
Network Working Group J. Lyon
Request for Comments: 2371 Microsoft
Category: Standards Track K. Evans
 J. Klein
 Tandem Computers
 July 1998

 Transaction Internet Protocol
 Version 3.0

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1998). All Rights Reserved.

Abstract

 In many applications where different nodes cooperate on some work,
 there is a need to guarantee that the work happens atomically. That
 is, each node must reach the same conclusion as to whether the work
 is to be completed, even in the face of failures. This document
 proposes a simple, easily-implemented protocol for achieving this
 end.

Table of Contents

 1. Introduction 2
 2. Example Usage 3
 3. Transactions 4
 4. Connections 4
 5. Transaction Identifiers 5
 6. Pushing vs. Pulling Transactions 5
 7. TIP Transaction Manager Identification & Connection Establishment 6
 8. TIP Uniform Resource Locators 8
 9. States of a Connection 10
 10. Protocol Versioning 12
 11. Commands and Responses 12
 12. Command Pipelining 13
 13. TIP Commands 13
 14. Error Handling 20

Lyon, et. al. Standards Track [Page 1]

RFC 2371 TIP Version 3.0 July 1998

 15. Connection Failure and Recovery 20
 16. Security Considerations 22
 17. References 25
 18. Authors’ Addresses 26
 19. Comments 26
 Appendix A. The TIP Multiplexing Protocol Version 2.0. 27
 Fully Copyright Statement 31

1. Introduction

 The standard method for achieving atomic commitment is the two-phase
 commit protocol; see [1] for an introduction to atomic commitment and
 two-phase commit protocols.

 Numerous two-phase commit protocols have been implemented over the
 years. However, none of them has become widely used in the Internet,
 due mainly to their complexity. Most of that complexity comes from
 the fact that the two-phase commit protocol is bundled together with
 a specific program-to-program communication protocol, and that
 protocol lives on top of a very large infrastructure.

 This memo proposes a very simple two-phase commit protocol. It
 achieves its simplicity by specifying only how different nodes agree
 on the outcome of a transaction; it allows (even requires) that the
 subject matter on which the nodes are agreeing be communicated via
 other protocols. By doing so, we avoid all of the issues related to
 application communication semantics and data representation (to name
 just a few). Independent of the application communication protocol a
 transaction manager may use the Transport Layer Security protocol [3]
 to authenticate other transaction managers and encrypt messages.

 It is envisioned that this protocol will be used mainly for a
 transaction manager on one Internet node to communicate with a
 transaction manager on another node. While it is possible to use this
 protocol for application programs and/or resource managers to speak
 to transaction managers, this communication is usually intra-node,
 and most transaction managers already have more-than-adequate
 interfaces for the task.

 While we do not expect this protocol to replace existing ones, we do
 expect that it will be relatively easy for many existing
 heterogeneous transaction managers to implement this protocol for
 communication with each other.

 Further supplemental information regarding the TIP protocol can be
 found in [5].

Lyon, et. al. Standards Track [Page 2]

RFC 2371 TIP Version 3.0 July 1998

2. Example Usage

 Today the electronic shopping basket is a common metaphor at many
 electronic store-fronts. Customers browse through an electronic
 catalog, select goods and place them into an electronic shopping
 basket. HTTP servers [2] provide various means ranging from URL
 encoding to context cookies to keep track of client context (e.g.
 the shopping basket of a customer) and resume it on subsequent
 customer requests.

 Once a customer has finished shopping they may decide to commit their
 selection and place the associated orders. Most orders may have no
 relationship with each other except being executed as part of the
 same shopping transaction; others may be dependent on each other (for
 example, if made as part of a special offering). Irrespective of
 these details a customer will expect that all orders have been
 successfully placed upon receipt of a positive acknowledgment.
 Today’s electronic store-fronts must implement their own special
 protocols to coordinate such placement of all orders. This
 programming is especially complex when orders are placed through
 multiple electronic store-fronts. This complexity limits the
 potential utility of internet applications, and constrains growth.
 The protocol described in this document intends to provide a standard
 for Internet servers to achieve agreement on a unit of shared work
 (e.g. placement of orders in an electronic shopping basket). The
 server (e.g. a CGI program) placing the orders may want to start a
 transaction calling its local transaction manager, and ask other
 servers participating in the work to join the transaction. The
 server placing the orders passes a reference to the transaction as
 user data on HTTP requests to the other servers. The other servers
 call their transaction managers to start a local transaction and ask
 them to join the remote transaction using the protocol defined in
 this document. Once all orders have been placed, execution of the
 two-phase-commit protocol is delegated to the involved transaction
 managers. If the transaction commits, all orders have been
 successfully placed and the customer gets a positive acknowledgment.
 If the transaction aborts no orders will be placed and the customer
 will be informed of the problem.

 Transaction support greatly simplifies programming of these
 applications as exception handling and failure recovery are delegated
 to a special component. End users are also not left having to deal
 with the consequences of only partial success. While this example
 shows how the protocol can be used by HTTP servers, applications may
 use the protocol when accessing a remote database (e.g. via ODBC), or
 invoking remote services using other already existing protocols (e.g.

Lyon, et. al. Standards Track [Page 3]

RFC 2371 TIP Version 3.0 July 1998

 RPC). The protocol makes it easy for applications in a heterogeneous
 network to participate in the same transaction, even if using
 different communication protocols.

3. Transactions

 "Transaction" is the term given to the programming model whereby
 computational work performed has atomic semantics. That is, either
 all work completes successfully and changes are made permanent (the
 transaction commits), or if any work is unsuccessful, changes are
 undone (the transaction aborts). The work comprising a transaction
 (unit of work), is defined by the application.

4. Connections

 The Transaction Internet Protocol (TIP) requires a reliable ordered
 stream transport with low connection setup costs. In an Internet (IP)
 environment, TIP operates over TCP, optionally using TLS to provide a
 secured and authenticated connection, and optionally using a protocol
 to multiplex light-weight connections over the same TCP or TLS
 connection.

 Transaction managers that share transactions establish a TCP (and
 optionally a TLS) connection. The protocol uses a different
 connection for each simultaneous transaction shared betwween two
 transaction managers. After a transaction has ended, the connection
 can be reused for a different transaction.

 Optionally, instead of associating a TCP or TLS connection with only
 a single transaction, two transaction managers may agree on a
 protocol to multiplex light-weight connections over the same TCP or
 TLS connection, and associate each simultaneous transaction with a
 separate light-weight connection. Using light-weight connections
 reduces latency and resource consumption associated with executing
 simultaneous transactions. Similar techniques as described here are
 widely used by existing transaction processing systems. See Appendix
 A for an example of one such protocol.

 Note that although the TIP protocol itself is described only in terms
 of TCP and TLS, there is nothing to preclude the use of TIP with
 other transport protocols. However, it is up to the implementor to
 ensure the chosen transport provides equivalent semantics to TCP, and
 to map the TIP protocol appropriately.

Lyon, et. al. Standards Track [Page 4]

RFC 2371 TIP Version 3.0 July 1998

 In this document the terms "connection" or "TCP connection" can refer
 to a TIP TCP connection, a TIP TLS connection, or a TIP multiplexing
 connection (over either TCP or TLS). It makes no difference which,
 the behavior is the same in each case. Where there are differences in
 behavior between the connection types, these are stated explicitly.

5. Transaction Identifiers

 Unfortunately, there is no single globally-accepted standard for the
 format of a transaction identifier; there are various standard and
 proprietary formats. Allowed formats for a TIP transaction
 identifier are described below in the section "TIP Uniform Resource
 Locators". A transaction manager may map its internal transaction
 identifiers into this TIP format in any manner it sees fit.
 Furthermore, each party in a superior/subordinate relationship gets
 to assign its own identifier to the transaction; these identifiers
 are exchanged when the relationship is first established. Thus, a
 transaction manager gets to use its own format of transaction
 identifier internally, but it must remember a foreign transaction
 identifier for each superior/subordinate relationship in which it is
 involved.

6. Pushing vs. Pulling Transactions

 Suppose that some program on node "A" has created a transaction, and
 wants some program on node "B" to do some work as part of the
 transaction. There are two classical ways that he does this,
 referred to as the "push" model and the "pull" model.

 In the "push" model, the program on A first asks his transaction
 manager to export the transaction to node B. A’s transaction manager
 sends a message to B’s TM asking it to instantiate the transaction as
 a subordinate of A, and return its name for the transaction. The
 program on A then sends a message to its counterpart on B on the
 order of "Do some work, and make it part of the transaction that your
 transaction manager already knows of by the name ...". Because A’s
 TM knows that it sent the transaction to B’s TM, A’s TM knows to
 involve B’s TM in the two-phase commit process.

 In the "pull" model, the program on A merely sends a message to B on
 the order of "Do some work, and make it part of the transaction that
 my TM knows by the name ...". The program on B asks its TM to enlist
 in the transaction. At that time, B’s TM will "pull" the transaction
 over from A. As a result of this pull, A’s TM knows to involve B’s
 TM in the two-phase commit process.

 The protocol described here supports both the "push" and "pull"
 models.

Lyon, et. al. Standards Track [Page 5]

RFC 2371 TIP Version 3.0 July 1998

7. TIP Transaction Manager Identification and Connection Establishment

 In order for TIP transaction managers to connect they must be able to
 identify and locate each other. The information necessary to do this
 is described by the TIP transaction manager address.

 [This specification does not prescribe how TIP transaction managers
 initially obtain the transaction manager address (which will probably
 be via some implementation-specific configuration mechanism).]

 TIP transaction manager addresses take the form:

 <hostport><path>

 The <hostport> component comprises:

 <host>[:<port>]

 where <host> is either a <dns name> or an <ip address>; and <port> is
 a decimal number specifying the port at which the transaction manager
 (or proxy) is listening for requests to establish TIP connections. If
 the port number is omitted, the standard TIP port number (3372) is
 used.

 A <dns name> is a standard name, acceptable to the domain name
 service. It must be sufficiently qualified to be useful to the
 receiver of the command.

 An <ip address> is an IP address, in the usual form: four decimal
 numbers separated by period characters.

 The <hostport> component defines the scope (locale) of the <path>
 component.

 The <path> component of the transaction manager address contains data
 identifying the specific TIP transaction manager, at the location
 defined by <hostport>.

 The <path> component takes the form:

 "/" [path_segments]

 path_segments = segment *("/" segment)
 segment = *pchar *(";" param)
 param = *pchar

 pchar = unreserved | escaped | ":" | "@" | "&" | "=" | "+"
 unreserved = ASCII character octets with values in the range

Lyon, et. al. Standards Track [Page 6]

RFC 2371 TIP Version 3.0 July 1998

 (inclusive): 48-57, 65-90, 97-122 | "$" | "-" | "_" |
 "." | "!" | "˜" | "*" | "’" | "(" | ")" | ","
 escaped = "%" hex hex
 hex = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" |
 "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" | "d" |
 "e" | "f"

 The <path> component may consist of a sequence of path segments
 separated by a single slash "/" character. Within a path segment, the
 characters "/", ";", "=", and "?" are reserved. Each path segment may
 include a sequence of parameters, indicated by the semicolon ";"
 character. The parameters are not significant to the parsing of
 relative references.

 [It is intended that the form of the transaction manager address
 follow the proposed scheme for Uniform Resource Identifiers (URI)
 [8].]

 The TIP transaction manager address therefore provides to the
 connection initiator (the primary) the endpoint identifier to be used
 for the TCP connection (<hostport>), and to the connection receiver
 (the secondary) the path to be used to locate the specific TIP
 transaction manager (<path>). This is all the information required
 for the connection between the primary and secondary TIP transaction
 managers to be established.

 After a connection has been established, the primary party issues an
 IDENTIFY command. This command includes as parameters two transaction
 manager addresses: the primary transaction manager address, and the
 secondary transaction manager address.

 The primary transaction manager address identifies the TIP
 transaction manager that initiated the connection. This information
 is required in certain cases after connection failures, when one of
 the parties of the connection must re-establish a new connection to
 the other party in order to complete the two-phase-commit protocol.
 If the primary party needs to re-establish the connection, the job is
 easy: a connection is established in the same way as was the original
 connection. However, if the secondary party needs to re-establish the
 connection, it must be known how to contact the initiator of the
 original connection. This information is supplied to the secondary
 via the primary transaction manager address on the IDENTIFY command.
 If a primary transaction manager address is not supplied, the primary
 party must not perform any action which would require a connection to
 be re-established (e.g. to perform recovery actions).

Lyon, et. al. Standards Track [Page 7]

RFC 2371 TIP Version 3.0 July 1998

 The secondary transaction manager address identifies the receiving
 TIP transaction manager. In the case of TIP communication via
 intermediate proxy servers, this URL may be used by the proxy servers
 to correctly identify and connect to the required TIP transaction
 manager.

8. TIP Uniform Resource Locators

 Transactions and transaction managers are resources associated with
 the TIP protocol. Transaction managers and transactions are located
 using the transaction manager address scheme. Once a connection has
 been established, TIP commands may be sent to operate on transactions
 associated with the respective transaction managers.

 Applications which want to pull a transaction from a remote node must
 supply a reference to the remote transaction which allows the local
 transaction manager (i.e. the transaction manager pulling the
 transaction) to connect to the remote transaction manager and
 identify the particular transaction. Applications which want to push
 a transaction to a remote node must supply a reference to the remote
 transaction manager (i.e. the transaction manager to which the
 transaction is to be pushed), which allows the local transaction
 manager to locate the remote transaction manager. The TIP protocol
 defines a URL scheme [4] which allows applications and transaction
 managers to exchange references to transaction managers and
 transactions.

 A TIP URL takes the form:

 tip://<transaction manager address>?<transaction string>

 where <transaction manager address> identifies the TIP transaction
 manager (as defined in Section 7 above); and <transaction string>
 specifies a transaction identifier, which may take one of two forms
 (standard or non-standard):

 i. "urn:" <NID> ":" <NSS>

 A standard transaction identifier, conforming to the proposed
 Internet Standard for Uniform Resource Names (URNs), as specified
 by RFC2141; where <NID> is the Namespace Identifier, and <NSS> is
 the Namespace Specific String. The Namespace ID determines the
 syntactic interpretation of the Namespace Specific String. The
 Namespace Specific String is a sequence of characters representing
 a transaction identifier (as defined by <NID>). The rules for the
 contents of these fields are specified by [6] (valid characters,
 encoding, etc.).

Lyon, et. al. Standards Track [Page 8]

RFC 2371 TIP Version 3.0 July 1998

 This format of <transaction string> may be used to express global
 transaction identifiers in terms of standard representations.
 Examples for <NID> might be <iso> or <xopen>. e.g.

 tip://123.123.123.123/?urn:xopen:xid

 Note that Namespace Ids require registration. See [7] for details
 on how to do this.

 ii. <transaction identifier>

 A sequence of printable ASCII characters (octets with values in the
 range 32 through 126 inclusive (excluding ":") representing a
 transaction identifier. In this non-standard case, it is the
 combination of <transaction manager address> and <transaction
 identifier> which ensures global uniqueness. e.g.

 tip://123.123.123.123/?transid1

 To create a non-standard TIP URL from a transaction identifier,
 first replace any reserved characters in the transaction identifier
 with their equivalent escape sequences, then insert the appropriate
 transaction manager address. If the transaction identifier is one
 that you created, insert your own transaction manager address. If
 the transaction identifier is one that you received on a TIP
 connection that you initiated, use the secondary transaction
 manager address that was sent in the IDENTIFY command. If the
 transaction identifier is one that you received on a TIP connection
 that you did not initiate, use the primary transaction manager
 address that was received in the IDENTIFY command.

 TIP URLs must be guaranteed globally unique for all time. This
 uniqueness constraint ensures TIP URLs are never duplicated, thereby
 preventing possible non-deterministic behaviour. How uniqueness is
 achieved is implementation specific. For example, the Universally
 Unique Identifier (UUID, also known as a Globally Unique Identifier,
 or GUID (see [9])) could be used as part of the <transaction string>.
 Note also that some standard transaction identifiers may define their
 own rules for ensuring global uniqueness (e.g. OSI CCR atomic action
 identifiers).

 Except as otherwise described above, the TIP URL scheme follows the
 rules for reserved characters as defined in [4], and uses escape
 sequences as defined in [4] Section 5.

 Note that the TIP protocol itself does not use the TIP URL scheme (it
 does use the transaction manager address scheme). The TIP URL scheme
 is proposed as a standard way to pass transaction identification

Lyon, et. al. Standards Track [Page 9]

RFC 2371 TIP Version 3.0 July 1998

 information through other protocols. e.g. between cooperating
 application processes. The TIP URL may then be used to communicate to
 the local transaction manager the information necessary to associate
 the application with a particular TIP transaction. e.g. to PULL the
 transaction from a remote transaction manager. It is anticipated that
 each TIP implementation will provide some set of APIs for this
 purpose ([5] includes examples of such APIs).

9. States of a Connection

 At any instant, only one party on a connection is allowed to send
 commands, while the other party is only allowed to respond to
 commands that he receives. Throughout this document, the party that
 is allowed to send commands is called "primary"; the other party is
 called "secondary". Initially, the party that initiated the
 connection is primary; however, a few commands cause the roles to
 switch. A connection returns to its original polarity whenever the
 Idle state is reached.

 When multiplexing is being used, these rules apply independently to
 each "virtual" connection, regardless of the polarity of the
 underlying connection (which will be in the Multiplexing state).

 Note that commands may be sent "out of band" by the secondary via the
 use of pipelining. This does not affect the polarity of the
 connection (i.e. the roles of primary and secondary do not switch).
 See section 12 for details.

 In the normal case, TIP connections should only be closed by the
 primary, when in Initial state. It is generally undesirable for a
 connection to be closed by the secondary, although this may be
 necessary in certain error cases.

 At any instant, a connection is in one of the following states. From
 the point of view of the secondary party, the state changes when he
 sends a reply; from the point of view of the primary party, the state
 changes when he receives a reply.

 Initial: The initial connection starts out in the Initial state.
 Upon entry into this state, the party that initiated the connection
 becomes primary, and the other party becomes secondary. There is no
 transaction associated with the connection in this state. From this
 state, the primary can send an IDENTIFY or a TLS command.

 Idle: In this state, the primary and the secondary have agreed on a
 protocol version, and the primary supplied an identifier to the
 secondary party to reconnect after a failure. There is no
 transaction associated with the connection in this state. Upon

Lyon, et. al. Standards Track [Page 10]

RFC 2371 TIP Version 3.0 July 1998

 entry to this state, the party that initiated the connection
 becomes primary, and the other party becomes secondary. From this
 state, the primary can send any of the following commands: BEGIN,
 MULTIPLEX, PUSH, PULL, QUERY and RECONNECT.

 Begun: In this state, a connection is associated with an active
 transaction, which can only be completed by a one-phase protocol.
 A BEGUN response to a BEGIN command places a connection into this
 state. Failure of a connection in Begun state implies that the
 transaction will be aborted. From this state, the primary can send
 an ABORT, or COMMIT command.

 Enlisted: In this state, the connection is associated with an active
 transaction, which can be completed by a one-phase or, two-phase
 protocol. A PUSHED response to a PUSH command, or a PULLED response
 to a PULL command, places the connection into this state. Failure
 of the connection in Enlisted state implies that the transaction
 will be aborted. From this state, the primary can send an ABORT,
 COMMIT, or PREPARE command.

 Prepared: In this state, a connection is associated with a
 transaction that has been prepared. A PREPARED response to a
 PREPARE command, or a RECONNECTED response to a RECONNECT command
 places a connection into this state. Unlike other states, failure
 of a connection in this state does not cause the transaction to
 automatically abort. From this state, the primary can send an
 ABORT, or COMMIT command.

 Multiplexing: In this state, the connection is being used by a
 multiplexing protocol, which provides its own set of connections.
 In this state, no TIP commands are possible on the connection. (Of
 course, TIP commands are possible on the connections supplied by
 the multiplexing protocol.) The connection can never leave this
 state.

 Tls: In this state, the connection is being used by the TLS
 protocol, which provides its own secured connection. In this state,
 no TIP commands are possible on the connection. (Of course, TIP
 commands are possible on the connection supplied by the TLS
 protocol.) The connection can never leave this state.

 Error: In this state, a protocol error has occurred, and the
 connection is no longer useful. The connection can never leave this
 state.

Lyon, et. al. Standards Track [Page 11]

RFC 2371 TIP Version 3.0 July 1998

10. Protocol Versioning

 This document describes version 3 of the protocol. In order to
 accommodate future versions, the primary party sends a message
 indicating the lowest and the highest version number it understands.
 The secondary responds with the highest version number it
 understands.

 After such an exchange, communication can occur using the smaller of
 the highest version numbers (i.e., the highest version number that
 both understand). This exchange is mandatory and occurs using the
 IDENTIFY command (and IDENTIFIED response).

 If the highest version supported by one party is considered obsolete
 and no longer supported by the other party, no useful communication
 can occur. In this case, the newer party should merely drop the
 connection.

11. Commands and Responses

 All commands and responses consist of one line of ASCII text, using
 only octets with values in the range 32 through 126 inclusive,
 followed by either a CR (an octet with value 13) or an LR (an octet
 with value 10). Each line can be split up into one or more "words",
 where successive words are separated by one or more space octets
 (value 32).

 Arbitrary numbers of spaces at the beginning and/or end of each line
 are allowed, and ignored.

 Lines that are empty, or consist entirely of spaces are ignored.
 (One implication of this is that you can terminate lines with both a
 CR and an LF if desired; the LF will be treated as terminating an
 empty line, and ignored.)

 In all cases, the first word of each line indicates the type of
 command or response; all defined commands and responses consist of
 upper-case letters only.

 For some commands and responses, subsequent words convey parameters
 for the command or response; each command and response takes a fixed
 number of parameters.

 All words on a command or response line after (and including) the
 first undefined word are totally ignored. These can be used to pass
 human-readable information for debugging or other purposes.

Lyon, et. al. Standards Track [Page 12]

RFC 2371 TIP Version 3.0 July 1998

12. Command Pipelining

 In order to reduce communication latency and improve efficiency, it
 is possible for multiple TIP "lines" (commands or responses) to be
 pipelined (concatenated) together and sent as a single message.
 Lines may also be sent "ahead" (by the secondary, for later procesing
 by the primary). Examples are an ABORT command immediately followed
 by a BEGIN command, or a COMMITTED response immediately followed by a
 PULL command.

 The sending of pipelined lines is an implementation option. Likewise
 which lines are pipelined together. Generally, it must be certain
 that the pipelined line will be valid for the state of the connection
 at the time it is processed by the receiver. It is the responsibility
 of the sender to determine this.

 All implementations must support the receipt of pipelined lines - the
 rules for processing of which are described by the following
 paragraph:

 When the connection state is such that a line should be read
 (either command or response), then that line (when received) is
 processed. No more lines are read from the connection until
 processing again reaches such a state. If a line is received on a
 connection when it is not the turn of the other party to send, that
 line is _not_ rejected. Instead, the line is held and processed
 when the connection state again requires it. The receiving party
 must process lines and issue responses in the order of lines
 received. If a line causes an error the connection enters the Error
 state, and all subsequent lines on the connection are discarded.

13. TIP Commands

 Commands pertain either to connections or transactions. Commands
 which pertain to connections are: IDENTIFY, MULTIPLEX and TLS.
 Commands which pertain to transactions are: ABORT, BEGIN, COMMIT,
 PREPARE, PULL, PUSH, QUERY, and RECONNECT.

 Following is a list of all valid commands, and all possible responses
 to each:

 ABORT

 This command is valid in the Begun, Enlisted, and Prepared states.
 It informs the secondary that the current transaction of the
 connection will abort. Possible responses are:

Lyon, et. al. Standards Track [Page 13]

RFC 2371 TIP Version 3.0 July 1998

 ABORTED
 The transaction has aborted; the connection enters Idle state.

 ERROR
 The command was issued in the wrong state, or was malformed. The
 connection enters the Error state.

 BEGIN

 This command is valid only in the Idle state. It asks the secondary
 to create a new transaction and associate it with the connection.
 The newly created transaction will be completed with a one-phase
 protocol. Possible responses are:

 BEGUN <transaction identifier>
 A new transaction has been successfully begun, and that
 transaction is now the current transaction of the connection.
 The connection enters Begun state.

 NOTBEGUN
 A new transaction could not be begun; the connection remains in
 Idle state.

 ERROR
 The command was issued in the wrong state, or was malformed. The
 connection enters the Error state.

 COMMIT

 This command is valid in the Begun, Enlisted or Prepared states.
 In the Begun or Enlisted state, it asks the secondary to attempt to
 commit the transaction; in the Prepared state, it informs the
 secondary that the transaction has committed. Note that in the
 Enlisted state this command represents a one-phase protocol, and
 should only be done when the sender has 1) no local recoverable
 resources involved in the transaction, and 2) only one subordinate
 (the sender will not be involved in any transaction recovery
 process). Possible responses are:

 ABORTED
 This response is possible only from the Begun and Enlisted
 states. It indicates that some party has vetoed the commitment of
 the transaction, so it has been aborted instead of committing.
 The connection enters the Idle state.

Lyon, et. al. Standards Track [Page 14]

RFC 2371 TIP Version 3.0 July 1998

 COMMITTED
 This response indicates that the transaction has been committed,
 and that the primary no longer has any responsibilities to the
 secondary with respect to the transaction. The connection enters
 the Idle state.

 ERROR
 The command was issued in the wrong state, or was malformed. The
 connection enters the Error state.

 ERROR

 This command is valid in any state; it informs the secondary that a
 previous response was not recognized or was badly formed. A
 secondary should not respond to this command. The connection enters
 Error state.

 IDENTIFY <lowest protocol version>
 <highest protocol version>
 <primary transaction manager address> | "-"
 <secondary transaction manager address>

 This command is valid only in the Initial state. The primary party
 informs the secondary party of: 1) the lowest and highest protocol
 version supported (all versions between the lowest and highest must
 be supported; 2) optionally, an identifier for the primary party at
 which the secondary party can re-establish a connection if ever
 needed (the primary transaction manager address); and 3) an
 identifier which may be used by intermediate proxy servers to
 connect to the required TIP transaction manager (the secondary
 transaction manager address). If a primary transaction manager
 address is not supplied, the secondary party will respond with
 ABORTED or READONLY to any PREPARE commands. Possible responses
 are:

 IDENTIFIED <protocol version>
 The secondary party has been successfully contacted and has saved
 the primary transaction manager address. The response contains
 the highest protocol version supported by the secondary party.
 All future communication is assumed to take place using the
 smaller of the protocol versions in the IDENTIFY command and the
 IDENTIFIED response. The connection enters the Idle state.

 NEEDTLS
 The secondary party is only willing to communicate over TLS
 secured connections. The connection enters the Tls state, and all
 subsequent communication is as defined by the TLS protocol. This
 protocol will begin with the first octet after the line

Lyon, et. al. Standards Track [Page 15]

RFC 2371 TIP Version 3.0 July 1998

 terminator of the IDENTIFY command (for data sent by the primary
 party), and the first byte after the line terminator of the
 NEEDTLS response (for data sent by the secondary party). This
 implies that an implementation must not send both a CR and a LF
 octet after either the IDENTIFY command or the NEEDTLS response,
 lest the LF octet be mistaken for the first byte of the TLS
 protocol. The connection provided by the TLS protocol starts out
 in the Initial state. After TLS has been negotiated, the primary
 party must resend the IDENTIFY command. If the primary party
 cannot support (or refuses to use) the TLS protocol, it closes
 the connection.

 ERROR
 The command was issued in the wrong state, or was malformed.
 This response also occurs if the secondary party does not support
 any version of the protocol in the range supported by the primary
 party. The connection enters the Error state. The primary party
 should close the connection.

 MULTIPLEX <protocol-identifier>

 This command is only valid in the Idle state. The command seeks
 agreement to use the connection for a multiplexing protocol that
 will supply a large number of connections on the existing
 connection. The primary suggests a particular multiplexing
 protocol. The secondary party can either accept or reject use of
 this protocol.

 At the present, the only defined protocol identifier is "TMP2.0",
 which refers to the TIP Multiplexing Protocol, version 2.0. See
 Appendix A for details of this protocol. Other protocol identifiers
 may be defined in the future.

 If the MULTIPLEX command is accepted, the specified multiplexing
 protocol will totally control the underlying connection. This
 protocol will begin with the first octet after the line terminator
 of the MULTIPLEX command (for data sent by the initiator), and the
 first byte after the line terminator of the MULTIPLEXING response
 (for data received by the initiator). This implies that an
 implementation must not send both a CR and a LF octet after either
 the MULTIPLEX command or the MULTIPLEXING response, lest the LF
 octet be mistaken for the first byte of the multiplexing protocol.

 Note that when using TMP V2.0, a single TIP command (TMP
 application message) must be wholly contained within a single TMP
 packet (the TMP PUSH flag is not used by TIP). Possible responses
 to the MULTIPLEX command are:

Lyon, et. al. Standards Track [Page 16]

RFC 2371 TIP Version 3.0 July 1998

 MULTIPLEXING
 The secondary party agrees to use the specified multiplexing
 protocol. The connection enters the Multiplexing state, and all
 subsequent communication is as defined by that protocol. All
 connections created by the multiplexing protocol start out in the
 Idle state.

 CANTMULTIPLEX
 The secondary party cannot support (or refuses to use) the
 specified multiplexing protocol. The connection remains in the
 Idle state.

 ERROR
 The command was issued in the wrong state, or was malformed. The
 connection enters the Error state.

 PREPARE

 This command is valid only in the Enlisted state; it requests the
 secondary to prepare the transaction for commitment (phase one of
 two-phase commit). Possible responses are:

 PREPARED
 The subordinate has prepared the transaction; the connection
 enters PREPARED state.

 ABORTED
 The subordinate has vetoed committing the transaction. The
 connection enters the Idle state. After this response, the
 superior has no responsibilities to the subordinate with respect
 to the transaction.

 READONLY
 The subordinate no longer cares whether the transaction commits
 or aborts. The connection enters the Idle state. After this
 response, the superior has no responsibilities to the subordinate
 with respect to the transaction.

 ERROR
 The command was issued in the wrong state, or was malformed. The
 connection enters the Error state.

 PULL <superior’s transaction identifier>
 <subordinate’s transaction identifier>

 This command is only valid in Idle state. This command seeks to
 establish a superior/subordinate relationship in a transaction,
 with the primary party of the connection as the subordinate (i.e.,

Lyon, et. al. Standards Track [Page 17]

RFC 2371 TIP Version 3.0 July 1998

 he is pulling a transaction from the secondary party). Note that
 the entire value of <transaction string> (as defined in the section
 "TIP Uniform Resource Locators") must be specified as the
 transaction identifier. Possible responses are:

 PULLED
 The relationship has been established. Upon receipt of this
 response, the specified transaction becomes the current
 transaction of the connection, and the connection enters Enlisted
 state. Additionally, the roles of primary and secondary become
 reversed. (That is, the superior becomes the primary for the
 connection.)

 NOTPULLED
 The relationship has not been established (possibly, because the
 secondary party no longer has the requested transaction). The
 connection remains in Idle state.

 ERROR
 The command was issued in the wrong state, or was malformed. The
 connection enters the Error state.

 PUSH <superior’s transaction identifier>

 This command is valid only in the Idle state. It seeks to establish
 a superior/subordinate relationship in a transaction with the
 primary as the superior. Note that the entire value of <transaction
 string> (as defined in the section "TIP Uniform Resource Locators")
 must be specified as the transaction identifier. Possible responses
 are:

 PUSHED <subordinate’s transaction identifier>
 The relationship has been established, and the identifier by
 which the subordinate knows the transaction is returned. The
 transaction becomes the current transaction for the connection,
 and the connection enters Enlisted state.

 ALREADYPUSHED <subordinate’s transaction identifier>
 The relationship has been established, and the identifier by
 which the subordinate knows the transaction is returned.
 However, the subordinate already knows about the transaction, and
 is expecting the two-phase commit protocol to arrive via a
 different connection. In this case, the connection remains in the
 Idle state.

 NOTPUSHED
 The relationship could not be established. The connection remains
 in the Idle state.

Lyon, et. al. Standards Track [Page 18]

RFC 2371 TIP Version 3.0 July 1998

 ERROR
 The command was issued in the wrong state, or was malformed. The
 connection enters Error state.

 QUERY <superior’s transaction identifier>

 This command is valid only in the Idle state. A subordinate uses
 this command to determine whether a specific transaction still
 exists at the superior. Possible responses are:

 QUERIEDEXISTS
 The transaction still exists. The connection remains in the Idle
 state.

 QUERIEDNOTFOUND
 The transaction no longer exists. The connection remains in the
 Idle state.

 ERROR
 The command was issued in the wrong state, or was malformed. The
 connection enters Error state.

 RECONNECT <subordinate’s transaction identifier>

 This command is valid only in the Idle state. A superior uses the
 command to re-establish a connection for a transaction, when the
 previous connection was lost during Prepared state. Possible
 responses are:

 RECONNECTED
 The subordinate accepts the reconnection. The connection enters
 Prepared state.

 NOTRECONNECTED
 The subordinate no longer knows about the transaction. The
 connection remains in Idle state.

 ERROR
 The command was issued in the wrong state, or was malformed. The
 connection enters Error state.

 TLS

 This command is valid only in the Initial state. A primary uses
 this command to attempt to establish a secured connection using
 TLS.

Lyon, et. al. Standards Track [Page 19]

RFC 2371 TIP Version 3.0 July 1998

 If the TLS command is accepted, the TLS protocol will totally
 control the underlying connection. This protocol will begin with
 the first octet after the line terminator of the TLS command (for
 data sent by the primary), and the first byte after the line
 terminator of the TLSING response (for data received by the
 primary). This implies that an implementation must not send both a
 CR and a LF octet after either the TLS command or the TLSING
 response, lest the LF octet be mistaken for the first byte of the
 TLS protocol.

 Possible responses to the TLS command are:

 TLSING
 The secondary party agrees to use the TLS protocol [3]. The
 connection enters the Tls state, and all subsequent communication
 is as defined by the TLS protocol. The connection provided by the
 TLS protocol starts out in the Initial state.

 CANTTLS
 The secondary party cannot support (or refuses to use) the TLS
 protocol. The connection remains in the Initial state.

 ERROR
 The command was issued in the wrong state, or was malformed. The
 connection enters the Error state.

14. Error Handling

 If either party receives a line that it cannot understand it closes
 the connection. If either party (either a command or a response),
 receives an ERROR indication or an ERROR response on a connection the
 connection enters the Error state and no further communication is
 possible on that connection. An implementation may decide to close
 the connection. Closing of the connection is treated by the other
 party as a communication failure.

 Receipt of an ERROR indication or an ERROR response indicates that
 the other party believes that you have not properly implemented the
 protocol.

15. Connection Failure and Recovery

 A connection failure may be caused by a communication failure, or by
 any party closing the connection. It is assumed TIP implementations
 will use some private mechanism to detect TIP connection failure
 (e.g. socket keepalive, or a timeout scheme).

Lyon, et. al. Standards Track [Page 20]

RFC 2371 TIP Version 3.0 July 1998

 Depending on the state of a connection, transaction managers will
 need to take various actions when a connection fails.

 If the connection fails in Initial or Idle state, the connection does
 not refer to a transaction. No action is necessary.

 If the connection fails in the Multiplexing state, all connections
 provided by the multiplexing protocol are assumed to have failed.
 Each of them will be treated independently.

 If the connection fails in Begun or Enlisted state and COMMIT has
 been sent, then transaction completion has been delegated to the
 subordinate (the superior is not involved); the outcome of the
 transaction is unknown by the superior (it is known at the
 subordinate). The superior uses application-specific means to
 determine the outcome of the transaction (note that transaction
 integrity is not compromised in this case since the superior has no
 recoverable resources involved in the transaction). If the connection
 fails in Begun or Enlisted state and COMMIT has not been sent, the
 transaction will be aborted.

 If the connection fails in Prepared state, then the appropriate
 action is different for the superior and subordinate in the
 transaction.

 If the superior determines that the transaction commits, then it must
 eventually establish a new connection to the subordinate, and send a
 RECONNECT command for the transaction. If it receives a
 NOTRECONNECTED response, it need do nothing else. However, if it
 receives a RECONNECTED response, it must send a COMMIT request and
 receive a COMMITTED response.

 If the superior determines that the transaction aborts, it is allowed
 to (but not required to) establish a new connection and send a
 RECONNECT command for the transaction. If it receives a RECONNECTED
 response, it should send an ABORT command.

 The above definition allows the superior to reestablish the
 connection before it knows the outcome of the transaction, if it
 finds that convenient. Having succeeded in a RECONNECT command, the
 connection is back in Prepared state, and the superior can send a
 COMMIT or ABORT command as appropriate when it knows the transaction
 outcome.

 Note that it is possible for a RECONNECT command to be received by
 the subordinate before it is aware that the previous connection has
 failed. In this case the subordinate treats the RECONNECT command as

Lyon, et. al. Standards Track [Page 21]

RFC 2371 TIP Version 3.0 July 1998

 a failure indication and cleans-up any resources associated with the
 connection, and associates the transaction state with the new
 connection.

 If a subordinate notices a connection failure in Prepared state, then
 it should periodically attempt to create a new connection to the
 superior and send a QUERY command for the transaction. It should
 continue doing this until one of the following two events occurs:

 1. It receives a QUERIEDNOTFOUND response from the superior. In this
 case, the subordinate should abort the transaction.

 2. The superior, on some connection that it initiated, sends a
 RECONNECT command for the transaction to the subordinate. In this
 case, the subordinate can expect to learn the outcome of the
 transaction on this new connection. If this new connection should
 fail before the subordinate learns the outcome of the transaction,
 it should again start sending QUERY commands.

 Note that if a TIP system receives either a QUERY or a RECONNECT
 command, and for some reason is unable to satisfy the request (e.g.
 the necessary recovery information is not currently available), then
 the connection should be dropped.

16. Security Considerations

 This section is meant to inform application developers, transaction
 manager developers, and users of the security implications of TIP as
 described by this document. The discussion does not include
 definitive solutions to the issues described, though it does make
 some suggestions for reducing security risks.

 As with all two phase-commit protocols, any security mechanisms
 applied to the application communication protocol are liable to be
 subverted unless corresponding mechanisms are applied to the
 commitment protocol. For example, any authentication between the
 parties using the application protocol must be supported by security
 of the TIP exchanges to at least the same level of certainty.

16.1. TLS, Mutual Authentication and Authorization

 TLS provides optional client-side authentication, optional server-
 side authentication, and optional packet encryption.

 A TIP implementation may refuse to provide service unless TLS is
 being used. It may refuse to provide service if packet encryption is
 not being used. It may refuse to provide service unless the remote
 party has been authenticated (via TLS).

Lyon, et. al. Standards Track [Page 22]

RFC 2371 TIP Version 3.0 July 1998

 A TIP implementation should be willing to be authenticated itself
 (via TLS). This is true regardless of whether the implementation is
 acting as a client or a server.

 Once a remote party has been authenticated, a TIP transaction manager
 may use that remote party’s identity to decide what operations to
 allow.

 Whether TLS is to be used on a connection, and if so, how TLS is to
 be used, and what operations are to subsequently be allowed, is
 determined by the security policies of the connecting TIP transaction
 managers towards each other. How these security policies are defined,
 and how a TIP transaction manager learns of them is totally private
 to the implementation and beyond the scope of this document.

16.2. PULL-Based Denial-of-Service Attack

 Assume that a malicious user knows the identity of a transaction that
 is currently active in some transaction manager. If the malefactor
 opens a TIP connection to the transaction manager, sends a PULL
 command, then closes the connection, he can cause that transaction to
 be aborted. This results in a denial of service to the legitimate
 owner of the transaction.

 An implementation may avoid this attack by refusing PULL commands
 unless TLS is being used, the remote party has been authenticated,
 and the remote party is trusted.

16.3. PUSH-Based Denial-of-Service Attack

 When the connection between two transaction managers is closed while
 a transaction is in the Prepared state, each transaction manager
 needs to remember information about the transaction until a
 connection can be re-established.

 If a malicious user exploits this fact to repeatedly create
 transactions, get them into Prepared state and drop the connection,
 he may cause a transaction manager to suffer resource exhaustion,
 thus denying service to all legitimate users of that transaction
 manager.

 An implementation may avoid this attack by refusing PUSH commands
 unless TLS is being used, the remote party has been authenticated,
 and the remote party is trusted.

Lyon, et. al. Standards Track [Page 23]

RFC 2371 TIP Version 3.0 July 1998

16.4. Transaction Corruption Attack

 If a subordinate transaction manager has lost its connection for a
 particular prepared transaction, a malicious user can initiate a TIP
 connection to the transaction manager, and send it a RECONNECT
 command followed by either a COMMIT or an ABORT command for the
 transaction. The malicious user could thus cause part of a
 transaction to be committed when it should have been aborted, or vice
 versa.

 An implementation may avoid this attack by recording the
 authenticated identity of its superior in a transaction, and by
 refusing RECONNECT commands unless TLS is being used and the
 authenticated identity of the remote party is the same as the
 identity of the original superior.

16.5. Packet-Sniffing Attacks

 If a malicious user can intercept traffic on a TIP connection, he may
 be able to deduce information useful in planning other attacks. For
 example, if comment fields include the product name and version
 number of a transaction manager, a malicious user might be able to
 use this information to determine what security bugs exist in the
 implementation.

 An implementation may avoid this attack by always using TLS to
 provide session encryption, and by not putting any personalizing
 information on the TLS/TLSING command/response pair.

16.6. Man-in-the-Middle Attack

 If a malicious user can intercept and alter traffic on a TIP
 connection, he can wreak havoc in a number of ways. For example, he
 could replace a COMMIT command with an ABORT command.

 An implementation may avoid this attack by always using TLS to
 provide session encryption and authentication of the remote party.

Lyon, et. al. Standards Track [Page 24]

RFC 2371 TIP Version 3.0 July 1998

17. References

 [1] Gray, J. and A. Reuter (1993), Transaction Processing: Concepts
 and Techniques. San Francisco, CA: Morgan Kaufmann Publishers.
 (ISBN 1-55860-190-2).

 [2] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and T.
 Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC
 2068, January 1997.

 [3] Dierks, T., et. al., "The TLS Protocol Version 1.0", Work in
 Progress.

 [4] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform
 Resource Locators (URL)", RFC 1738, December 1994.

 [5] Evans, K., Klein, J., and J. Lyon, "Transaction Internet
 Protocol - Requirements and Supplemental Information", RFC 2372,
 July 1998.

 [6] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [7] Faltstrom, P., et. al., "Namespace Identifier Requirements for
 URN Services", Work in Progress.

 [8] Berners-Lee, T., et. at., "Uniform Resource Identifiers (URI):
 Generic Syntax and Semantics", Work in Progress.

 [9] Leach, P., and R. Salz, "UUIDs and GUIDs", Work in Progress.

Lyon, et. al. Standards Track [Page 25]

RFC 2371 TIP Version 3.0 July 1998

18. Authors’ Addresses

 Jim Lyon
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399, USA

 Phone: +1 (206) 936 0867
 Fax: +1 (206) 936 7329
 EMail: JimLyon@Microsoft.Com

 Keith Evans
 Tandem Computers, Inc.
 5425 Stevens Creek Blvd
 Santa Clara, CA 95051-7200, USA

 Phone: +1 (408) 285 5314
 Fax: +1 (408) 285 5245
 EMail: Keith.Evans@Tandem.Com

 Johannes Klein
 Tandem Computers Inc.
 10555 Ridgeview Court
 Cupertino, CA 95014-0789, USA

 Phone: +1 (408) 285 0453
 Fax: +1 (408) 285 9818
 EMail: Johannes.Klein@Tandem.Com

19. Comments

 Please send comments on this document to the authors at
 <JimLyon@Microsoft.Com>, <Keith.Evans@Tandem.Com>,
 <Johannes.Klein@Tandem.Com>, or to the TIP mailing list at
 <Tip@Lists.Tandem.Com>. You can subscribe to the TIP mailing list by
 sending mail to <Listserv@Lists.Tandem.Com> with the line "subscribe
 tip <full name>" somewhere in the body of the message.

Lyon, et. al. Standards Track [Page 26]

RFC 2371 TIP Version 3.0 July 1998

Appendix A. The TIP Multiplexing Protocol Version 2.0.

 This appendix describes version 2.0 of the TIP Multiplexing Protocol
 (TMP). TMP is intended solely for use with the TIP protocol, and
 forms part of the TIP protocol specification (although its
 implementation is optional). TMP V2.0 is the only multiplexing
 protocol supported by TIP V3.0.

Abstract

 TMP provides a simple mechanism for creating multiple lightweight
 connections over a single TCP connection. Several such lightweight
 connections can be active simultaneously. TMP provides a byte
 oriented service, but allows message boundaries to be marked.

A.1. Introduction

 There are several protocols in widespread use on the Internet which
 create a single TCP connection for each transaction. Unfortunately,
 because these transactions are short lived, the cost of setting up
 and tearing down these TCP connections becomes significant, both in
 terms of resources used and in the delays associated with TCP’s
 congestion control mechanisms.

 The TIP Multiplexing Protocol (TMP) is a simple protocol running on
 top of TCP that can be used to create multiple lightweight
 connections over a single transport connection. TMP therefore
 provides for more efficient use of TCP connections. Data from several
 different TMP connections can be interleaved, and both message
 boundaries and end of stream markers can be provided.

 Because TMP runs on top of a reliable byte ordered transport service
 it can avoid most of the extra work TCP must go through in order to
 ensure reliability. For example, TMP connections do not need to be
 confirmed, so there is no need to wait for handshaking to complete
 before data can be sent.

 Note: TMP is not intended as a generalized multiplexing protocol. If
 you are designing a different protocol that needs multiplexing, TMP
 may or may not be appropriate. Protocols with large messages can
 exceed the buffering capabilities of the receiver, and under certain
 conditions this can cause deadlock. TMP when used with TIP does not
 suffer from this problem since TIP is a request-response protocol,
 and all messages are short.

Lyon, et. al. Standards Track [Page 27]

RFC 2371 TIP Version 3.0 July 1998

A.2. Protocol Model

 The basic protocol model is that of multiple lightweight connections
 operating over a reliable stream of bytes. The party which initiated
 the connection is referred to as the primary, and the party which
 accepted the connection is referred to as the secondary.

 Connections may be unidirectional or bi-directional; each end of a
 bi-directional connection may be closed separately. Connections may
 be closed normally, or reset to indicate an abortive release.
 Aborting a connection closes both data streams.

 Once a connection has been opened, applications can send messages
 over it, and signal the end of application level messages.
 Application messages are encapsulated in TMP packets and transferred
 over the byte stream. A single TIP command (TMP application message)
 must be wholly contained within a single TMP packet.

A.3. TMP Packet Format

 A TMP packet consists of a 64 bit header followed by zero or more
 octets of data. The header contains three fields; a flag byte, the
 connection identifier, and the packet length. Both integers, the
 connection identifier and the packet length must be sent in network
 byte order.

 FLAGS
 +--------+--------+--------+--------+
 |SFPR0000| Connection ID |
 +--------+--------+--------+--------+
 | | Length |
 +--------+--------+--------+--------+

A.3.1. Flag Details

 +-------+-----------+---+
 | Name | Mask | Description |
 +-------+-----------+ --+
SYN	1xxx	0000	Open a new connection
FIN	x1xx	0000	Close an existing connection
PUSH	xx1x	0000	Mark application level message boundary
RESET	xxx1	0000	Abort the connection
 +-------+-----------+---+

Lyon, et. al. Standards Track [Page 28]

RFC 2371 TIP Version 3.0 July 1998

A.4. Connection Identifiers

 Each TMP connection is identified by a 24 bit integer. TMP
 connections created by the party which initiated the underlying TCP
 connection must have even identifiers; those created by the other
 party must have odd identifiers.

A.5. TMP Connection States

 TMP connections can exist in several different states; Closed,
 OpenWrite, OpenSynRead, OpenSynReset, OpenReadWrite, CloseWrite, and
 CloseRead. A connection can change its state in response to receiving
 a packet with the SYN, FIN, or RESET bits set, or in response to an
 API call by the application. The available API calls are open, close,
 and abort.

 The meaning of most states is obvious (e.g. OpenWrite means that a
 connection has been opened for writing). The meaning of the states
 OpenSynRead and OpenResetRead need more explanation.

 In the OpenSynRead state a primary opened and immediately closed the
 output data stream of a connection, and is now waiting for a SYN
 response from the secondary to open the input data stream for
 reading.

 In the OpenResetRead state a primary opened and immediately aborted a
 connection, and is now waiting for a SYN response from the secondary
 to finally close the connection.

A.6. Event Priorities and State Transitions

 The state table shown below describes the actions and state
 transitions that occur in response to a given event. The events
 accepted by each state are listed in priority order with highest
 priority first. If multiple events are present in a message, those
 events matching the list are processed. If multiple events match, the
 event with the highest priority is accepted and processed first. Any
 remaining events are processed in the resultant successor state.

 For example, if a TMP connection at the secondary is in the Closed
 state, and the secondary receives a packet containing a SYN event, a
 FIN event and an input data event (i.e. DATA-IN), the secondary first
 accepts the SYN event (because it is the only match in Closed state).
 The secondary accepts the connection, sends a SYN event and enters
 the ReadWrite state. The SYN event is removed from the list of
 pending events. The remaining events are FIN and DATA-IN. In the
 ReadWrite state the secondary reads the input data (i.e. the DATA-IN
 event is processed first because it has higher priority than the FIN

Lyon, et. al. Standards Track [Page 29]

RFC 2371 TIP Version 3.0 July 1998

 event). Once the data has been read and the DATA-IN event has been
 removed from the list of pending events, the FIN event is processed
 and the secondary enters the CloseWrite state.

 If the secondary receives a packet containing a SYN event, and is for
 some reason unable to accept the connection (e.g. insufficient
 resources), it should reject the request by sending a SYN event
 followed by a RESET event. Note that both events can be sent as part
 of the same TMP packet.

 If either party receives a TMP packet that it does not understand, or
 an event in an incorrect state, it closes the TCP connection.

 +==============+=========+==========+==============+
 | Entry State | Event | Action | Exit State |
 +==============+=========+==========+==============+
 | Closed | SYN | SYN | ReadWrite |
 | | OPEN | SYN | OpenWrite |
 +--------------+---------+----------+--------------+
OpenWrite	SYN	Accept	ReadWrite
	WRITE	DATA-OUT	OpenWrite
	CLOSE	FIN	OpenSynRead
	ABORT	RESET	OpenSynReset
+--------------+---------+----------+--------------+			
OpenSynRead	SYN	Accept	CloseRead
+--------------+---------+----------+--------------+			
OpenSynReset	SYN	Accept	Closed
+--------------+---------+----------+--------------+			
ReadWrite	DATA-IN	Accept	ReadWrite
	FIN	Accept	CloseWrite
	RESET	Accept	Closed
	WRITE	DATA-OUT	ReadWrite
	CLOSE	FIN	CloseRead
	ABORT	RESET	Closed
+--------------+---------+----------+--------------+			
CloseWrite	RESET	Accept	Closed
	WRITE	DATA-OUT	CloseWrite
	CLOSE	FIN	Closed
	ABORT	RESET	Closed
+--------------+---------+----------+--------------+			
CloseRead	DATA-IN	Accept	CloseRead
	FIN	Accept	Closed
	RESET	Accept	Closed
	ABORT	RESET	Closed
 +--------------+---------+----------+--------------+

 TMP Event Priorities and State Transitions

Lyon, et. al. Standards Track [Page 30]

RFC 2371 TIP Version 3.0 July 1998

Full Copyright Statement

 Copyright (C) The Internet Society (1998). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Lyon, et. al. Standards Track [Page 31]

