and/or MR to
 infinity), and so the fact that, say, TU is different from CU
 is not significant.

 Note: It may also be possible to eliminate the PF flag by
 sending extra HEAD-based usage-report requests, but we
 recommend against this; it is better to allocate an extra bit
 per entry than to transmit extra requests.

Mogul & Leach Standards Track [Page 26]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

5.4 Counting rules: interaction with Range requests

 HTTP/1.1 allows a client to request sub-ranges of a resource. A
 client might end up issuing several requests with the net effect of
 receiving one copy of the resource. For uniformity of the results
 seen by origin servers, proxies need to observe a rule for counting
 these references, although it is not clear that one rule generates
 accurate results in every case.

 The rule established in this specification is that proxies count as a
 "use" or "reuse" only those Range requests that result in the return
 of byte #0 of the resource. The rationale for this rule is that in
 almost every case, an end-client will retrieve the beginning of any
 resource that it references at all, and that it will seldom retrieve
 any portion more than once. Therefore, this rule appears to meet the
 goal of a "best-efforts" approximation.

5.5 Implementation by non-caching proxies

 A non-caching proxy may participate in the metering subtree; this is
 strongly recommended.

 A non-caching proxy (HTTP/1.1 or higher) that participates in the
 metering subtree SHOULD forward Meter headers on both requests and
 responses, with the appropriate Connection headers.

 If a non-caching proxy forwards Meter headers, it MUST comply with
 these restrictions:

 1. If the proxy forwards Meter headers in responses, such a
 response MUST NOT be returned to any request except the
 one that elicited it.

 2. Once a non-caching proxy starts forwarding Meter headers,
 it should not arbitrarily stop forwarding them (or else
 reports may be lost).

 A proxy that caches some responses and not others, for whatever
 reason, may choose to implement the Meter header as a caching proxy
 for the responses that it caches, and as a non-caching proxy for the
 responses that it does not cache, as long as its external behavior
 with respect to any particularly response is fully consistent with
 this specification.

Mogul & Leach Standards Track [Page 27]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

5.6 Implementation by cooperating caches

 Several HTTP cache implementations, most notably the Harvest/Squid
 cache [2], create cooperative arrangements between several caches.
 If such caches use a protocol other than HTTP to communicate between
 themselves, such as the Internet Cache Protocol (ICP) [12], and if
 they implement the Meter header, then they MUST act to ensure that
 their cooperation does not violate the intention of this
 specification.

 In particular, if one member of a group of cooperating caches agrees
 with a server to hit-meter a particular response, and then passes
 this response via a non-HTTP protocol to a second cache in the group,
 the caches MUST ensure that the server which requested the metering
 receives reports that appropriately account for any uses or resues
 made by the second cache. Similarly, if the first cache agreed to
 usage-limit the response, the total number of uses by the group of
 caches MUST be limited to the agreed-upon number.

6 Examples

6.1 Example of a complete set of exchanges

 This example shows how the protocol is intended to be used most of
 the time: for hit-metering without usage-limiting. Entity bodies are
 omitted.

 A client sends request to a proxy:

 GET http://foo.com/bar.html HTTP/1.1

 The proxy forwards request to the origin server:

 GET /bar.html HTTP/1.1
 Host: foo.com
 Connection: Meter

 thus offering (implicitly) "will-report-and-limit".

 The server responds to the proxy:

 HTTP/1.1 200 OK
 Date: Fri, 06 Dec 1996 18:44:29 GMT
 Cache-control: max-age=3600
 Connection: meter
 Etag: "abcde"

Mogul & Leach Standards Track [Page 28]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 thus (implicitly) requiring "do-report" (but not requiring
 usage-limiting).

 The proxy responds to the client:

 HTTP/1.1 200 OK
 Date: Fri, 06 Dec 1996 18:44:29 GMT
 Etag: "abcde"
 Cache-control: max-age=3600, proxy-mustcheck
 Age: 1

 Since the proxy does not know if its client is an end-system, or a
 proxy that doesn’t do metering, it adds the "proxy-mustcheck"
 directive.

 Another client soon asks for the resource:

 GET http://foo.com/bar.html HTTP/1.1

 and the proxy sends the same response as it sent to the other client,
 except (perhaps) for the Age value.

 After an hour has passed, a third client asks for the response:

 GET http://foo.com/bar.html HTTP/1.1

 But now the response’s max-age has been exceeded, so the proxy
 revalidates the response with the origin server:

 GET /bar.html HTTP/1.1
 If-None-Match: "abcde"
 Host: foo.com
 Connection: Meter
 Meter: count=1/0

 thus simultaneously fulfilling its duties to validate the response
 and to report the one "use" that wasn’t forwarded.

 The origin server responds:

 HTTP/1.1 304 Not Modified
 Date: Fri, 06 Dec 1996 19:44:29 GMT
 Cache-control: max-age=3600
 Etag: "abcde"

 so the proxy can use the original response to reply to the new
 client; the proxy also zeros the use-count it associates with that
 response.

Mogul & Leach Standards Track [Page 29]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 Another client soon asks for the resource:

 GET http://foo.com/bar.html HTTP/1.1

 and the proxy sends the appropriate response.

 After another few hours, the proxy decides to remove the cache entry.
 When it does so, it sends to the origin server:

 HEAD /bar.html HTTP/1.1
 If-None-Match: "abcde"
 Host: foo.com
 Connection: Meter
 Meter: count=1/0

 reporting that one more use of the response was satisfied from the
 cache.

6.2 Protecting against HTTP/1.0 proxies

 An origin server that does not want HTTP/1.0 caches to store the
 response at all, and is willing to have HTTP/1.0 end-system clients
 generate excess GETs (which will be forwarded by HTTP/1.0 proxies)
 could send this for its reply:

 HTTP/1.1 200 OK
 Cache-control: max-age=3600
 Connection: meter
 Etag: "abcde"
 Expires: Sun, 06 Nov 1994 08:49:37 GMT

 HTTP/1.0 caches will see the ancient Expires header, but HTTP/1.1
 caches will see the max-age directive and will ignore Expires.

 Note: although most major HTTP/1.0 proxy implementations observe
 the Expires header, it is possible that some are in use that do
 not. Use of the Expires header to prevent caching by HTTP/1.0
 proxies might not be entirely reliable.

6.3 More elaborate examples

 Here is a request from a proxy that is willing to hit-meter but is
 not willing to usage-limit:

 GET /bar.html HTTP/1.1
 Host: foo.com
 Connection: Meter
 Meter: wont-limit

Mogul & Leach Standards Track [Page 30]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 Here is a response from an origin server that does not want hit
 counting, but does want "uses" limited to 3, and "reuses" limited to
 6:

 HTTP/1.1 200 OK
 Cache-control: max-age=3600
 Connection: meter
 Etag: "abcde"
 Expires: Sun, 06 Nov 1994 08:49:37 GMT
 Meter: max-uses=3, max-reuses=6, dont-report

 Here is the same example with abbreviated Meter directive names:

 HTTP/1.1 200 OK
 Cache-control: max-age=3600
 Connection: meter
 Etag: "abcde"
 Expires: Sun, 06 Nov 1994 08:49:37 GMT
 Meter:u=3,r=6,e

7 Interactions with content negotiation

 This section describes two aspects of the interaction between hit-
 metering and "content-negotiated" resources:

 1. treatment of responses carrying a Vary header (section
 7.1).

 2. treatment of responses that use the proposed Transparent
 Content Negotiation mechanism (section 7.2).

7.1 Treatment of responses carrying a Vary header

 Separate counts should be kept for each combination of the headers
 named in the Vary header for the Request-URI (what [4] calls "the
 selecting request-headers"), even if they map to the same entity-tag.
 This rule has the effect of counting hits on each variant, if there
 are multiple variants of a page available.

 Note: This interaction between Vary and the hit-counting
 directives allows the origin server a lot of flexibility in
 specifying how hits should be counted. In essence, the origin
 server uses the Vary mechanism to divide the requests for a
 resource into arbitrary categories, based on the request- headers.
 (We will call these categories "request-patterns".) Since a proxy
 keeps its hit-counts for each request-pattern, rather than for
 each resource, the origin server can obtain separate statistics
 for many aspects of an HTTP request.

Mogul & Leach Standards Track [Page 31]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 For example, if a page varied based on the value of the User-Agent
 header in the requests, then hit counts would be kept for each
 different flavor of browser. But it is in fact more general than
 that; because multiple header combinations can map to the same
 variant, it also enables the origin server to count the number of
 times (e.g.) the Swahili version of a page was requested, even though
 it is only available in English.

 If a proxy does not support the Vary mechanism, then [4] says that it
 MUST NOT cache any response that carries a Vary header, and hence
 need not implement any aspect of this hit-counting or usage-limiting
 design for varying resources.

 Note: this also implies that if a proxy supports the Vary
 mechanism but is not willing to maintain independent hit-counts
 for each variant response in its cache, then it must follow at
 least one of these rules:

 1. It must not use the Meter header in a request to offer
 to hit-meter or usage-limit responses.

 2. If it does offer to hit-meter or usage-limit responses,
 and then receives a response that includes both a Vary
 header and a Meter header with a directive that it
 cannot satisfy, then the proxy must not cache the
 response.

 In other words, a proxy is allowed to partially implement the
 Vary mechanism with respect to hit-metering, as long as this has
 no externally visible effect on its ability to comply with the
 Meter specification.

 This approach works for counting almost any aspect of the request
 stream, without embedding any specific list of countable aspects in
 the specification or proxy implementation.

7.2 Interaction with Transparent Content Negotiation

 [A description of the interaction between this design and the
 proposed Transparent Content Negotiation (TCN) design [6] will be
 made available in a later document.]

8 A Note on Capturing Referrals

 It is alleged that some advertisers want to pay content providers,
 not by the "hit", but by the "nibble" -- the number of people who
 actually click on the ad to get more information.

Mogul & Leach Standards Track [Page 32]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 Now, HTTP already has a mechanism for doing this: the "Referer"
 header. However, perhaps it ought to be disabled for privacy reasons
 -- according the HTTP/1.1 spec:

 "Because the source of the link may be private information or may
 reveal an otherwise private information source, it is strongly
 recommended that the user be able to select whether or not the
 Referer field is sent."

 However, in the case of ads, the source of the link actually wants to
 let the referred-to page know where the reference came from.

 This does not require the addition of any extra mechanism, but rather
 can use schemes that embed the referrer in the URI in a manner
 similar to this:

 http://www.blah.com/ad-reference?from=site1

 Such a URI should point to a resource (perhaps a CGI script) which
 returns a 302 redirect to the real page

 http://www.blah.com/ad-reference.html

 Proxies which do not cache 302s will cause one hit on the redirection
 page per use, but the real page will get cached. Proxies which do
 cache 302s and report hits on the cached 302s will behave optimally.

 This approach has the advantage that it works whether or not the
 end-client has disabled the use of Referer. Combined with the rest
 of the hit-metering proposal in this design, this approach allows,
 for example, an advertiser to know how often a reference to an
 advertisement was made from a particular page.

9 Alternative proposals

 There might be a number of other ways of gathering demographic and
 usage information; other mechanisms might respond to a different set
 of needs than this proposal does. This proposal certainly does not
 preclude the proposal or deployment of other such mechanisms, and
 many of them may be complementary to and compatible with the
 mechanism proposed here.

 There has been some speculation that statistical sampling methods
 might be used to gather reasonably accurate data. One such proposal
 is to manipulate cache expiration times so that selected resources
 are uncachable for carefully chosen periods, allowing servers to
 accurately count accesses during those periods. The hit-metering
 mechanism proposed here is entirely complementary to that approach,

Mogul & Leach Standards Track [Page 33]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 since it could be used to reduce the cost of gathering those counts.
 James Pitkow has written a paper comparing an earlier draft of this
 hit-metering proposal with sampling approaches [9].

 Phillip Hallam-Baker has proposed using a log-exchange protocol [5],
 by which a server could request a proxy’s logs by making an HTTP
 request to the proxy. This proposal asserts that it is "believed to
 operate correctly in configurations involving multiple proxies", but
 it is not clear that this is true if an outer proxy is used as a
 (one-way) firewall. The proposal also leaves a number of open
 issues, such as how an origin server can be sure that all of the
 proxies in the request subtree actually support log-exchange. It is
 also not clear how this proposal couples a proxy’s support of log-
 exchange to a server’s permission to cache a response.

 For general background on the topic of Web measurement standards, see
 the discussion by Thomas P. Novak and Donna L. Hoffman [8]. Also see
 the "Privacy and Demographics Overview" page maintained by by the
 World Wide Web Consortium [10], which includes a pointer to some
 tentative proposals for gathering consumer demographics (not just
 counting references) [3].

10 Security Considerations

 Which outbound clients should a server (proxy or origin) trust to
 report hit counts? A malicious proxy could easily report a large
 number of hits on some page, and thus perhaps cause a large payment
 to a content provider from an advertiser. To help avoid this
 possibility, a proxy may choose to only relay usage counts received
 from its outbound proxies to its inbound servers when the proxies
 have authenticated themselves using Proxy-Authorization and/or they
 are on a list of approved proxies.

 It is not possible to enforce usage limits if a proxy is willing to
 cheat (i.e., it offers to limit usage but then ignores a server’s
 Meter directive).

 Regarding privacy: it appears that the design in this document does
 not reveal any more information about individual users than would
 already be revealed by implementation of the existing HTTP/1.1
 support for "Cache-control: max-age=0, proxy-revalidate" or "Cache-
 control: s-maxage=0". It may, in fact, help to conceal certain
 aspects of the organizational structure on the outbound side of a
 proxy. In any case, the conflict between user requirements for
 anonymity and origin server requirements for demographic information
 cannot be resolved by purely technical means.

Mogul & Leach Standards Track [Page 34]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

11 Acknowledgments

 We gratefully acknowledge the constructive comments received from
 Anselm Baird-Smith, Ted Hardie, Koen Holtman (who suggested the
 technique described in section 8), Dave Kristol, Ari Luotonen,
 Patrick R. McManus, Ingrid Melve, and James Pitkow.

12 References

 1. Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 2. Anwat Chankhunthod, Peter B. Danzig, Chuck Neerdaels, Michael
 F. Schwartz, and Kurt J. Worrell. A Hierarchical Internet Object
 Cache. Proc. 1996 USENIX Technical Conf., San Diego, January,
 1996, pp. 153-163.

 3. Daniel W. Connolly. Proposals for Gathering Consumer
 Demographics.
 http://www.w3.org/pub/WWW/Demographics/Proposals.html.

 4. Fielding, R., Gettys, J., Mogul, J., Nielsen, H. and T.
 Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1," RFC 2068,
 January, 1997.

 5. Phillip M. Hallam-Baker. Notification for Proxy Caches. W3C
 Working Draft WD-proxy-960221, World Wide Web Consortium,
 February, 1996. http://www.w3.org/pub/WWW/TR/WD-proxy.html.

 6. Holtman, K., and A. Mutz, "Transparent Content Negotiation in
 HTTP", Work in Progress.

 7. Mogul, J., "Forcing HTTP/1.1 proxies to revalidate responses",
 Work in Progress.

 8. Thomas P. Novak and Donna L. Hoffman. New Metrics for New Media:
 Toward the Development of Web Measurement Standards. This is a
 draft paper, currently available at http://
 www2000.ogsm.vanderbilt.edu/novak/web.standards/webstand.html.
 Cited by permission of the author; do not quote or cite without
 permission.

 9. James Pitkow. In search of reliable usage data on the WWW.
 Proc. Sixth International World Wide Web Conference, Santa Clara,
 CA, April, 1997.

Mogul & Leach Standards Track [Page 35]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

 10. Joseph Reagle, Rohit Khare, Dan Connolly, and Tim Berners-Lee.
 Privacy and Demographics Overview.
 http://www.w3.org/pub/WWW/Demographics/.

 11. Linda Tauscher and Saul Greenberg. Revisitation Patterns in
 World Wide Web Navigation. Research Report 96/587/07, Department
 of Computer Science, University of Calgary, March, 1996.
 http://www.cpsc.ucalgary.ca/projects/grouplab/
 papers/96WebReuse/TechReport96.html.

 12. Wessels, D., and K. Claffy "Internet Cache Protocol (ICP),
 version 2", RFC 2186, September 1997.

13 Authors’ Addresses

 Jeffrey C. Mogul
 Western Research Laboratory
 Digital Equipment Corporation
 250 University Avenue
 Palo Alto, California, 94305, U.S.A.

 EMail: mogul@wrl.dec.com
 Phone: 1 415 617 3304 (email preferred)

 Paul J. Leach
 Microsoft
 1 Microsoft Way
 Redmond, Washington, 98052, U.S.A.

 EMail: paulle@microsoft.com

Mogul & Leach Standards Track [Page 36]

RFC 2227 Hit-Metering and Usage-Limiting October 1997

14 Full Copyright Statement

 Copyright (C) The Internet Society (1997). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implmentation may be prepared, copied, published
 andand distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Mogul & Leach Standards Track [Page 37]

