
Network Working Group M. Horowitz
Request for Comments: 2228 Cygnus Solutions
Updates: 959 S. Lunt
Category: Standards Track Bellcore
 October 1997

 FTP Security Extensions

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1997). All Rights Reserved.

Abstract

 This document defines extensions to the FTP specification STD 9, RFC
 959, "FILE TRANSFER PROTOCOL (FTP)" (October 1985). These extensions
 provide strong authentication, integrity, and confidentiality on both
 the control and data channels with the introduction of new optional
 commands, replies, and file transfer encodings.

 The following new optional commands are introduced in this
 specification:

 AUTH (Authentication/Security Mechanism),
 ADAT (Authentication/Security Data),
 PROT (Data Channel Protection Level),
 PBSZ (Protection Buffer Size),
 CCC (Clear Command Channel),
 MIC (Integrity Protected Command),
 CONF (Confidentiality Protected Command), and
 ENC (Privacy Protected Command).

 A new class of reply types (6yz) is also introduced for protected
 replies.

 None of the above commands are required to be implemented, but
 interdependencies exist. These dependencies are documented with the
 commands.

 Note that this specification is compatible with STD 9, RFC 959.

Horowitz & Lunt Standards Track [Page 1]

RFC 2228 FTP Security Extensions October 1997

1. Introduction

 The File Transfer Protocol (FTP) currently defined in STD 9, RFC 959
 and in place on the Internet uses usernames and passwords passed in
 cleartext to authenticate clients to servers (via the USER and PASS
 commands). Except for services such as "anonymous" FTP archives,
 this represents a security risk whereby passwords can be stolen
 through monitoring of local and wide-area networks. This either aids
 potential attackers through password exposure and/or limits
 accessibility of files by FTP servers who cannot or will not accept
 the inherent security risks.

 Aside from the problem of authenticating users in a secure manner,
 there is also the problem of authenticating servers, protecting
 sensitive data and/or verifying its integrity. An attacker may be
 able to access valuable or sensitive data merely by monitoring a
 network, or through active means may be able to delete or modify the
 data being transferred so as to corrupt its integrity. An active
 attacker may also initiate spurious file transfers to and from a site
 of the attacker’s choice, and may invoke other commands on the
 server. FTP does not currently have any provision for the encryption
 or verification of the authenticity of commands, replies, or
 transferred data. Note that these security services have value even
 to anonymous file access.

 Current practice for sending files securely is generally either:

 1. via FTP of files pre-encrypted under keys which are manually
 distributed,

 2. via electronic mail containing an encoding of a file encrypted
 under keys which are manually distributed,

 3. via a PEM message, or

 4. via the rcp command enhanced to use Kerberos.

 None of these means could be considered even a de facto standard, and
 none are truly interactive. A need exists to securely transfer files
 using FTP in a secure manner which is supported within the FTP
 protocol in a consistent manner and which takes advantage of existing
 security infrastructure and technology. Extensions are necessary to
 the FTP specification if these security services are to be introduced
 into the protocol in an interoperable way.

Horowitz & Lunt Standards Track [Page 2]

RFC 2228 FTP Security Extensions October 1997

 Although the FTP control connection follows the Telnet protocol, and
 Telnet has defined an authentication and encryption option [TELNET-
 SEC], [RFC-1123] explicitly forbids the use of Telnet option
 negotiation over the control connection (other than Synch and IP).

 Also, the Telnet authentication and encryption option does not
 provide for integrity protection only (without confidentiality), and
 does not address the protection of the data channel.

2. FTP Security Overview

 At the highest level, the FTP security extensions seek to provide an
 abstract mechanism for authenticating and/or authorizing connections,
 and integrity and/or confidentiality protecting commands, replies,
 and data transfers.

 In the context of FTP security, authentication is the establishment
 of a client’s identity and/or a server’s identity in a secure way,
 usually using cryptographic techniques. The basic FTP protocol does
 not have a concept of authentication.

 Authorization is the process of validating a user for login. The
 basic authorization process involves the USER, PASS, and ACCT
 commands. With the FTP security extensions, authentication
 established using a security mechanism may also be used to make the
 authorization decision.

 Without the security extensions, authentication of the client, as
 this term is usually understood, never happens. FTP authorization is
 accomplished with a password, passed on the network in the clear as
 the argument to the PASS command. The possessor of this password is
 assumed to be authorized to transfer files as the user named in the
 USER command, but the identity of the client is never securely
 established.

 An FTP security interaction begins with a client telling the server
 what security mechanism it wants to use with the AUTH command. The
 server will either accept this mechanism, reject this mechanism, or,
 in the case of a server which does not implement the security
 extensions, reject the command completely. The client may try
 multiple security mechanisms until it requests one which the server
 accepts. This allows a rudimentary form of negotiation to take
 place. (If more complex negotiation is desired, this may be
 implemented as a security mechanism.) The server’s reply will
 indicate if the client must respond with additional data for the

Horowitz & Lunt Standards Track [Page 3]

RFC 2228 FTP Security Extensions October 1997

 security mechanism to interpret. If none is needed, this will
 usually mean that the mechanism is one where the password (specified
 by the PASS command) is to be interpreted differently, such as with a
 token or one-time password system.

 If the server requires additional security information, then the
 client and server will enter into a security data exchange. The
 client will send an ADAT command containing the first block of
 security data. The server’s reply will indicate if the data exchange
 is complete, if there was an error, or if more data is needed. The
 server’s reply can optionally contain security data for the client to
 interpret. If more data is needed, the client will send another ADAT
 command containing the next block of data, and await the server’s
 reply. This exchange can continue as many times as necessary. Once
 this exchange completes, the client and server have established a
 security association. This security association may include
 authentication (client, server, or mutual) and keying information for
 integrity and/or confidentiality, depending on the mechanism in use.

 The term "security data" here is carefully chosen. The purpose of
 the security data exchange is to establish a security association,
 which might not actually include any authentication at all, between
 the client and the server as described above. For instance, a
 Diffie-Hellman exchange establishes a secret key, but no
 authentication takes place. If an FTP server has an RSA key pair but
 the client does not, then the client can authenticate the server, but
 the server cannot authenticate the client.

 Once a security association is established, authentication which is a
 part of this association may be used instead of or in addition to the
 standard username/password exchange for authorizing a user to connect
 to the server. A username specified by the USER command is always
 required to specify the identity to be used on the server.

 In order to prevent an attacker from inserting or deleting commands
 on the control stream, if the security association supports
 integrity, then the server and client must use integrity protection
 on the control stream, unless it first transmits a CCC command to
 turn off this requirement. Integrity protection is performed with
 the MIC and ENC commands, and the 63z reply codes. The CCC command
 and its reply must be transmitted with integrity protection.
 Commands and replies may be transmitted without integrity (that is,
 in the clear or with confidentiality only) only if no security
 association is established, the negotiated security association does
 not support integrity, or the CCC command has succeeded.

Horowitz & Lunt Standards Track [Page 4]

RFC 2228 FTP Security Extensions October 1997

 Once the client and server have negotiated with the PBSZ command an
 acceptable buffer size for encapsulating protected data over the data
 channel, the security mechanism may also be used to protect data
 channel transfers.

 Policy is not specified by this document. In particular, client and
 server implementations may choose to implement restrictions on what
 operations can be performed depending on the security association
 which exists. For example, a server may require that a client
 authorize via a security mechanism rather than using a password,
 require that the client provide a one-time password from a token,
 require at least integrity protection on the command channel, or
 require that certain files only be transmitted encrypted. An
 anonymous ftp client might refuse to do file transfers without
 integrity protection in order to insure the validity of files
 downloaded.

 No particular set of functionality is required, except as
 dependencies described in the next section. This means that none of
 authentication, integrity, or confidentiality are required of an
 implementation, although a mechanism which does none of these is not
 of much use. For example, it is acceptable for a mechanism to
 implement only integrity protection, one-way authentication and/or
 encryption, encryption without any authentication or integrity
 protection, or any other subset of functionality if policy or
 technical considerations make this desirable. Of course, one peer
 might require as a matter of policy stronger protection than the
 other is able to provide, preventing perfect interoperability.

3. New FTP Commands

 The following commands are optional, but dependent on each other.
 They are extensions to the FTP Access Control Commands.

 The reply codes documented here are generally described as
 recommended, rather than required. The intent is that reply codes
 describing the full range of success and failure modes exist, but
 that servers be allowed to limit information presented to the client.
 For example, a server might implement a particular security
 mechanism, but have a policy restriction against using it. The
 server should respond with a 534 reply code in this case, but may
 respond with a 504 reply code if it does not wish to divulge that the
 disallowed mechanism is supported. If the server does choose to use
 a different reply code than the recommended one, it should try to use
 a reply code which only differs in the last digit. In all cases, the
 server must use a reply code which is documented as returnable from
 the command received, and this reply code must begin with the same
 digit as the recommended reply code for the situation.

Horowitz & Lunt Standards Track [Page 5]

RFC 2228 FTP Security Extensions October 1997

 AUTHENTICATION/SECURITY MECHANISM (AUTH)

 The argument field is a Telnet string identifying a supported
 mechanism. This string is case-insensitive. Values must be
 registered with the IANA, except that values beginning with "X-"
 are reserved for local use.

 If the server does not recognize the AUTH command, it must respond
 with reply code 500. This is intended to encompass the large
 deployed base of non-security-aware ftp servers, which will
 respond with reply code 500 to any unrecognized command. If the
 server does recognize the AUTH command but does not implement the
 security extensions, it should respond with reply code 502.

 If the server does not understand the named security mechanism, it
 should respond with reply code 504.

 If the server is not willing to accept the named security
 mechanism, it should respond with reply code 534.

 If the server is not able to accept the named security mechanism,
 such as if a required resource is unavailable, it should respond
 with reply code 431.

 If the server is willing to accept the named security mechanism,
 but requires security data, it must respond with reply code 334.

 If the server is willing to accept the named security mechanism,
 and does not require any security data, it must respond with reply
 code 234.

 If the server is responding with a 334 reply code, it may include
 security data as described in the next section.

 Some servers will allow the AUTH command to be reissued in order
 to establish new authentication. The AUTH command, if accepted,
 removes any state associated with prior FTP Security commands.
 The server must also require that the user reauthorize (that is,
 reissue some or all of the USER, PASS, and ACCT commands) in this
 case (see section 4 for an explanation of "authorize" in this
 context).

Horowitz & Lunt Standards Track [Page 6]

RFC 2228 FTP Security Extensions October 1997

 AUTHENTICATION/SECURITY DATA (ADAT)

 The argument field is a Telnet string representing base 64 encoded
 security data (see Section 9, "Base 64 Encoding"). If a reply
 code indicating success is returned, the server may also use a
 string of the form "ADAT=base64data" as the text part of the reply
 if it wishes to convey security data back to the client.

 The data in both cases is specific to the security mechanism
 specified by the previous AUTH command. The ADAT command, and the
 associated replies, allow the client and server to conduct an
 arbitrary security protocol. The security data exchange must
 include enough information for both peers to be aware of which
 optional features are available. For example, if the client does
 not support data encryption, the server must be made aware of
 this, so it will know not to send encrypted command channel
 replies. It is strongly recommended that the security mechanism
 provide sequencing on the command channel, to insure that commands
 are not deleted, reordered, or replayed.

 The ADAT command must be preceded by a successful AUTH command,
 and cannot be issued once a security data exchange completes
 (successfully or unsuccessfully), unless it is preceded by an AUTH
 command to reset the security state.

 If the server has not yet received an AUTH command, or if a prior
 security data exchange completed, but the security state has not
 been reset with an AUTH command, it should respond with reply code
 503.

 If the server cannot base 64 decode the argument, it should
 respond with reply code 501.

 If the server rejects the security data (if a checksum fails, for
 instance), it should respond with reply code 535.

 If the server accepts the security data, and requires additional
 data, it should respond with reply code 335.

 If the server accepts the security data, but does not require any
 additional data (i.e., the security data exchange has completed
 successfully), it must respond with reply code 235.

 If the server is responding with a 235 or 335 reply code, then it
 may include security data in the text part of the reply as
 specified above.

Horowitz & Lunt Standards Track [Page 7]

RFC 2228 FTP Security Extensions October 1997

 If the ADAT command returns an error, the security data exchange
 will fail, and the client must reset its internal security state.
 If the client becomes unsynchronized with the server (for example,
 the server sends a 234 reply code to an AUTH command, but the
 client has more data to transmit), then the client must reset the
 server’s security state.

 PROTECTION BUFFER SIZE (PBSZ)

 The argument is a decimal integer representing the maximum size,
 in bytes, of the encoded data blocks to be sent or received during
 file transfer. This number shall be no greater than can be
 represented in a 32-bit unsigned integer.

 This command allows the FTP client and server to negotiate a
 maximum protected buffer size for the connection. There is no
 default size; the client must issue a PBSZ command before it can
 issue the first PROT command.

 The PBSZ command must be preceded by a successful security data
 exchange.

 If the server cannot parse the argument, or if it will not fit in
 32 bits, it should respond with a 501 reply code.

 If the server has not completed a security data exchange with the
 client, it should respond with a 503 reply code.

 Otherwise, the server must reply with a 200 reply code. If the
 size provided by the client is too large for the server, it must
 use a string of the form "PBSZ=number" in the text part of the
 reply to indicate a smaller buffer size. The client and the
 server must use the smaller of the two buffer sizes if both buffer
 sizes are specified.

 DATA CHANNEL PROTECTION LEVEL (PROT)

 The argument is a single Telnet character code specifying the data
 channel protection level.

 This command indicates to the server what type of data channel
 protection the client and server will be using. The following
 codes are assigned:

 C - Clear
 S - Safe
 E - Confidential
 P - Private

Horowitz & Lunt Standards Track [Page 8]

RFC 2228 FTP Security Extensions October 1997

 The default protection level if no other level is specified is
 Clear. The Clear protection level indicates that the data channel
 will carry the raw data of the file transfer, with no security
 applied. The Safe protection level indicates that the data will
 be integrity protected. The Confidential protection level
 indicates that the data will be confidentiality protected. The
 Private protection level indicates that the data will be integrity
 and confidentiality protected.

 It is reasonable for a security mechanism not to provide all data
 channel protection levels. It is also reasonable for a mechanism
 to provide more protection at a level than is required (for
 instance, a mechanism might provide Confidential protection, but
 include integrity-protection in that encoding, due to API or other
 considerations).

 The PROT command must be preceded by a successful protection
 buffer size negotiation.

 If the server does not understand the specified protection level,
 it should respond with reply code 504.

 If the current security mechanism does not support the specified
 protection level, the server should respond with reply code 536.

 If the server has not completed a protection buffer size
 negotiation with the client, it should respond with a 503 reply
 code.

 The PROT command will be rejected and the server should reply 503
 if no previous PBSZ command was issued.

 If the server is not willing to accept the specified protection
 level, it should respond with reply code 534.

 If the server is not able to accept the specified protection
 level, such as if a required resource is unavailable, it should
 respond with reply code 431.

 Otherwise, the server must reply with a 200 reply code to indicate
 that the specified protection level is accepted.

 CLEAR COMMAND CHANNEL (CCC)

 This command does not take an argument.

Horowitz & Lunt Standards Track [Page 9]

RFC 2228 FTP Security Extensions October 1997

 It is desirable in some environments to use a security mechanism
 to authenticate and/or authorize the client and server, but not to
 perform any integrity checking on the subsequent commands. This
 might be used in an environment where IP security is in place,
 insuring that the hosts are authenticated and that TCP streams
 cannot be tampered, but where user authentication is desired.

 If unprotected commands are allowed on any connection, then an
 attacker could insert a command on the control stream, and the
 server would have no way to know that it was invalid. In order to
 prevent such attacks, once a security data exchange completes
 successfully, if the security mechanism supports integrity, then
 integrity (via the MIC or ENC command, and 631 or 632 reply) must
 be used, until the CCC command is issued to enable non-integrity
 protected control channel messages. The CCC command itself must
 be integrity protected.

 Once the CCC command completes successfully, if a command is not
 protected, then the reply to that command must also not be
 protected. This is to support interoperability with clients which
 do not support protection once the CCC command has been issued.

 This command must be preceded by a successful security data
 exchange.

 If the command is not integrity-protected, the server must respond
 with a 533 reply code.

 If the server is not willing to turn off the integrity
 requirement, it should respond with a 534 reply code.

 Otherwise, the server must reply with a 200 reply code to indicate
 that unprotected commands and replies may now be used on the
 command channel.

 INTEGRITY PROTECTED COMMAND (MIC) and
 CONFIDENTIALITY PROTECTED COMMAND (CONF) and
 PRIVACY PROTECTED COMMAND (ENC)

 The argument field of MIC is a Telnet string consisting of a base
 64 encoded "safe" message produced by a security mechanism
 specific message integrity procedure. The argument field of CONF
 is a Telnet string consisting of a base 64 encoded "confidential"
 message produced by a security mechanism specific confidentiality
 procedure. The argument field of ENC is a Telnet string
 consisting of a base 64 encoded "private" message produced by a
 security mechanism specific message integrity and confidentiality
 procedure.

Horowitz & Lunt Standards Track [Page 10]

RFC 2228 FTP Security Extensions October 1997

 The server will decode and/or verify the encoded message.

 This command must be preceded by a successful security data
 exchange.

 A server may require that the first command after a successful
 security data exchange be CCC, and not implement the protection
 commands at all. In this case, the server should respond with a
 502 reply code.

 If the server cannot base 64 decode the argument, it should
 respond with a 501 reply code.

 If the server has not completed a security data exchange with the
 client, it should respond with a 503 reply code.

 If the server has completed a security data exchange with the
 client using a mechanism which supports integrity, and requires a
 CCC command due to policy or implementation limitations, it should
 respond with a 503 reply code.

 If the server rejects the command because it is not supported by
 the current security mechanism, the server should respond with
 reply code 537.

 If the server rejects the command (if a checksum fails, for
 instance), it should respond with reply code 535.

 If the server is not willing to accept the command (if privacy is
 required by policy, for instance, or if a CONF command is received
 before a CCC command), it should respond with reply code 533.

 Otherwise, the command will be interpreted as an FTP command. An
 end-of-line code need not be included, but if one is included, it
 must be a Telnet end-of-line code, not a local end-of-line code.

 The server may require that, under some or all circumstances, all
 commands be protected. In this case, it should make a 533 reply
 to commands other than MIC, CONF, and ENC.

4. Login Authorization

 The security data exchange may, among other things, establish the
 identity of the client in a secure way to the server. This identity
 may be used as one input to the login authorization process.

Horowitz & Lunt Standards Track [Page 11]

RFC 2228 FTP Security Extensions October 1997

 In response to the FTP login commands (AUTH, PASS, ACCT), the server
 may choose to change the sequence of commands and replies specified
 by RFC 959 as follows. There are also some new replies available.

 If the server is willing to allow the user named by the USER command
 to log in based on the identity established by the security data
 exchange, it should respond with reply code 232.

 If the security mechanism requires a challenge/response password, it
 should respond to the USER command with reply code 336. The text
 part of the reply should contain the challenge. The client must
 display the challenge to the user before prompting for the password
 in this case. This is particularly relevant to more sophisticated
 clients or graphical user interfaces which provide dialog boxes or
 other modal input. These clients should be careful not to prompt for
 the password before the username has been sent to the server, in case
 the user needs the challenge in the 336 reply to construct a valid
 password.

5. New FTP Replies

 The new reply codes are divided into two classes. The first class is
 new replies made necessary by the new FTP Security commands. The
 second class is a new reply type to indicate protected replies.

 5.1. New individual reply codes

 232 User logged in, authorized by security data exchange.
 234 Security data exchange complete.
 235 [ADAT=base64data]
 ; This reply indicates that the security data exchange
 ; completed successfully. The square brackets are not
 ; to be included in the reply, but indicate that
 ; security data in the reply is optional.

 334 [ADAT=base64data]
 ; This reply indicates that the requested security mechanism
 ; is ok, and includes security data to be used by the client
 ; to construct the next command. The square brackets are not
 ; to be included in the reply, but indicate that
 ; security data in the reply is optional.
 335 [ADAT=base64data]
 ; This reply indicates that the security data is
 ; acceptable, and more is required to complete the
 ; security data exchange. The square brackets
 ; are not to be included in the reply, but indicate
 ; that security data in the reply is optional.

Horowitz & Lunt Standards Track [Page 12]

RFC 2228 FTP Security Extensions October 1997

 336 Username okay, need password. Challenge is "...."
 ; The exact representation of the challenge should be chosen
 ; by the mechanism to be sensible to the human user of the
 ; system.

 431 Need some unavailable resource to process security.

 533 Command protection level denied for policy reasons.
 534 Request denied for policy reasons.
 535 Failed security check (hash, sequence, etc).
 536 Requested PROT level not supported by mechanism.
 537 Command protection level not supported by security mechanism.

 5.2. Protected replies.

 One new reply type is introduced:

 6yz Protected reply

 There are three reply codes of this type. The first, reply
 code 631 indicates an integrity protected reply. The
 second, reply code 632, indicates a confidentiality and
 integrity protected reply. the third, reply code 633,
 indicates a confidentiality protected reply.

 The text part of a 631 reply is a Telnet string consisting
 of a base 64 encoded "safe" message produced by a security
 mechanism specific message integrity procedure. The text
 part of a 632 reply is a Telnet string consisting of a base
 64 encoded "private" message produced by a security
 mechanism specific message confidentiality and integrity
 procedure. The text part of a 633 reply is a Telnet string
 consisting of a base 64 encoded "confidential" message
 produced by a security mechanism specific message
 confidentiality procedure.

 The client will decode and verify the encoded reply. How
 failures decoding or verifying replies are handled is
 implementation-specific. An end-of-line code need not be
 included, but if one is included, it must be a Telnet end-
 of-line code, not a local end-of-line code.

 A protected reply may only be sent if a security data
 exchange has succeeded.

 The 63z reply may be a multiline reply. In this case, the
 plaintext reply must be broken up into a number of
 fragments. Each fragment must be protected, then base 64

Horowitz & Lunt Standards Track [Page 13]

RFC 2228 FTP Security Extensions October 1997

 encoded in order into a separate line of the multiline
 reply. There need not be any correspondence between the
 line breaks in the plaintext reply and the encoded reply.
 Telnet end-of-line codes must appear in the plaintext of the
 encoded reply, except for the final end-of-line code, which
 is optional.

 The multiline reply must be formatted more strictly than the
 continuation specification in RFC 959. In particular, each
 line before the last must be formed by the reply code,
 followed immediately by a hyphen, followed by a base 64
 encoded fragment of the reply.

 For example, if the plaintext reply is

 123-First line
 Second line
 234 A line beginning with numbers
 123 The last line

 then the resulting protected reply could be any of the
 following (the first example has a line break only to fit
 within the margins):

 631 base64(protect("123-First line\r\nSecond line\r\n 234 A line
 631-base64(protect("123-First line\r\n"))
 631-base64(protect("Second line\r\n"))
 631-base64(protect(" 234 A line beginning with numbers\r\n"))
 631 base64(protect("123 The last line"))

 631-base64(protect("123-First line\r\nSecond line\r\n 234 A line b"))
 631 base64(protect("eginning with numbers\r\n123 The last line\r\n"))

6. Data Channel Encapsulation

 When data transfers are protected between the client and server (in
 either direction), certain transformations and encapsulations must be
 performed so that the recipient can properly decode the transmitted
 file.

 The sender must apply all protection services after transformations
 associated with the representation type, file structure, and transfer
 mode have been performed. The data sent over the data channel is,
 for the purposes of protection, to be treated as a byte stream.

 When performing a data transfer in an authenticated manner, the
 authentication checks are performed on individual blocks of the file,
 rather than on the file as a whole. Consequently, it is possible for

Horowitz & Lunt Standards Track [Page 14]

RFC 2228 FTP Security Extensions October 1997

 insertion attacks to insert blocks into the data stream (i.e.,
 replays) that authenticate correctly, but result in a corrupted file
 being undetected by the receiver. To guard against such attacks, the
 specific security mechanism employed should include mechanisms to
 protect against such attacks. Many GSS-API mechanisms usable with
 the specification in Appendix I, and the Kerberos mechanism in
 Appendix II do so.

 The sender must take the input byte stream, and break it up into
 blocks such that each block, when encoded using a security mechanism
 specific procedure, will be no larger than the buffer size negotiated
 by the client with the PBSZ command. Each block must be encoded,
 then transmitted with the length of the encoded block prepended as a
 four byte unsigned integer, most significant byte first.

 When the end of the file is reached, the sender must encode a block
 of zero bytes, and send this final block to the recipient before
 closing the data connection.

 The recipient will read the four byte length, read a block of data
 that many bytes long, then decode and verify this block with a
 security mechanism specific procedure. This must be repeated until a
 block encoding a buffer of zero bytes is received. This indicates
 the end of the encoded byte stream.

 Any transformations associated with the representation type, file
 structure, and transfer mode are to be performed by the recipient on
 the byte stream resulting from the above process.

 When using block transfer mode, the sender’s (cleartext) buffer size
 is independent of the block size.

 The server will reply 534 to a STOR, STOU, RETR, LIST, NLST, or APPE
 command if the current protection level is not at the level dictated
 by the server’s security requirements for the particular file
 transfer.

 If any data protection services fail at any time during data transfer
 at the server end (including an attempt to send a buffer size greater
 than the negotiated maximum), the server will send a 535 reply to the
 data transfer command (either STOR, STOU, RETR, LIST, NLST, or APPE).

Horowitz & Lunt Standards Track [Page 15]

RFC 2228 FTP Security Extensions October 1997

7. Potential policy considerations

 While there are no restrictions on client and server policy, there
 are a few recommendations which an implementation should implement.

 - Once a security data exchange takes place, a server should require
 all commands be protected (with integrity and/or confidentiality),
 and it should protect all replies. Replies should use the same
 level of protection as the command which produced them. This
 includes replies which indicate failure of the MIC, CONF, and ENC
 commands. In particular, it is not meaningful to require that
 AUTH and ADAT be protected; it is meaningful and useful to require
 that PROT and PBSZ be protected. In particular, the use of CCC is
 not recommended, but is defined in the interest of
 interoperability between implementations which might desire such
 functionality.

 - A client should encrypt the PASS command whenever possible. It is
 reasonable for the server to refuse to accept a non-encrypted PASS
 command if the server knows encryption is available.

 - Although no security commands are required to be implemented, it
 is recommended that an implementation provide all commands which
 can be implemented, given the mechanisms supported and the policy
 considerations of the site (export controls, for instance).

8. Declarative specifications

 These sections are modelled after sections 5.3 and 5.4 of RFC 959,
 which describe the same information, except for the standard FTP
 commands and replies.

 8.1. FTP Security commands and arguments

 AUTH <SP> <mechanism-name> <CRLF>
 ADAT <SP> <base64data> <CRLF>
 PROT <SP> <prot-code> <CRLF>
 PBSZ <SP> <decimal-integer> <CRLF>
 MIC <SP> <base64data> <CRLF>
 CONF <SP> <base64data> <CRLF>
 ENC <SP> <base64data> <CRLF>

 <mechanism-name> ::= <string>
 <base64data> ::= <string>
 ; must be formatted as described in section 9
 <prot-code> ::= C | S | E | P
 <decimal-integer> ::= any decimal integer from 1 to (2^32)-1

Horowitz & Lunt Standards Track [Page 16]

RFC 2228 FTP Security Extensions October 1997

 8.2. Command-Reply sequences

 Security Association Setup
 AUTH
 234
 334
 502, 504, 534, 431
 500, 501, 421
 ADAT
 235
 335
 503, 501, 535
 500, 501, 421
 Data protection negotiation commands
 PBSZ
 200
 503
 500, 501, 421, 530
 PROT
 200
 504, 536, 503, 534, 431
 500, 501, 421, 530
 Command channel protection commands
 MIC
 535, 533
 500, 501, 421
 CONF
 535, 533
 500, 501, 421
 ENC
 535, 533
 500, 501, 421
 Security-Enhanced login commands (only new replies listed)
 USER
 232
 336
 Data channel commands (only new replies listed)
 STOR
 534, 535
 STOU
 534, 535
 RETR
 534, 535

Horowitz & Lunt Standards Track [Page 17]

RFC 2228 FTP Security Extensions October 1997

 LIST
 534, 535
 NLST
 534, 535
 APPE
 534, 535

 In addition to these reply codes, any security command can return
 500, 501, 502, 533, or 421. Any ftp command can return a reply
 code encapsulated in a 631, 632, or 633 reply once a security data
 exchange has completed successfully.

Horowitz & Lunt Standards Track [Page 18]

RFC 2228 FTP Security Extensions October 1997

9. State Diagrams

 This section includes a state diagram which demonstrates the flow of
 authentication and authorization in a security enhanced FTP
 implementation. The rectangular blocks show states where the client
 must issue a command, and the diamond blocks show states where the
 server must issue a response.

 ,------------------, USER
 __\| Unauthenticated |_________\
 | /| (new connection) | /|
 | ‘------------------’ |
 | | |
 | | AUTH |
 | V |
 | / \ |
 | 4yz,5yz / \ 234 |
 |<--------< >------------->. |
 | \ / | | | |
 | _/ | |
 | | | |
 | | 334 | |
 | V | |
 | ,--------------------, | |
 | | Need Security Data |<--. | |
 | ‘--------------------’ | | |
 | | | | |
 | | ADAT | | |
 | V | | |
 | / \ | | |
 | 4yz,5yz / \ 335 | | |
 ‘<--------< >-----------’ | |
 \ / | |
 _/ | |
 | | |
 | 235 | |
 V | |
 ,---------------. | |
 ,--->| Authenticated |<--------’ | After the client and server
 | ‘---------------’ | have completed authenti-
 | | | cation, command must be
 | | USER | integrity-protected if
 | | | integrity is available. The
 | |<-------------------’ CCC command may be issued to
 | V relax this restriction.

Horowitz & Lunt Standards Track [Page 19]

RFC 2228 FTP Security Extensions October 1997

 | / \
 | 4yz,5yz / \ 2yz
 |<--------< >------------->.
 | \ / |
 | _/ |
 | | |
 | | 3yz |
 | V |
 | ,---------------. |
 | | Need Password | |
 | ‘---------------’ |
 | | |
 | | PASS |
 | V |
 | / \ |
 | 4yz,5yz / \ 2yz |
 |<--------< >------------->|
 | \ / |
 | _/ |
 | | |
 | | 3yz |
 | V |
 | ,--------------. |
 | | Need Account | |
 | ‘--------------’ |
 | | |
 | | ACCT |
 | V |
 | / \ |
 | 4yz,5yz / \ 2yz |
 ‘<--------< >------------->|
 \ / |
 _/ |
 | |
 | 3yz |
 V |
 ,-------------. |
 | Authorized |/________|
 | (Logged in) |\
 ‘-------------’

Horowitz & Lunt Standards Track [Page 20]

RFC 2228 FTP Security Extensions October 1997

10. Base 64 Encoding

 Base 64 encoding is the same as the Printable Encoding described in
 Section 4.3.2.4 of [RFC-1421], except that line breaks must not be
 included. This encoding is defined as follows.

 Proceeding from left to right, the bit string resulting from the
 mechanism specific protection routine is encoded into characters
 which are universally representable at all sites, though not
 necessarily with the same bit patterns (e.g., although the character
 "E" is represented in an ASCII-based system as hexadecimal 45 and as
 hexadecimal C5 in an EBCDIC-based system, the local significance of
 the two representations is equivalent).

 A 64-character subset of International Alphabet IA5 is used, enabling
 6 bits to be represented per printable character. (The proposed
 subset of characters is represented identically in IA5 and ASCII.)
 The character "=" signifies a special processing function used for
 padding within the printable encoding procedure.

 The encoding process represents 24-bit groups of input bits as output
 strings of 4 encoded characters. Proceeding from left to right
 across a 24-bit input group output from the security mechanism
 specific message protection procedure, each 6-bit group is used as an
 index into an array of 64 printable characters, namely "[A-Z][a-
 z][0-9]+/". The character referenced by the index is placed in the
 output string. These characters are selected so as to be universally
 representable, and the set excludes characters with particular
 significance to Telnet (e.g., "<CR>", "<LF>", IAC).

 Special processing is performed if fewer than 24 bits are available
 in an input group at the end of a message. A full encoding quantum
 is always completed at the end of a message. When fewer than 24
 input bits are available in an input group, zero bits are added (on
 the right) to form an integral number of 6-bit groups. Output
 character positions which are not required to represent actual input
 data are set to the character "=". Since all canonically encoded
 output is an integral number of octets, only the following cases can
 arise: (1) the final quantum of encoding input is an integral
 multiple of 24 bits; here, the final unit of encoded output will be
 an integral multiple of 4 characters with no "=" padding, (2) the
 final quantum of encoding input is exactly 8 bits; here, the final
 unit of encoded output will be two characters followed by two "="
 padding characters, or (3) the final quantum of encoding input is
 exactly 16 bits; here, the final unit of encoded output will be three
 characters followed by one "=" padding character.

Horowitz & Lunt Standards Track [Page 21]

RFC 2228 FTP Security Extensions October 1997

 Implementors must keep in mind that the base 64 encodings in ADAT,
 MIC, CONF, and ENC commands, and in 63z replies may be arbitrarily
 long. Thus, the entire line must be read before it can be processed.
 Several successive reads on the control channel may be necessary. It
 is not appropriate to for a server to reject a command containing a
 base 64 encoding simply because it is too long (assuming that the
 decoding is otherwise well formed in the context in which it was
 sent).

 Case must not be ignored when reading commands and replies containing
 base 64 encodings.

11. Security Considerations

 This entire document deals with security considerations related to
 the File Transfer Protocol.

 Third party file transfers cannot be secured using these extensions,
 since a security context cannot be established between two servers
 using these facilities (no control connection exists between servers
 over which to pass ADAT tokens). Further work in this area is
 deferred.

12. Acknowledgements

 I would like to thank the members of the CAT WG, as well as all
 participants in discussions on the "cat-ietf@mit.edu" mailing list,
 for their contributions to this document. I would especially like to
 thank Sam Sjogren, John Linn, Ted Ts’o, Jordan Brown, Michael Kogut,
 Derrick Brashear, John Gardiner Myers, Denis Pinkas, and Karri Balk
 for their contributions to this work. Of course, without Steve Lunt,
 the author of the first six revisions of this document, it would not
 exist at all.

13. References

 [TELNET-SEC] Borman, D., "Telnet Authentication and Encryption
 Option", Work in Progress.

 [RFC-1123] Braden, R., "Requirements for Internet Hosts --
 Application and Support", STD 3, RFC 1123, October 1989.

 [RFC-1421] Linn, J., "Privacy Enhancement for Internet Electronic
 Mail: Part I: Message Encryption and Authentication Procedures",
 RFC 1421, February 1993.

Horowitz & Lunt Standards Track [Page 22]

RFC 2228 FTP Security Extensions October 1997

14. Author’s Address

 Marc Horowitz
 Cygnus Solutions
 955 Massachusetts Avenue
 Cambridge, MA 02139

 Phone: +1 617 354 7688
 EMail: marc@cygnus.com

Horowitz & Lunt Standards Track [Page 23]

RFC 2228 FTP Security Extensions October 1997

Appendix I: Specification under the GSSAPI

 In order to maximise the utility of new security mechanisms, it is
 desirable that new mechanisms be implemented as GSSAPI mechanisms
 rather than as FTP security mechanisms. This will enable existing
 ftp implementations to support the new mechanisms more easily, since
 little or no code will need to be changed. In addition, the
 mechanism will be usable by other protocols, such as IMAP, which are
 built on top of the GSSAPI, with no additional specification or
 implementation work needed by the mechanism designers.

 The security mechanism name (for the AUTH command) associated with
 all mechanisms employing the GSSAPI is GSSAPI. If the server
 supports a security mechanism employing the GSSAPI, it must respond
 with a 334 reply code indicating that an ADAT command is expected
 next.

 The client must begin the authentication exchange by calling
 GSS_Init_Sec_Context, passing in 0 for input_context_handle
 (initially), and a targ_name equal to output_name from
 GSS_Import_Name called with input_name_type of Host-Based Service and
 input_name_string of "ftp@hostname" where "hostname" is the fully
 qualified host name of the server with all letters in lower case.
 (Failing this, the client may try again using input_name_string of
 "host@hostname".) The output_token must then be base 64 encoded and
 sent to the server as the argument to an ADAT command. If
 GSS_Init_Sec_Context returns GSS_S_CONTINUE_NEEDED, then the client
 must expect a token to be returned in the reply to the ADAT command.
 This token must subsequently be passed to another call to
 GSS_Init_Sec_Context. In this case, if GSS_Init_Sec_Context returns
 no output_token, then the reply code from the server for the previous
 ADAT command must have been 235. If GSS_Init_Sec_Context returns
 GSS_S_COMPLETE, then no further tokens are expected from the server,
 and the client must consider the server authenticated.

 The server must base 64 decode the argument to the ADAT command and
 pass the resultant token to GSS_Accept_Sec_Context as input_token,
 setting acceptor_cred_handle to NULL (for "use default credentials"),
 and 0 for input_context_handle (initially). If an output_token is
 returned, it must be base 64 encoded and returned to the client by
 including "ADAT=base64string" in the text of the reply. If
 GSS_Accept_Sec_Context returns GSS_S_COMPLETE, the reply code must be
 235, and the server must consider the client authenticated. If
 GSS_Accept_Sec_Context returns GSS_S_CONTINUE_NEEDED, the reply code
 must be 335. Otherwise, the reply code should be 535, and the text
 of the reply should contain a descriptive error message.

Horowitz & Lunt Standards Track [Page 24]

RFC 2228 FTP Security Extensions October 1997

 The chan_bindings input to GSS_Init_Sec_Context and
 GSS_Accept_Sec_Context should use the client internet address and
 server internet address as the initiator and acceptor addresses,
 respectively. The address type for both should be GSS_C_AF_INET. No
 application data should be specified.

 Since GSSAPI supports anonymous peers to security contexts, it is
 possible that the client’s authentication of the server does not
 actually establish an identity.

 The procedure associated with MIC commands, 631 replies, and Safe
 file transfers is:

 GSS_Wrap for the sender, with conf_flag == FALSE

 GSS_Unwrap for the receiver

 The procedure associated with ENC commands, 632 replies, and Private
 file transfers is:

 GSS_Wrap for the sender, with conf_flag == TRUE
 GSS_Unwrap for the receiver

 CONF commands and 633 replies are not supported.

 Both the client and server should inspect the value of conf_avail to
 determine whether the peer supports confidentiality services.

 When the security state is reset (when AUTH is received a second
 time, or when REIN is received), this should be done by calling the
 GSS_Delete_sec_context function.

Appendix II: Specification under Kerberos version 4

 The security mechanism name (for the AUTH command) associated with
 Kerberos Version 4 is KERBEROS_V4. If the server supports
 KERBEROS_V4, it must respond with a 334 reply code indicating that an
 ADAT command is expected next.

 The client must retrieve a ticket for the Kerberos principal
 "ftp.hostname@realm" by calling krb_mk_req(3) with a principal name
 of "ftp", an instance equal to the first part of the canonical host
 name of the server with all letters in lower case (as returned by
 krb_get_phost(3)), the server’s realm name (as returned by
 krb_realmofhost(3)), and an arbitrary checksum. The ticket must then
 be base 64 encoded and sent as the argument to an ADAT command.

Horowitz & Lunt Standards Track [Page 25]

RFC 2228 FTP Security Extensions October 1997

 If the "ftp" principal name is not a registered principal in the
 Kerberos database, then the client may fall back on the "rcmd"
 principal name (same instance and realm). However, servers must
 accept only one or the other of these principal names, and must not
 be willing to accept either. Generally, if the server has a key for
 the "ftp" principal in its srvtab, then that principal only must be
 used, otherwise the "rcmd" principal only must be used.

 The server must base 64 decode the argument to the ADAT command and
 pass the result to krb_rd_req(3). The server must add one to the
 checksum from the authenticator, convert the result to network byte
 order (most significant byte first), and sign it using
 krb_mk_safe(3), and base 64 encode the result. Upon success, the
 server must reply to the client with a 235 code and include
 "ADAT=base64string" in the text of the reply. Upon failure, the
 server should reply 535.

 Upon receipt of the 235 reply from the server, the client must parse
 the text of the reply for the base 64 encoded data, decode it,
 convert it from network byte order, and pass the result to
 krb_rd_safe(3). The client must consider the server authenticated if
 the resultant checksum is equal to one plus the value previously
 sent.

 The procedure associated with MIC commands, 631 replies, and Safe
 file transfers is:

 krb_mk_safe(3) for the sender
 krb_rd_safe(3) for the receiver

 The procedure associated with ENC commands, 632 replies, and Private
 file transfers is:

 krb_mk_priv(3) for the sender
 krb_rd_priv(3) for the receiver

 CONF commands and 633 replies are not supported.

 Note that this specification for KERBEROS_V4 contains no provision
 for negotiating alternate means for integrity and confidentiality
 routines. Note also that the ADAT exchange does not convey whether
 the peer supports confidentiality services.

 In order to stay within the allowed PBSZ, implementors must take note
 that a cleartext buffer will grow by 31 bytes when processed by
 krb_mk_safe(3) and will grow by 26 bytes when processed by
 krb_mk_priv(3).

Horowitz & Lunt Standards Track [Page 26]

RFC 2228 FTP Security Extensions October 1997

Full Copyright Statement

 Copyright (C) The Internet Society (1997). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implmentation may be prepared, copied, published
 andand distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Horowitz & Lunt Standards Track [Page 27]

