
Network Working Group M. Degermark
Request for Comments: 2507 Lulea University of Technology/SICS
Category: Standards Track B. Nordgren
 Lulea University of Technology/Telia Research AB
 S. Pink
 Lulea University of Technology/SICS
 February 1999

 IP Header Compression

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 This document describes how to compress multiple IP headers and TCP
 and UDP headers per hop over point to point links. The methods can be
 applied to of IPv6 base and extension headers, IPv4 headers, TCP and
 UDP headers, and encapsulated IPv6 and IPv4 headers.

 Headers of typical UDP or TCP packets can be compressed down to 4-7
 octets including the 2 octet UDP or TCP checksum. This largely
 removes the negative impact of large IP headers and allows efficient
 use of bandwidth on low and medium speed links.

 The compression algorithms are specifically designed to work well
 over links with nontrivial packet-loss rates. Several wireless and
 modem technologies result in such links.

TABLE OF CONTENTS

 1. Introduction..3
 2. Terminology...5
 3. Compression method..7
 3.1. Packet types.......................................8
 3.2. Lost packets in TCP packet streams.................9
 3.3. Lost packets in UDP and non-TCP packet streams....10
 4. Grouping packets into packet streams.....................14

Degermark, et. al. Standards Track [Page 1]

RFC 2507 IP Header Compression February 1999

 4.1. Guidelines for grouping packets...................15
 5. Size Issues..16
 5.1. Context identifiers...............................16
 5.2. Size of the context...............................17
 5.3. Size of full headers..............................18
 5.3.1. Length fields in full TCP headers............19
 5.3.2. Length fields in full non-TCP headers........19
 6. Compressed Header Formats................................20
 7. Compression of subheaders................................22
 7.1. IPv6 Header.......................................24
 7.2. IPv6 Extension Headers............................25
 7.3. Options...25
 7.4. Hop-by-hop Options Header.........................26
 7.5. Routing Header....................................26
 7.6. Fragment Header...................................27
 7.7. Destination Options Header........................28
 7.8. No Next Header....................................29
 7.9. Authentication Header.............................29
 7.10. Encapsulating Security Payload Header.............29
 7.11. UDP Header..30
 7.12. TCP Header..30
 7.13. IPv4 Header.......................................33
 7.14 Minimal Encapsulation header......................34
 8. Changing context identifiers.............................35
 9. Rules for dropping or temporarily storing packets........35
 10. Low-loss header compression for TCP36
 10.1. The "twice" algorithm............................37
 10.2. Header Requests..................................37
 11. Links that reorder packets...............................38
 11.1. Reordering in non-TCP packet streams.............39
 11.2. Reordering in TCP packet streams.................39
 12. Hooks for additional header compression..................40
 13. Demultiplexing...41
 14. Configuration Parameters.................................42
 15. Implementation Status....................................43
 16. Acknowledgments..44
 17. Security Considerations..................................44
 18. Authors’ Addresses.......................................45
 19. References...46
 20. Full Copyright Statement.................................47

Degermark, et. al. Standards Track [Page 2]

RFC 2507 IP Header Compression February 1999

1. Introduction

 There are several reasons to do header compression on low- or
 medium-speed links. Header compression can

 * Improve interactive response time

 For very low-speed links, echoing of characters may take longer
 than 100-200 ms because of the time required to transmit large
 headers. 100-200 ms is the maximum time people can tolerate
 without feeling that the system is sluggish.

 * Allow using small packets for bulk data with good line efficiency

 This is important when interactive (for example Telnet) and bulk
 traffic (for example FTP) is mixed because the bulk data should be
 carried in small packets to decrease the waiting time when a
 packet with interactive data is caught behind a bulk data packet.

 Using small packet sizes for the FTP traffic in this case is a
 global solution to a local problem. It will increase the load on
 the network as it has to deal with many small packets. A better
 solution might be to locally fragment the large packets over the
 slow link.

 * Allow using small packets for delay sensitive low data-rate traffic

 For such applications, for example voice, the time to fill a
 packet with data is significant if packets are large. To get low
 end-to-end delay small packets are preferred. Without header
 compression, the smallest possible IPv6/UDP headers (48 octets)
 consume 19.2 kbit/s with a packet rate of 50 packets/s. 50
 packets/s is equivalent to having 20 ms worth of voice samples in
 each packet. IPv4/UDP headers consumes 11.2 kbit/s at 50
 packets/s. Tunneling or routing headers, for example to support
 mobility, will increase the bandwidth consumed by headers by 10-20
 kbit/s. This should be compared with the bandwidth required for
 the actual sound samples, for example 13 kbit/s with GSM encoding.
 Header compression can reduce the bandwidth needed for headers
 significantly, in the example to about 1.7 kbit/s. This enables
 higher quality voice transmission over 14.4 and 28.8 kbit/s
 modems.

 * Decrease header overhead.

 A common size of TCP segments for bulk transfers over medium-speed
 links is 512 octets today. When TCP segments are tunneled, for
 example because Mobile IP is used, the IPv6/IPv6/TCP header is 100

Degermark, et. al. Standards Track [Page 3]

RFC 2507 IP Header Compression February 1999

 octets. Header compression will decrease the header overhead for
 IPv6/TCP from 19.5 per cent to less than 1 per cent, and for
 tunneled IPv4/TCP from 11.7 to less than 1 per cent. This is a
 significant gain for line-speeds as high as a few Mbit/s.

 The IPv6 specification prescribes path MTU discovery, so with IPv6
 bulk TCP transfers should use segments larger than 512 octets when
 possible. Still, with 1400 octet segments (RFC 894 Ethernet
 encapsulation allows 1500 octet payloads, of which 100 octets are
 used for IP headers), header compression reduces IPv6 header
 overhead from 7.1% to 0.4%.

 * Reduce packet loss rate over lossy links.

 Because fewer bits are sent per packet, the packet loss rate will
 be lower for a given bit-error rate. This results in higher
 throughput for TCP as the sending window can open up more between
 losses, and in fewer lost packets for UDP.

 The mechanisms described here are intended for a point-to-point link.
 However, care has been taken to allow extensions for multi-access
 links and multicast.

 Headers that can be compressed include TCP, UDP, IPv4, and IPv6 base
 and extension headers. For TCP packets, the mechanisms of Van
 Jacobson [RFC-1144] are used to recover from loss. Two additional
 mechanisms that increase the efficiency of VJ header compression over
 lossy links are also described. For non-TCP packets, compression
 slow-start and periodic header refreshes allow minimal periods of
 packet discard after loss of a header that changes the context. There
 are hooks for adding header compression schemes on top of UDP, for
 example compression of RTP headers.

 Header compression relies on many fields being constant or changing
 seldomly in consecutive packets belonging to the same packet stream.
 Fields that do not change between packets need not be transmitted at
 all. Fields that change often with small and/or predictable values,
 e.g., TCP sequence numbers, can be encoded incrementally so that the
 number of bits needed for these fields decrease significantly. Only
 fields that change often and randomly, e.g., checksums or
 authentication data, need to be transmitted in every header.

 The general principle of header compression is to occasionally send a
 packet with a full header; subsequent compressed headers refer to the
 context established by the full header and may contain incremental
 changes to the context.

Degermark, et. al. Standards Track [Page 4]

RFC 2507 IP Header Compression February 1999

 This header compression scheme does not require that all packets in
 the same stream passes over the compressed link. However, for TCP
 streams the difference between subsequent headers can become more
 irregular and the compression rate can decrease. Neither is it
 required that corresponding TCP data and acknowledgment packets
 traverse the link in opposite directions.

 This header compression scheme is useful on first-hop or last-hop
 links as well as links in the middle of the network. When many packet
 streams (several hundred) traverse the link, a phenomenon that could
 be called CID thrashing could occur, where headers seldom can be
 matched with an existing context and have to be sent uncompressed or
 as full headers. It is up to an implementation to use techniques such
 as hysteresis to ensure that the packet streams that give the highest
 compression rates keep their context. Such techniques are more
 likely to be needed in the middle of the network.

2. Terminology

 This section explains some terms used in this document.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

 Subheader

 An IPv6 base header, an IPv6 extension header, an IPv4 header, a
 UDP header, or a TCP header.

 Header

 A chain of subheaders.

 Compress

 The act of reducing the size of a header by removing header fields
 or reducing the size of header fields. This is done in a way such
 that a decompressor can reconstruct the header if its context
 state is identical to the context state used when compressing the
 header.

 Decompress

 The act of reconstructing a compressed header.

Degermark, et. al. Standards Track [Page 5]

RFC 2507 IP Header Compression February 1999

 Context identifier (CID)

 A small unique number identifying the context that should be used
 to decompress a compressed header. Carried in full headers and
 compressed headers.

 Context

 The state which the compressor uses to compress a header and the
 decompressor uses to decompress a header. The context is the
 uncompressed version of the last header sent (compressor) or
 received (decompressor) over the link, except for fields in the
 header that are included "as-is" in compressed headers or can be
 inferred from, e.g., the size of the link-level frame.

 The context for a packet stream is associated with a context
 identifier. The context for non-TCP packet streams is also
 associated with a generation.

 Generation

 For non-TCP packet streams, each new version of the context for a
 given CID is associated with a generation: a small number that is
 incremented whenever the context associated with that CID changes.
 Carried by full and compressed non-TCP headers.

 Packet stream

 A sequence of packets whose headers are similar and share context.
 For example, headers in a TCP packet stream have the same source
 and final destination address, and the same port numbers in the
 TCP header. Similarly, headers in a UDP packet stream have the
 same source and destination address, and the same port numbers in
 the UDP header.

 Full header (header refresh)

 An uncompressed header that updates or refreshes the context for a
 packet stream. It carries a CID that will be used to identify the
 context.

 Full headers for non-TCP packet streams also carry the generation
 of the context they update or refresh.

 Regular header

 A normal, uncompressed, header. Does not carry CID or generation
 association.

Degermark, et. al. Standards Track [Page 6]

RFC 2507 IP Header Compression February 1999

 Incorrect decompression

 When a compressed and then decompressed header is different from
 the uncompressed header. Usually due to mismatching context
 between the compressor and decompressor or bit errors during
 transmission of the compressed header.

 Differential coding

 A compression technique where the compressed value of a header
 field is the difference between the current value of the field and
 the value of the same field in the previous header belonging to
 the same packet stream. A decompressor can thus obtain the value
 of the field by adding the value in the compressed header to its
 context. This technique is used for TCP streams but not for non-
 TCP streams.

3. Compression method

 Much of the header information stays the same over the life-time of a
 packet stream. For non-TCP packet streams almost all fields of the
 headers are constant. For TCP many fields are constant and others
 change with small and predictable values.

 To initiate compression of the headers of a packet stream, a full
 header carrying a context identifier, CID, is transmitted over the
 link. The compressor and decompressor store most fields of this full
 header as context. The context consists of the fields of the header
 whose values are constant and thus need not be sent over the link at
 all, or change little between consecutive headers so that it uses
 fewer bits to send the difference from the previous value compared to
 sending the absolute value.

 Any change in fields that are expected to be constant in a packet
 stream will cause the compressor to send a full header again to
 update the context at the decompressor. As long as the context is the
 same at compressor and decompressor, headers can be decompressed to
 be exactly as they were before compression. However, if a full header
 or compressed header is lost during transmission, the context of the
 decompressor may become obsolete as it is not updated properly.
 Compressed headers will then be decompressed incorrectly.

 IPv6 is not meant to be used over links that can deliver a
 significant fraction of damaged packets to the IPv6 module. This
 means that links must have a very low bit-error rate or that link-
 level frames must be protected by strong checksums, forward error
 correction or something of that nature. Header compression SHOULD
 not be used for IPv4 without strong link-level checksums. Damaged

Degermark, et. al. Standards Track [Page 7]

RFC 2507 IP Header Compression February 1999

 frames will thus be discarded by the link layer. The link layer
 implementation might indicate to the header compression module that a
 frame was damaged, but it cannot say what packet stream it belonged
 to as it might be the CID that is damaged. Moreover, frames may
 disappear without the link layer implementation’s knowledge, for
 example if the link is a multi-hop link where frames can be dropped
 due to congestion at each hop. The kind of link errors that a header
 compression module should deal with and protect against will thus be
 packet loss.

 So a header compression scheme needs mechanisms to update the context
 at the decompressor and to detect or avoid incorrect decompression.
 These mechanisms are very different for TCP and non-TCP streams, and
 are described in sections 3.2 and 3.3.

 The compression mechanisms in this document assume that packets are
 not reordered between the compressor and decompressor. If the link

 does reorder, section 11 describes mechanisms for ordering the
 packets before decompression. It is also assumed that the link-layer
 implementation can provide the length of packets, and that there is
 no padding in UDP packets or tunneled packets.

3.1. Packet types

 This compression method uses four packet types in addition to the
 IPv4 and IPv6 packet types. The combination of link-level packet
 type and the value of the first four bits of the packet uniquely
 determines the packet type. Details on how these packet types are
 represented are in section 13.

 FULL_HEADER - indicates a packet with an uncompressed header,
 including a CID and, if not a TCP packet, a generation. It
 establishes or refreshes the context for the packet stream
 identified by the CID.

 COMPRESSED_NON_TCP - indicates a non-TCP packet with a compressed
 header. The compressed header consists of a CID identifying what
 context to use for decompression, a generation to detect an
 inconsistent context and the randomly changing fields of the
 header.

 COMPRESSED_TCP - indicates a packet with a compressed TCP header,
 containing a CID, a flag octet indentifying what fields have
 changed, and the changed fields encoded as the difference from
 the previous value.

Degermark, et. al. Standards Track [Page 8]

RFC 2507 IP Header Compression February 1999

 COMPRESSED_TCP_NODELTA - indicates a packet with a compressed TCP
 header where all fields that are normally sent as the difference
 to the previous value are instead sent as-is. This packet type
 is only sent as the response to a header request from the
 decompressor. It must not be sent as the result of a
 retransmission.

 In addition to the packet types used for compression, regular IPv4
 and IPv6 packets are used whenever a compressor decides to not
 compress a packet. An additional packet type may be used to speed up
 repair of TCP streams over links where the decompressor can send
 packets to the compressor.

 CONTEXT_STATE - indicates a special packet sent from the
 decompressor to the compressor to communicate a list of (TCP)
 CIDs for which synchronization has been lost. This packet is only
 sent over a single link so it requires no IP header. The format
 is shown in section 10.2.

3.2. Lost packets in TCP packet streams

 Since TCP headers are compressed using the difference from the
 previous TCP header, loss of a packet with a compressed or full
 header will cause subsequent compressed headers to be decompressed
 incorrectly because the context used for decompression was not
 incremented properly.

 Loss of a compressed TCP header will cause the TCP sequence numbers
 of subsequently decompressed TCP headers to be off by k, where k is
 the size of the lost segment. Such incorrectly decompressed TCP
 headers will be discarded by the TCP receiver as the TCP checksum
 reliably catches "off-by-k" errors in the sequence numbers for
 plausible k.

 TCP’s repair mechanisms will eventually retransmit the discarded
 segment and the compressor peeks into the TCP headers to detect when
 TCP retransmits. When this happens, the compressor sends a full
 header on the assumption that the retransmission was due to
 mismatching compression state at the decompressor. [RFC-1144] has a
 good explanation of this mechanism.

 The mechanisms of section 10 should be used to speed up the repair of
 the context. This is important over medium speed links with high
 packet loss rates, for example wireless. Losing a timeout’s worth of
 packets due to inconsistent context after each packet lost over the
 link is not acceptable, especially when the TCP connection is over
 the wide area.

Degermark, et. al. Standards Track [Page 9]

RFC 2507 IP Header Compression February 1999

3.3. Lost packets in UDP and other non-TCP packet streams

 Incorrectly decompressed headers of UDP packets and other non-TCP
 packets are not so well-protected by checksums as TCP packets. There
 are no sequence numbers that become "off-by-k" and virtually
 guarantees a failed checksum as there are for TCP. The UDP checksum
 only covers payload, UDP header, and pseudo header. The pseudo
 header includes the source and destination addresses, the transport
 protocol type and the length of the transport packet. Except for
 those fields, large parts of the IPv6 header are not covered by the
 UDP checksum. Moreover, other non-TCP headers lack checksums
 altogether, for example fragments.

 In order to safely avoid incorrect decompression of non-TCP headers,
 each version of the context for non-TCP packet streams is identified
 by a generation, a small number that is carried by the full headers
 that establish and refresh the context. Compressed headers carry the
 generation value of the context that were used to compress them.
 When a decompressor sees that a compressed header carries a
 generation value other than the generation of its context for that
 packet stream, the context is not up to date and the packet must be
 discarded or stored until a full header establishes correct context.

 Differential coding is not used for non-TCP streams, so compressed
 non-TCP headers do not change the context. Thus, loss of a
 compressed header does not invalidate subsequent packets with
 compressed headers. Moreover, the generation changes only when the
 context of a full header is different from the context of the
 previous full header. This means that losing a full header will make
 the context of the decompressor obsolete only when the full header
 would actually have changed the context.

 The generation field is 6 bits long so the generation value repeats
 itself after 64 changes to the context. To avoid incorrect
 decompression after error bursts or other temporary disruptions, the
 compressor must not reuse the same generation value after a shorter
 time than MIN_WRAP seconds. A decompressor which has been
 disconnected MIN_WRAP seconds or more must wait for the next full
 header before decompressing. A compressor must wait at least MIN_WRAP
 seconds after booting before compressing non-TCP headers. Instead of
 reusing a generation value too soon, a compressor may switch to
 another CID or send regular headers until MIN_WRAP seconds have
 passed. The value of MIN_WRAP is found in section 14.

Degermark, et. al. Standards Track [Page 10]

RFC 2507 IP Header Compression February 1999

3.3.1. Compression Slow-Start

 To allow the decompressor to recover quickly from loss of a full
 header that would have changed the context, full headers are sent
 periodically with an exponentially increasing period after a change
 in the context. This technique avoids an exchange of messages between
 compressor and decompressor used by other compression schemes, such
 as in [RFC-1553]. Such exchanges can be costly for wireless mobiles
 as more power is consumed by the transmitter and delay can be
 introduced by switching between sending and receiving. Moreover,
 techniques that require an exchange of messages cannot be used over
 simplex links, such as direct-broadcast satellite channels or cable
 TV systems, and are hard to adapt to multicast over multi-access
 links.

 |.|..|....|........|................|..............................
 ^
 Change Sent packets: | with full header, . with compressed header

 The picture shows how packets are sent after change. The compressor
 keeps a variable for each non-TCP packet stream, F_PERIOD, that keeps
 track of how many compressed headers may be sent between full
 headers. When the headers of a non-TCP packet stream change so that
 its context changes, a full header is sent and F_PERIOD is set to
 one. After sending F_PERIOD compressed headers, a full header is
 sent. F_PERIOD is doubled each time a full header is sent during
 compression slow-start.

3.3.2. Periodic Header Refreshes

 To avoid losing too many packets if a receiver has lost its context,
 there is an upper limit, F_MAX_PERIOD, on the number of non-TCP
 packets with compressed headers that may be sent between header
 refreshes. If a packet is to be sent and F_MAX_PERIOD compressed
 headers have been sent since the last full header for this packet
 stream was sent, a full header must be sent.

 To avoid long periods of disconnection for low data rate packet
 streams, there is also an upper bound, F_MAX_TIME, on the time
 between full headers in a non-TCP packet stream. If a packet is to be
 sent and more than F_MAX_TIME seconds have passed since the last full
 header was sent for this packet stream, a full header must be sent.
 The values of F_MAX_PERIOD and F_MAX_TIME are found in section 14.

Degermark, et. al. Standards Track [Page 11]

RFC 2507 IP Header Compression February 1999

3.3.3. Rules for sending Full Headers

 The following pseudo code can be used by the compressor to determine
 when to send a full header for a non-TCP packet stream. The code
 maintains two variables:

 C_NUM -- a count of the number of compressed headers sent
 since the last full header was sent.
 F_LAST -- the time of sending the last full header.

 and uses the functions

 current_time() return the current time
 min(a,b) return the smallest of a and b

 the procedures send_full_header(), increment_generation_value(),
 and send_compressed_header()
 do the obvious thing.

 if (<this header changes the context>)

 C_NUM := 0;
 F_LAST := current_time();
 F_PERIOD := 1;
 increment_generation_value();
 send_full_header();

 elseif (C_NUM >= F_PERIOD)

 C_NUM := 0;
 F_LAST := current_time();
 F_PERIOD := min(2 * F_PERIOD, F_MAX_PERIOD);
 send_full_header();

 elseif (current_time() > F_LAST + F_MAX_TIME)

 C_NUM := 0;
 F_LAST := current_time();
 send_full_header();

 else

 C_NUM := C_NUM + 1
 send_compressed_header();

 endif

Degermark, et. al. Standards Track [Page 12]

RFC 2507 IP Header Compression February 1999

3.3.4. Cost of sending Header Refreshes

 If every f’th packet carries a full header, H is the size of a full
 header, and C is the size of a compressed header, the average header
 size is

 (H-C)/f + C

 For f > 1, the average header size is (H-C)/f larger than a
 compressed header.

 In a diagram where the average header size is plotted for various f
 values, there is a distinct knee in the curve, i.e., there is a limit
 beyond which further increasing f gives diminishing returns.
 F_MAX_PERIOD should be chosen to be a frequency well to the right of
 the knee of the curve. For typical sizes of H and C, say 48 octets
 for the full header (IPv6/UDP) and 4 octets for the compressed
 header, setting F_MAX_PERIOD > 44 means that full headers will
 contribute less than an octet to the average header size. With a
 four-address routing header, F_MAX_PERIOD > 115 will have the same
 effect.

 The default F_MAX_PERIOD value of 256 (section 14) puts the full
 header frequency well to the right of the knee and means that full
 headers will typically contribute considerably less than an octet to
 the average header size. For H = 48 and C = 4, full headers
 contribute about 1.4 bits to the average header size after reaching
 the steady-state header refresh frequency determined by the default

 F_MAX_PERIOD. 1.4 bits is a very small overhead.

 After a change in the context, the exponential backoff scheme will
 initially send full headers frequently. The default F_MAX_PERIOD
 will be reached after nine full headers and 255 compressed headers
 have been sent. This is equivalent to a little over 5 seconds for a
 typical voice stream with 20 ms worth of voice samples per packet.

 During the whole backoff period, full headers contribute 1.5 octets
 to the average header size when H = 48 and C = 4. For 20 ms voice
 samples, it takes less than 1.3 seconds until full headers contribute
 less than one octet to the average header size, and during these
 initial 1.3 seconds full headers add less than 4 octets to the
 average header size. The cost of the exponential backoff is not
 great and as the headers of non-TCP packet streams are expected to
 change seldomly, it will be amortized over a long time.

Degermark, et. al. Standards Track [Page 13]

RFC 2507 IP Header Compression February 1999

 The cost of header refreshes in terms of bandwidth are higher than
 similar costs for hard state schemes like [RFC-1553] where full
 headers must be acknowledged by the decompressor before compressed
 headers may be sent. Such schemes typically send one full header plus
 a few control messages when the context changes. Hard state schemes
 require more types of protocol messages and an exchange of messages
 is necessary. Hard state schemes also need to deal explicitly with
 various error conditions that soft state handles automatically, for
 instance the case of one party disappearing unexpectedly, a common
 situation on wireless links where mobiles may go out of range of the
 base station.

 The major advantage of the soft state scheme is that no handshakes
 are needed between compressor and decompressor, so the scheme can be
 used over simplex links. The costs in terms of bandwidth are higher
 than for hard state schemes, but the simplicity of the decompressor,
 the simplicity of the protocol, and the lack of handshakes between
 compressor and decompressor justifies this small cost. Moreover, soft
 state schemes are more easily extended to multicast over multi-access
 links, for example radio links.

4. Grouping packets into packet streams

 This section explains how packets MAY be grouped together into packet
 streams for compression. To achieve the best compression rates,
 packets SHOULD be grouped together such that packets in the same
 packet stream have similar headers. If this grouping fails, header
 compression performance will be bad, since the compression algorithm
 can rarely utilize the existing context for the packet stream and
 full headers must be sent frequently.

 Grouping is done by the compressor. A compressor may use whatever
 criterion it finds appropriate to group packets into packet streams.
 To determine what packet stream a packet belongs to, a compressor MAY

 a) examine the compressible chain of subheaders (see section 7),

 b) examine the contents of an upper layer protocol header that
 follows the compressible chain of subheaders, for example ICMP
 headers, DVMRP headers, or tunneled IPX headers,

 c) use information obtained from a resource manager, for example if a
 resource manager requests compression for a particular packet
 stream and provides a way to identify packets belonging to that
 packet stream,

Degermark, et. al. Standards Track [Page 14]

RFC 2507 IP Header Compression February 1999

 d) use any other relevant information, for example if routes flap and
 the hop limit (TTL) field in a packet stream changes frequently
 between n and n+k, a compressor may choose to group the packets
 into two different packet streams.

 A compressor is also free not to group packets into packet streams
 for compression, letting some packets keep their regular headers and
 passing them through unmodified.

 As long as the rules for when to send full headers for a non-TCP
 packet stream are followed and subheaders are compressed as specified
 in this document, the decompressor is able to reconstruct a
 compressed header correctly regardless of how packets are grouped
 into packet streams.

4.1 Guidelines for grouping packets

 In this section we give OPTIONAL guidelines for how a compressor may
 group packets into packet streams for compression.

 Defining fields

 The defining fields of a header should be present and identical in
 all packets belonging to the same packet stream. These fields are
 marked DEF in section 7. The defining fields include the flow
 label, source and destination addresses of IP headers, final
 destination address in routing headers, the next header fields
 (for IPv6), the protocol field (IPv4), port numbers (UDP and TCP),
 and the SPI in authentication and encryption headers.

 Fragmented packets

 Fragmented and unfragmented packets should never be grouped
 together in the same packet stream. The Identification field of
 the Fragment header or IPv4 header should not be used to identify
 the packet stream. If it was, the first fragment of a new packet
 would cause a compression slow-start.

 No field after a Fragment Header, or an IPv4 header for a
 fragment, should be used for grouping purposes.

 Upper protocol identification

 The first next header field identifying a header not described in
 section 7 should be used for identifying packet streams, i.e., all
 packets with the same DEF fields and the same upper protocol
 should be grouped together.

Degermark, et. al. Standards Track [Page 15]

RFC 2507 IP Header Compression February 1999

 TTL field (Hop Limit field)

 A sophisticated implementation might monitor the TTL (Hop Limit)
 field and if it changes frequently use it as a DEF field. This can
 occur when there are frequent route flaps so that packets traverse
 different paths through the internet.

 Traffic Class field (IPv6), Type of Service field (IPv4)

 It is possible that the Traffic Class field of the IPv6 header and
 the Type of Service of the IPv4 header will change frequently
 between packets with otherwise identical DEF fields. A
 sophisticated implementation should watch out for this and be
 prepared to use these fields as defining fields.

 When IP packets are tunneled they are encapsulated with an additional
 IP header at the tunnel entry point and then sent to the tunnel
 endpoint. To group such packets into packet streams, the inner
 headers should also be examined to determine the packet stream. If
 this is not done, full headers will be sent each time the headers of
 the inner IP packet changes. So when a packet is tunneled, the
 identifying fields of the inner subheaders should be considered in
 addition to the identifying fields of the initial IP header.

 An implementation can use other fields for identification than the
 ones described here. If too many fields are used for identification,
 performance might suffer because more CIDs will be used and the wrong
 CIDs might be reused when new flows need CIDs. If too few fields are
 used for identification, performance might suffer because there are
 too frequent changes to the context.

 We stress that these guidelines are educated guesses. When IPv6 is
 widely deployed and IPv6 traffic can be analyzed, we might find that
 other grouping algorithms perform better. We also stress that if the
 grouping fails, the result will be bad performance but not incorrect
 decompression. The decompressor can do its task regardless of how the
 grouping algorithm works.

5. Size Issues

5.1. Context Identifiers

 Context identifiers can be 8 or 16 bits long. Their size is not
 relevant for finding the context. An 8-bit CID with value two and a
 16-bit CID with value two are equivalent.

Degermark, et. al. Standards Track [Page 16]

RFC 2507 IP Header Compression February 1999

 The CID spaces for TCP and non-TCP are separate, so a TCP CID and a
 non-TCP CID never identify the same context. Even if they have the
 same value. This doubles the available CID space while using the same
 number of bits for CIDs. It is always possible to tell whether a
 full or compressed header is for a TCP or non-TCP packet, so no
 mixups can occur.

 Non-TCP compressed headers encode the size of the CID using one bit
 in the second octet of the compressed header. The 8-bit CID allows a
 minimum compressed header size of 2 octets for non-TCP packets, the
 CID uses the first octet and the size bit and the 6-bit Generation
 value fit in the second octet.

 For TCP the only available CID size is 8 bits as in [RFC-1144]. 8
 bits is probably sufficient as TCP connections are always point-to-
 point.

 The 16 bit CID size may not be needed for point-to-point links; it is
 intended for use on multi-access links where a larger CID space may
 be needed for efficient selection of CIDs.

 The major difficulty with multi-access links is that several
 compressors share the CID space of a decompressor. CIDs can no
 longer be selected independently by the compressors as collisions may
 occur. This problem may be resolved by letting the decompressors
 have a separate CID space for each compressor. Having separate CID
 spaces requires that decompressors can identify which compressor sent
 the compressed packet, perhaps by utilizing link-layer information as
 to who sent the link-layer frame. If such information is not
 available, all compressors on the multi-access link may be
 enumerated, automatically or otherwise, and supply their number as
 part of the CID. This latter method requires a large CID space.

5.2. Size of the context

 The size of the context SHOULD be limited to simplify implementation
 of compressor and decompressor, and put a limit on their memory
 requirements. However, there is no upper limit on the size of an
 IPv6 header as the chain of extension headers can be arbitrarily
 long. This is a problem as the context is essentially a stored
 header.

 The configurable parameter MAX_HEADER (see section 14) represents the
 maximum size of the context, expressed as the maximum sized header
 that can be stored as context. When a header is larger than
 MAX_HEADER, only part of it is stored as context. An implementation
 MUST NOT compress more than the initial MAX_HEADER octets of a
 header. An implementation MUST NOT partially compress a subheader.

Degermark, et. al. Standards Track [Page 17]

RFC 2507 IP Header Compression February 1999

 Thus, the part of the header that is stored as context and is
 compressed is the longest initial sequence of entire subheaders that
 is not larger than MAX_HEADER octets.

5.3. Size of full headers

 It is desirable to avoid increasing the size of packets with full
 headers beyond their original size, as their size may be optimized
 for the MTU of the link. Since we assume that the link layer
 implementation provides the length of packets, we can use the length
 fields in full headers to pass the values of the CID and the
 generation to the decompressor.

 This requires that the link-layer must not add padding to the
 payload, at least not padding that can be delivered to the
 destination link user. It is also required that no extra padding is
 added after UDP data or in tunneled packets. This allows values of
 length fields to be calculated from the length of headers and the
 length of the link-layer frame.

 The generation requires one octet and the CID may require up to 2
 octets. There are length fields of 2 octets in the IPv6 Base Header,
 the IPv4 header, and the UDP header.

 A full TCP header will thus have at least 2 octets available in the
 IP header to pass the 8 bit CID, which is sufficient. There will be
 more than two octets available if there is more than one IP header.

 [RFC-1144] uses the 8 bit Protocol field of the IPv4 header to pass
 the CID. We cannot use the corresponding method as the sequence of
 IPv6 extension headers is not fixed and CID values are not disjoint
 from the legal values of Next Header fields.

 An IPv6/UDP or IPv4/UDP packet will have 4 octets available to pass
 the generation and the CID, so all CID sizes may be used. Fragmented
 or encrypted packet streams may have only 2 octets available to pass
 the generation and CID. Thus, 8-bit CIDs may be the only CID sizes
 that can be used for such packet streams. When IPv6/IPv4 or
 IPv4/IPv6 tunneling is used, there will be at least 4 octets
 available, and both CID sizes may be used.

 The generation value is passed in the higher order octet of the first
 length field in the full header. When only one length field is
 available, the 8-bit CID is passed in the low order octet. When two
 length fields are available, the lowest two octets of the CID are
 passed in the second length field and the low order octet of the
 first length field carries the highest octet of the CID.

Degermark, et. al. Standards Track [Page 18]

RFC 2507 IP Header Compression February 1999

5.3.1. Use of length fields in full TCP headers

 Use of first length field:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Length field | LSB of pkt nr | CID |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Use of second length field if available:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Second length field | MSB of pkt nr | 0 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Pkt nr is short for packet sequence number, described in section
 11.2.

5.3.2. Use of length fields in full non-TCP headers

 Full non-TCP headers with 8-bit CID:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 First length field |0|D| Generation| CID |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Second length field (if avail.) | 0 | Data (if D=1) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Full non-TCP headers with 16-bit CID:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 First length field |1|D| Generation| Data (if D=1) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Second length field | CID |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 The first bit in the first length field indicates the length of the
 CID. The Data field is zero if D is zero. The use of the D bit and
 Data field is explained in section 12.

Degermark, et. al. Standards Track [Page 19]

RFC 2507 IP Header Compression February 1999

6. Compressed Header Formats

 This section uses some terminology (DELTA, RANDOM) defined in section
 7.

 a) COMPRESSED_TCP format (similar to [RFC 1144]):

 +-+-+-+-+-+-+-+-+
 | CID |
 +-+-+-+-+-+-+-+-+
 |R O I P S A W U|
 +-+-+-+-+-+-+-+-+
 | |
 + TCP Checksum +
 | |
 +-+-+-+-+-+-+-+-+
 | RANDOM fields, if any (see section 7) (implied)
 - - - - - - - -
 | R-octet | (if R=1)
 - - - - - - - -
 | Urgent Pointer Value (if U=1)
 - - - - - - - -
 | Window Delta (if W=1)
 - - - - - - - -
 | Acknowledgment Number Delta (if A=1)
 - - - - - - - -
 | Sequence Number Delta (if S=1)
 - - - - - - - -
 | IPv4 Identification Delta (if I=1)
 - - - - - - - -
 | Options (if O=1)
 - - - - - - - -

 The latter flags in the second octet (IPSAWU) have the same meaning
 as in [RFC-1144], regardless of whether the TCP segments are carried
 by IPv6 or IPv4. The C bit has been eliminated because the CID is
 always present. The context associated with the CID keeps track of
 the IP version and what RANDOM fields are present. The order between
 delta fields specified here is exactly as in [RFC-1144]. An
 implementation will typically scan the context from the beginning and
 insert the RANDOM fields in order. The RANDOM fields are thus placed
 before the DELTA fields of the TCP header in the same order as they
 occur in the original uncompressed header.

Degermark, et. al. Standards Track [Page 20]

RFC 2507 IP Header Compression February 1999

 The I flag is zero unless an IPv4 header immediately precedes the TCP
 header. The combined IPv4/TCP header is then compressed as a unit as
 described in [RFC-1144]. Identification fields in IPv4 headers that
 are not immediately followed by a TCP header are RANDOM.

 If the O flag is set, the Options of the TCP header were not the same
 as in the previous header. The entire Option field are placed last in
 the compressed TCP header.

 If the R flag is set, there were differences between the context and
 the Reserved field (6 bits) in the TCP header or bit 6 or 7 of the
 TOS octet (Traffic Class octet) in a IPv4 header (IPv6 header) that
 immediately precedes the TCP header. An octet with the actual values
 of the Reserved field and bit 6 and 7 of the TOS or Traffic Class
 field is then placed immediately after the RANDOM fields. Bits 0-5
 of the passed octet is the actual value of the Reserved field, and
 bits 6 and 7 are the actual values of bits 6 and 7 in the TOS or
 Traffic Class field. If there is no preceding IP header, bits 6 and 7
 are 0. The octet passed with the R flag MUST NOT update the context.

 NOTE: The R-octet does not update the context because if it did, the
 nTCP checksum would not guard the receiving TCP from erroneously
 decompressed headers. Bits 6 and 7 of the TOS octet or Traffic Class
 octet is expected to change frequently due to Explicit Congestion
 Notification.

 See section 7.12 and [RFC-1144] for further information on how to
 compress TCP headers.

 b) COMPRESSED_TCP_NODELTA header format

 +-+-+-+-+-+-+-+-+
 | CID |
 +-+-+-+-+-+-+-+-+
 | RANDOM fields, if any (see section 7) (implied)
 +-+-+-+-+-+-+-+-+
 | Whole TCP header except for Port Numbers
 +-+-+-+-+-+-+-+-+

Degermark, et. al. Standards Track [Page 21]

RFC 2507 IP Header Compression February 1999

 c) Compressed non-TCP header, 8 bit CID:
 0 7
 +-+-+-+-+-+-+-+-+
 | CID |
 +-+-+-+-+-+-+-+-+
 |0|D| Generation|
 +-+-+-+-+-+-+-+-+
 | data | (if D=1)
 - - - - - - - -
 | RANDOM fields, if any (section 7) (implied)
 - - - - - - - -

 d) Compressed non-TCP header, 16 bit CID:
 0 7
 +-+-+-+-+-+-+-+-+
 | msb of CID |
 +-+-+-+-+-+-+-+-+
 |1|D| Generation|
 +-+-+-+-+-+-+-+-+
 | lsb of CID |
 +-+-+-+-+-+-+-+-+
 | data | (if D=1)
 - - - - - - - -
 | RANDOM fields, if any (section 7) (implied)
 - - - - - - - -

 The generation, CID and optional one octet data are followed by
 relevant RANDOM fields (see section 7) as implied by the compression
 state, placed in the same order as they occur in the original
 uncompressed header, followed by the payload.

7. Compression of subheaders

 This section gives rules for how the compressible chain of subheaders
 is compressed. These rules MUST be followed. Subheaders that may be
 compressed include IPv6 base and extension headers, TCP headers, UDP
 headers, and IPv4 headers. The compressible chain of subheaders
 extends from the beginning of the header

 a) up to but not including the first header that is not an IPv4
 header, an IPv6 base or extension header, a TCP header, or a UDP
 header, or

 b) up to and including the first TCP header, UDP header, Fragment
 Header, Encapsulating Security Payload Header, or IPv4 header for
 a fragment,

Degermark, et. al. Standards Track [Page 22]

RFC 2507 IP Header Compression February 1999

 whichever gives the shorter chain. For example, rules a) and b) both
 fit a chain of subheaders that contain a Fragment Header and ends at
 a tunneled IPX packet. Since rule b) gives a shorter chain, the
 compressible chain of subheaders stops at the Fragment Header.

 The following subsections are a systematic classification of how all
 fields in subheaders are expected to change.

 NOCHANGE The field is not expected to change. Any change means
 that a full header MUST be sent to update the context.

 DELTA The field may change often but usually the difference
 from the field in the previous header is small, so that
 it is cheaper to send the change from the previous value
 rather than the current value. This type of compression
 is only used for TCP packet streams.

 RANDOM The field must be included "as-is" in compressed headers,
 usually because it changes unpredictably.

 INFERRED The field contains a value that can be inferred from
 other values, for example the size of the frame carrying
 the packet, and thus must not be included in the
 compressed header.

 The classification implies how a compressed header is constructed. No
 field that is NOCHANGE or INFERRED is present in a compressed header.
 A compressor obtains the values of NOCHANGE fields from the context
 identified by the compression identifier, and obtains the values of
 INFERRED fields from the link-layer implementation, e.g., from the
 size of the link-layer frame, or from other fields, e.g., by
 recalculating the IPv4 header checksum. DELTA fields are encoded as
 the difference to the value in the previous packet in the same packet
 stream. The decompressor must update the context by adding the value
 in the compressed header to the value in its context. The result is
 the proper value of the field. RANDOM fields must be sent "as-is" in
 the compressed header. RANDOM fields must occur in the same order in
 the compressed header as they occur in the full header.

 Fields that may optionally be used to identify what packet stream a
 packet belongs to according to section 4.1 are marked with the word
 DEF. To a compressor using the optional guidelines from section 4.1,
 any difference in corresponding DEF fields between two packets
 implies that they belong to different packet streams. Moreover, if a
 DEF field is present in one packet but not in another, the packets
 belong to different packet streams.

Degermark, et. al. Standards Track [Page 23]

RFC 2507 IP Header Compression February 1999

7.1. IPv6 Header [IPv6, section 3]

 +-+
 |Version| Traffic Class | Flow Label |
 +-+
 | Payload Length | Next Header | Hop Limit |
 +-+
 | |
 + +
 | |
 + Source Address +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Destination Address +
 | |
 + +
 | |
 +-+

 Version NOCHANGE (DEF)
 Traffic Class NOCHANGE (might be DEF, see sect 4.1)
 (see also sect 6 a)
 Flow Label NOCHANGE (DEF)
 Payload Length INFERRED
 Next Header NOCHANGE
 Hop Limit NOCHANGE (might be DEF, see sect 4.1)
 Source Address NOCHANGE (DEF)
 Destination Address NOCHANGE (DEF)

 The Payload Length field of encapsulated headers must correspond to
 the length value of the encapsulating header. If not, the header
 chain MUST NOT be compressed.

 NOTE: If this the IP header closest to a TCP header, bit 7 of the
 Traffic Class field can be passed using the R-flag of the compressed
 TCP header. See section 6 a).

 This classification implies that the entire IPv6 base header will be
 compressed away.

Degermark, et. al. Standards Track [Page 24]

RFC 2507 IP Header Compression February 1999

7.2. IPv6 Extension Headers [IPv6, section 4]

 What extension headers are present and the relative order of them is
 not expected to change in a packet stream. Whenever there is a
 change, a full packet header must be sent. All Next Header fields in
 IPv6 base header and IPv6 extension headers are NOCHANGE.

7.3. Options [IPv6, section 4.2]

 The contents of Hop-by-hop Options and Destination Options extension
 headers are encoded with TLV "options" (see [IPv6]):

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
 | Option Type | Opt Data Len | Option Data
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -

 Option Type and Opt Data Len fields are assumed to be fixed for a
 given packet stream, so they are classified as NOCHANGE. The Option
 data is RANDOM unless specified otherwise below.

 Padding

 Pad1 option

 +-+-+-+-+-+-+-+-+
 | 0 |
 +-+-+-+-+-+-+-+-+

 Entire option is NOCHANGE.

 PadN option

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
 | 1 | Opt Data Len | Option Data
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -

 All fields are NOCHANGE.

Degermark, et. al. Standards Track [Page 25]

RFC 2507 IP Header Compression February 1999

7.4. Hop-by-Hop Options Header [IPv6, section 4.3]

 +-+
 | Next Header | Hdr Ext Len | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 . .
 . Options .
 . .
 | |
 +-+

 Next Header NOCHANGE
 Hdr Ext Len NOCHANGE

 Options TLV coded values and padding.
 Classified according to 7.3 above, unless
 being a Jumbo Payload option (see below).

 Jumbo Payload option
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 194 |Opt Data Len=4 |
 +-+
 | Jumbo Payload Length |
 +-+

 First two fields are NOCHANGE and Jumbo Payload Length INFERRED.
 (frame length must be supplied by link layer implementation).

 NOTE: It is silly to compress the headers of a packet carrying a
 Jumbo Payload Option since the relative header overhead is
 negligible. Moreover, it is usually a bad idea to send such
 large packets over low- and medium-speed links.

7.5. Routing Header [IPv6, section 4.4]

 +-+
 | Next Header | Hdr Ext Len | Routing Type | Segments Left |
 +-+
 | |
 . .
 . type-specific data .
 . .
 | |
 +-+

 All fields of the Routing Header are NOCHANGE.

Degermark, et. al. Standards Track [Page 26]

RFC 2507 IP Header Compression February 1999

 If the Routing Type is not recognized, it is impossible to determine
 the final Destination Address unless the Segments Left field has the
 value zero, in which case the Destination Address is the final
 Destination Address in the basic IPv6 header.

 In the Type 0 Routing Header, the last address is DEF if (Segments
 Left > 0).

 Routing Headers are compressed away completely. This is a big win as
 the maximum size of the Routing Header is 392 octets. Moreover, Type
 0 Routing Headers with one address, size 24 octets, are used by
 Mobile IP.

7.6. Fragment Header [IPv6, section 4.5]

 The first fragment of a packet has Fragment Offset = 0 and the chain
 of subheaders extends beyond its Fragment Header. If a fragment is
 not the first (Fragment Offset not 0), there are no subsequent
 subheaders (unless the chain of subheaders in the first fragment
 didn’t fit entirely in the first fragment).

 Since packets may be reordered before reaching the compression point,
 and some fragments may follow other routes through the network, a
 compressor cannot rely on seeing the first fragment before other
 fragments. This implies that information in subheaders following the
 Fragment Header of the first fragment cannot be examined to determine
 the proper packet stream for other fragments.

 It is possible to design compression schemes that can compress
 subheaders after the Fragment Header, at least in the first fragment,
 but to avoid complicating the rules for sending full headers and the
 rules for compression and decompression, the chain of subheaders that
 follow a Fragment Header MUST NOT be compressed.

 The fields of the Fragment Header are classified as follows.

 +-+
 | Next Header | Reserved | Fragment Offset |Res|M|
 +-+
 | Identification |
 +-+

 Next Header NOCHANGE
 Reserved NOCHANGE
 Res RANDOM
 M flag RANDOM
 Fragment Offset RANDOM
 Identification RANDOM

Degermark, et. al. Standards Track [Page 27]

RFC 2507 IP Header Compression February 1999

 This classification implies that a Fragment Header is compressed down
 to 6 octets. The minimum IPv6 MTU is 1280 octets so most fragments
 will be at least 1280 octets. Since the 6 octet overhead of the
 compressed fragment header is amortized over a fairly large packet,
 the additional complexity of more sophisticated compression schemes
 is not justifiable.

 NOTE: The Identification field is RANDOM instead of NOCHANGE
 to avoid one compression slow-start per original packet.

 Grouping of fragments according to the optional guidelines in
 section4.1:

 Fragments and unfragmented packets should not be grouped
 together.

 Port numbers cannot be used to identify the packet stream because
 port numbers are not present in every fragment. To adhere to the
 uniqueness rules for the Identification value, a fragmented
 packet stream is identified by the combination of Source Address
 and (final) Destination Address.

 NOTE: The Identification value is NOT used to identify the
 packet stream. This avoids using a new CID for each packet and
 saves the cost of the associated compression slow-start. We
 expect that the unfragmentable part of the headers will not
 change too frequently, if it does thrashing may occur.

7.7. Destination Options Header [IPv6, section 4.6]

 +-+
 | Next Header | Hdr Ext Len | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 . .
 . Options .
 . .
 | |
 +-+

 Next Header NOCHANGE
 Hdr Ext Len NOCHANGE

 Options TLV coded values and padding.
 Compressed according to 7.3 above.

 The only Destination Options defined in [IPv6] are the padding
 options.

Degermark, et. al. Standards Track [Page 28]

RFC 2507 IP Header Compression February 1999

7.8. No Next Header [IPv6, section 4.7]

 Covered by rules for IPv6 Header Extensions (7.2).

7.9. Authentication Header [RFC-2402, section 3.2]

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +---------------+---------------+---------------+---------------+
 | Next Header | Length | RESERVED |
 +---------------+---------------+---------------+---------------+
 | Security Parameters Index (SPI) |
 +---------------+---------------+---------------+---------------+
 | |
 + Authentication Data (variable number of 32-bit words) |
 | |
 +---------------+---------------+---------------+---------------+

 Next Header NOCHANGE
 Length NOCHANGE
 Reserved NOCHANGE
 SPI NOCHANGE (DEF)
 Authentication Data RANDOM

 [RFC-1828] specifies how to do authentication with keyed MD5, the
 authentication method all IPv6 implementations must support. For
 this method, the Authentication Data is 16 octets.

7.10. Encapsulating Security Payload Header [RFC-2406, section 3.1]

 This header implies that the subsequent parts of the packet are
 encrypted. Thus, no further header compression is possible on
 subsequent headers as encryption is typically already performed when
 the compressor sees the packet.

 However, when the ESP Header is used in tunnel mode an entire IP
 packet is encrypted, and the headers of that packet MAY be compressed
 before the packet is encrypted at the entry point of the tunnel.
 This means that it must be possible to feed an IP packet and its
 length to the decompressor, as if it came from the link-layer. The
 mechanisms for dealing with reordering described in section 11 MUST
 also be used, as packets can be reordered in a tunnel.

Degermark, et. al. Standards Track [Page 29]

RFC 2507 IP Header Compression February 1999

 +---------------+---------------+---------------+---------------+
 | Security Association Identifier (SPI), 32 bits |
 +===============+===============+===============+===============+
 | Opaque Transform Data, variable length |
 +---------------+---------------+---------------+---------------+

 SPI NOCHANGE (DEF)
 Opaque Transform Data RANDOM

 Everything after the SPI is encrypted and is not compressed.

7.11. UDP Header

 The UDP header is described in [RFC-768].

 The Next Header field (IPv6) or Protocol field (IPv4) in the
 preceding subheader is DEF.

 +-+
 | Source Port | Destination Port |
 +-+
 | Length | Checksum |
 +-+

 Source Port NOCHANGE (DEF)
 Destination Port NOCHANGE (DEF)
 Length INFERRED
 Checksum RANDOM, unless it is zero,
 in which case it is NOCHANGE.

 The Length field of the UDP header MUST match the Length field(s) of
 preceding subheaders, i.e, there must not be any padding after the
 UDP payload that is covered by the IP Length.

 The UDP header is typically compressed down to 2 octets, the UDP
 checksum. When the UDP checksum is zero (which it cannot be with
 IPv6), it is likely to be so for all packets in the flow and is
 defined to be NOCHANGE. This saves 2 octets in the compressed header.

7.12. TCP Header

 The TCP header is described in [RFC-793].

 The Next Header field (IPv6) or Protocol field (IPv4) in the
 preceding subheader is DEF.

Degermark, et. al. Standards Track [Page 30]

RFC 2507 IP Header Compression February 1999

 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
 | Offset| Reserved |U|A|P|R|S|F| Window |
 +-+
 | Checksum | Urgent Pointer |
 +-+
 | Options | Padding |
 +-+

 U, A, P, R, S, and F stands for Urg, Ack, Psh, Rst, Syn, and Fin.

 There are two ways to compress the TCP header.

7.12.1. Compressed with differential encoding

 Source Port NOCHANGE (DEF)
 Destination Port NOCHANGE (DEF)
 Sequence Number DELTA
 Acknowledgment Number DELTA
 Offset NOCHANGE
 Reserved DELTA (if differs from context,
 set R-flag in flag octet
 and send absolute value
 as described in 6 a.)
 Urg,Psh RANDOM (placed in flag octet)
 Ack INFERRED to be 1
 Rst,Syn,Fin INFERRED to be 0
 Window DELTA (if change in Window,
 set W-flag in flag octet
 and send difference)
 Checksum RANDOM
 Urgent Pointer DELTA (if Urg is set, send
 absolute value)
 Options, Padding DELTA (if change in Options,
 set O-flag and send
 whole Options, Padding)

 A packet with a TCP header compressed according to the above must be
 indicated to be of type COMPRESSED_TCP. The compressed header is
 described in section 6.

Degermark, et. al. Standards Track [Page 31]

RFC 2507 IP Header Compression February 1999

 This method is essentially the differential encoding techniques of
 Jacobson, described in [RFC-1144], the differences being the placement
 of the compressed TCP header fields (see section 6), the use of the
 O-flag, the use of the R-flag, and elimination of the C-flag. The
 O-flag allows compression of the TCP header when the Timestamp option
 is used and the Options fields changes with each header.

 DELTA values (except for Reserved field and Options, Padding) MUST be
 coded as in [RFC-1144]. A Reserved field value passed with the R-flag
 MUST NOT update the context at compressor or decompressor.

7.12.2. Without differential encoding

 Source Port NOCHANGE (DEF)
 Destination Port NOCHANGE (DEF)

 (all the rest) RANDOM

 The Identification field in a preceding IPv4 header is RANDOM.

 A packet with a TCP header compressed according to the above must be
 indicated to be of type COMPRESSED_TCP_NODELTA. It uses the same CID
 space as COMPRESSED_TCP packets, and the header MUST be saved as
 context. The compressed header is described in section 6.

 This packet type can be sent as the response to a header request
 instead of sending a full header, can be used over links that reorder
 packets, and can be sent instead of a full header when there are
 changes that cannot be represented by a compressed header. A
 sophisticated compressor can switch to sending only
 COMPRESSED_TCP_NODELTA headers when the packet loss frequency is high.

Degermark, et. al. Standards Track [Page 32]

RFC 2507 IP Header Compression February 1999

7.13. IPv4 header [RFC-791, section 3.1]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Version| IHL |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Protocol | Header Checksum |
 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 | Options | Padding |
 +-+

 There are two ways to compress the IPv4 header

 a) If the IPv4 header is not for a fragment (MF flag is not set and
 Fragment Offset is zero) and there are no options (IHL is 5), it
 is classified as follows

 Version NOCHANGE (DEF)
 IHL NOCHANGE (DEF, must be 5)
 Type of Service NOCHANGE (might be DEF, see sect 4.1)
 (see also 6 a)
 Total Length INFERRED (from link-layer implementation
 or encapsulating IP header)

 Identification DELTA/ (If the Protocol field has the
 (value corresponding to TCP)
 RANDOM (otherwise)

 Flags NOCHANGE (MF flag must not be set)
 Fragment Offset NOCHANGE (must be zero)
 Time to Live NOCHANGE (might be DEF, see sect 4.1)
 Protocol NOCHANGE
 Header Checksum INFERRED (calculated from other fields)
 Source Address NOCHANGE (DEF)
 Destination Address NOCHANGE (DEF)
 Options, Padding (not present)

Degermark, et. al. Standards Track [Page 33]

RFC 2507 IP Header Compression February 1999

 Note: When a TCP header immediately follows, the IPv4 and TCP
 header MUST be compressed as a unit as described in section 6.
 Bits 6 and 7 of the Type of Service field (bits 14 and 15 of the
 first word) can then be passed using the R-flag (see section 6
 a).

 b) If the IPv4 header is for a fragment (MF bit set or Fragment
 Offset nonzero), or there are options (IHL > 5), all fields are
 RANDOM (i.e., if the header is compressed all fields are sent
 as-is and not compressed). This classification allows compression
 of the tunnel header, but not the fragment header, when fragments
 are tunneled. If the IPv4 header is for a fragment it ends the
 compressible chain of subheaders, i.e., it must be the last
 subheader to be compressed. If the IPv4 header has options but
 is not for a fragment it does not end the compressible chain of
 subheaders, so subsequent subheaders can be compressed.

 A compressor that follows the optional guidelines of section 4.1 will
 in case a) use the Version, Source Address and Destination Address to
 define the packet stream, together with the fact that there are no
 IPv4 options and that this is not a fragment.

 Case b) can define two kinds of packet streams depending on whether
 the IPv4 header is for a fragment or not.

 If the IPv4 header in case b) is for a fragment, a compressor
 following the optional guidelines will use that fact together with
 the Version, Source Address, and Destination Address to determine the
 packet stream.

 If the IPv4 header in case b) is not for a fragment, it must have
 options. A compressor following the optional guidelines will use that
 fact, but not the size of the options, together with the Version,
 Source Address, and Destination Address to determine the packet
 stream.

7.14. Minimal Encapsulation header [RFC-2004, section 3.1]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Protocol |S| reserved | Header Checksum |
 +-+
 | Original Destination Address |
 +-+
 : (if present) Original Source Address :
 +-+

Degermark, et. al. Standards Track [Page 34]

RFC 2507 IP Header Compression February 1999

 Protocol NOCHANGE
 Original Source Address Present (S) NOCHANGE
 reserved NOCHANGE
 Header Checksum INFERRED (calculated from
 other values)
 Original Destination Address NOCHANGE
 Original Source Address NOCHANGE (present only
 if S=1)

 This header is likely to be used by Mobile IP.

8. Changing context identifiers

 On a point-to-point link, the compressor has total knowledge of what
 CIDs are in use at the decompressor and may change what CID a packet
 stream uses or reuse CIDs at will.

 Each non-TCP CID is associated with a context with a generation
 value. To avoid too rapid generation wrap-around and potential
 incorrect decompression, an implementation MUST avoid wrap-around of
 the generation value in less than MIN_WRAP seconds (see section 14).

 To aid in avoiding wrap-around, the generation value associated with
 a CID MUST NOT be reset when changing to a new packet stream.
 Instead, a compressor MUST increment the generation value by one when
 using the CID for a new non-TCP packet stream.

9. Rules for dropping or temporarily storing packets

 When a decompressor receives a packet with a compressed TCP header
 with CID C, it MUST be discarded when the context for C has not been
 initialized by a full header.

 When a decompressor receives a packet with a compressed non-TCP
 header with CID C and generation G, the header must not be
 decompressed using the current context when

 a) the decompressor has been disconnected from the compressor for
 more than MIN_WRAP seconds, because the context might be
 obsolete even if it has generation G.

 b) the context for C has a generation other than G.

 In case a) and b) the packet may either be

 i) discarded immediately, or else

Degermark, et. al. Standards Track [Page 35]

RFC 2507 IP Header Compression February 1999

 ii) stored temporarily until the context is updated by a packet
 with a full non-TCP header with CID C and generation G, after
 which the header can be decompressed.

 Packets stored in this manner MUST be discarded when

 *) receiving full or compressed non-TCP headers with CID C
 and a generation other than G,

 *) the decompressor has not received packets with CID C in
 the last MIN_WRAP seconds.

 When full headers are lost, a decompressor can receive compressed
 non-TCP headers with a generation value other than the generation of
 its context. Rule ii) allows the decompressor to store such headers
 until they can be decompressed using the correct context.

10. Low-loss header compression for TCP

 Since fewer bits are transmitted per packet with header compression,
 the packet loss rate is lower with header compression than without,
 for a fixed bit-error rate. This is beneficial for links with high
 bit-error rates such as wireless links.

 However, since TCP headers are compressed using differential
 encoding, a single lost TCP segment can ruin an entire TCP sending
 window because the context is not incremented properly at the
 decompressor. Subsequent headers will therefore be decompressed to
 be different than before compression and discarded by the TCP
 receiver because the TCP checksum fails.

 A TCP connection in the wide area where the last hop is over a
 medium-speed lossy link, for example a wireless LAN, will then have
 poor performance with traditional header compression because the
 delay-bandwidth product is relatively large and the bit-error rate
 relatively high. For a 2 Mbit/s wireless LAN and an end-to-end RTT of
 200 ms, the delay-bandwidth product is 50 kbyte. That is equivalent
 to about 97 512-octet segments with compressed headers. Each loss
 can thus be multiplied by a factor of 100.

 This section describes two simple mechanisms for quick repair of the
 context. With these mechanisms header compression will improve TCP
 throughput over lossy links as well as links with low bit-error
 rates.

Degermark, et. al. Standards Track [Page 36]

RFC 2507 IP Header Compression February 1999

10.1. The "twice" algorithm

 The decompressor may compute the TCP checksum to determine if its
 context is not updated properly. If the checksum fails, the error is
 assumed to be caused by a lost segment that did not update the
 context properly. The delta of the current segment is then added to
 the context again on the assumption that the lost segment contained
 the same delta as the current. By decompressing and computing the TCP
 checksum again, the decompressor checks if the repair succeeded or if
 the delta should be applied once more.

 Analysis of traces of various TCP bulk transfers show that applying
 the delta of the current segment one or two times will repair the
 context for between 83 and 99 per cent of all single-segment losses
 in the data stream. For the acknowledgment stream, the success rate
 is smaller due to the delayed ack mechanism of TCP. The "twice"
 mechanism repairs the context for 53 to 99 per cent of the losses in
 the acknowledgment stream. A sophisticated implementation of this
 idea would determine whether the TCP stream is an acknowledgment or
 data stream and determine the segment size by observing the stream of
 full and compressed headers. Trying deltas that are small multiples
 of the segment size will result in even higher rates of successful
 repairs for acknowledgment streams.

10.2. Header Requests

 The relatively low success rate for the "twice" algorithm for TCP
 acknowledgment streams calls for an additional mechanism for
 repairing the context at the decompressor. When the decompressor
 fails to repair the context after a loss, the decompressor may
 optionally request a full header from the compressor. This is
 possible on links where the decompressor can identify the compressor
 and send packets to it.

 On such links, a decompressor may send a CONTEXT_STATE packet back to
 the compressor to indicate that one or more contexts are invalid. A
 decompressor SHOULD NOT transmit a CONTEXT_STATE packet every time a
 compressed packet refers to an invalid context, but instead should
 limit the rate of transmission of CONTEXT_STATE packets to avoid
 flooding the reverse channel. A CONTEXT_STATE packet can indicate
 that several contexts are out of date, this technique SHOULD be used
 instead of sending several separate packets. The following diagram
 shows the format of a CONTEXT_STATE packet.

Degermark, et. al. Standards Track [Page 37]

RFC 2507 IP Header Compression February 1999

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | TCP header request = 3 |
 +---+---+---+---+---+---+---+---+
 | CID count |
 +---+---+---+---+---+---+---+---+
 | CID |
 +---+---+---+---+---+---+---+---+
 | CID |
 +---+---+---+---+---+---+---+---+
 ...
 +---+---+---+---+---+---+---+---+
 | CID |
 +---+---+---+---+---+---+---+---+

 The first octet is a type code to allow the CONTEXT_STATE packet type
 to be shared for other compression protocols that are (see [CRTP]) or
 may be defined in parallel with this one. When used for TCP header
 requests the type code has the value 3, and the remainder of the
 packet is a sequence of CIDs preceded by a one-octet count of the
 number of CIDs.

 On receipt of a CONTEXT_STATE packet, the compressor MUST mark the
 CIDs invalid to ensure that the next packet emitted in those packet
 streams are FULL_HEADER or COMPRESSED_TCP_NODELTA packets.

 Header requests are an optimization, so loss of a CONTEXT_STATE
 packet does not affect the correct operation of TCP header
 compression. When a CONTEXT_STATE packet is lost, eventually a new
 one will be transmitted or TCP will timeout and retransmit. The big
 advantage of using header requests is that TCP acknowledgment streams
 can be repaired after a roundtrip-time over the lossy link. This
 will typically avoid a TCP timeout and unnecessary retransmissions.
 The lower packet loss rate due to smaller packets will then result in
 higher throughput because the TCP window can grow larger between
 losses.

11. Links that reorder packets

 Some links reorder packets, for example multi-hop radio links that
 use deflection routing to route around congested nodes. Packets
 routed different ways can then arrive at the destination in a
 different order than they were sent.

Degermark, et. al. Standards Track [Page 38]

RFC 2507 IP Header Compression February 1999

11.1. Reordering in non-TCP packet streams

 Compressed non-TCP headers do not change the context, and neither do
 full headers that refresh it. There can be problems only when a full
 header that changes the context arrives out of order. There are two
 cases:

 - A packet with a full header with generation G arrives *after*
 a packet with a compressed header with generation G. This case
 is covered by rule b) ii) in section 9.

 - A packet with a full header with generation G arrives *before*
 a packet with a compressed header with generation G-1 (modulo
 64). The decompressor MAY then keep both versions of the
 context around for a while to be able to decompress subsequent
 compressed headers with generation G-1 (modulo 64). The old
 context MUST be discarded after MIN_WRAP seconds.

11.2. Reordering in TCP packet streams

 A compressor may avoid sending COMPRESSED_TCP headers and only send
 COMPRESSED_TCP_NODELTA headers when there is reordering over the
 link. Compressed headers will typically be 17 octets with that
 method, significantly larger than the usual 4-7 octets.

 To achieve better compression rates the following method, adding only
 two octets to the compressed header for a total of 6-9 octets, may be
 used. A packet sequence number, incremented by one for every packet
 in the TCP stream, is then associated with each compressed and full
 header. This allows the decompressor to place the packets in the
 correct sequence and apply their deltas to the context in the correct
 order. A simple sliding window scheme is used to place the packets
 in the correct order.

 Two octets are needed for the packet sequence numbers. One octet
 gives only 256 sequence numbers. In a sliding window scheme the
 window should be no larger than half of the sequence number space, so
 packets can not arrive more than 127 positions out-of-sequence. This
 is equivalent to a delay of 260 ms on 2 Mbit/s links with 512 octet
 segments. Delays of that order are not uncommon over wide-area
 Internet connections. However, two octets giving 2^16 = 65536 values
 should be sufficient.

 Full TCP/IP headers will only have space for one octet of sequence
 number when there is no tunneling. It is not feasible to increase the
 size of full headers since the packet size might be optimized for the
 MTU of the link. Therefore only the least significant octet of the
 packet sequence number can be placed in such full headers. We believe

Degermark, et. al. Standards Track [Page 39]

RFC 2507 IP Header Compression February 1999

 that such full headers can be positioned correctly frequently enough
 with only the least significant octet of the packet sequence number
 available.

 The packet sequence number zero MUST be skipped over. Avoiding zero
 takes care of a problem that can occur when the TCP window scale
 option is used to enlarge the TCP window. When exactly 2^16 octets of
 TCP data is lost, a compressed header will be decompressed
 incorrectly without being detected by the TCP checksum. TCP segment
 sizes are often a power of two. So by using a packet sequence number
 space that is not a power of two either the TCP sequence number or
 the packet sequence number will differ when 2^16 octets are lost.
 Whenever a compressor sees the window scale option on a SYN segment,
 it MUST use packet sequence numbers when subsequently compressing
 that packet stream.

 In compressed TCP headers the two octet packet sequence number MUST
 be placed immediately after the TCP Checksum. See section 5.3 for
 placement of packet sequence numbers in full headers.

12. Hooks for additional header compression

 The following hook is supplied to allow additional header compression
 schemes for headers on top of UDP. The initial chain of subheaders is
 then compressed as described here, and the other header compression
 scheme is applied to the header above the UDP header. An example of
 such additional header compression is Compressed RTP by Casner and
 Jacobson [CRTP]. To allow some error detection, such schemes
 typically need a sequence number that may need to be passed in full
 headers as well as compressed UDP headers.

 The D-bit and Data octet (see section 6) provides the necessary
 mechanism. When a sequence number, say, needs to be passed in a
 FULL_HEADER or COMPRESSED_NON_TCP header, the D-bit is set and the
 sequence number is placed in the Data field. The decompressor must
 then extract and make the Data field available to the additional
 header compression scheme.

 Use of additional header compression schemes like CRTP must be
 negotiated. The D-bit and Data octet mechanism must automatically be
 enabled whenever use of additional header compression schemes has
 been negotiated.

Degermark, et. al. Standards Track [Page 40]

RFC 2507 IP Header Compression February 1999

13. Demultiplexing

 For each link layer, there must be a document specifying how the
 various packet types used by IP header compression is indicated.
 Such a document exists for PPP [PPP-HC]. This section gives OPTIONAL
 guidelines on how packet types may be indicated by a specific link-
 layer.

 It is necessary to distinguish packets with regular IPv4 headers,
 regular IPv6 headers, full IPv6 packets, full IPv4 packets,
 compressed TCP packets, compressed non-TCP packets, and CONTEXT_STATE
 packets.

 The decision to use a distinct ethertype (or equivalent) for IPv6 has
 already been taken, which means that link-layers must be able to
 indicate that a packet is an IPv6 packet.

 IP header compression requires that the link-layer implementation can
 indicate four kinds of packets: COMPRESSED_TCP for format a) in
 section 6, COMPRESSED_TCP_NODELTA for format b), COMPRESSED_NON_TCP
 for formats c) and d), and CONTEXT_STATE as described in section
 11.2. It is also desirable to indicate FULL_HEADERS at the link
 layer.

 Full headers can be indicated by setting the first bit of the Version
 field in a packet indicated to be an IPv6 packet. In addition, one
 bit of the Version field is used to indicate if the first subheader
 is an IPv6 or an IPv4 header, and one bit is used to indicate if this
 full header carries a TCP CID or a non-TCP CID. The first four bits
 are encoded as follows:

 Version Meaning
 ------- -------

 0110 regular IPv6 header

 1T*0 T=1 indicates a TCP header, T=0 indicates a non-TCP header
 1*V0 V=1 indicates a IPv6 header, V=0 indicates a IPv4 header

 If a link-layer cannot indicate the packet types for the compressed
 headers or CONTEXT_STATE, packet types that cannot be indicated could
 start with an octet indicating the packet type, followed by the
 header.

Degermark, et. al. Standards Track [Page 41]

RFC 2507 IP Header Compression February 1999

 First octet Type of compressed header
 ----------- -------------------------

 0 COMPRESSED_TCP
 1 COMPRESSED_TCP_NODELTA
 2 COMPRESSED_NON_TCP
 3 CONTEXT_STATE

 The currently assigned CONTEXT_STATE type values are

 Value Type Reference
 ----- ----- ----------
 0 Reserved -
 1 IP/UDP/RTP w. 8-bit CID [CRTP]
 2 IP/UDP/RTP w. 16-bit CID [CRTP]
 3 TCP header request Section 10.2

14. Configuration Parameters

 Header compression parameters are negotiated in a way specific to the
 link-layer implementation. Such procedures for link-layer xxx needs
 to be specified in a document "IP header compression over xxx". Such
 a document exists for PPP [PPP-HC].

 The following parameter is fixed for all implementations of this
 header compression scheme.

 MIN_WRAP - minimum time of generation value wrap around

 3 seconds.

 The following parameters can be negotiated between the compressor and
 decompressor. If not negotiated their values must be as specified by
 DEFAULT.

 F_MAX_PERIOD - Largest number of compressed non-TCP headers that
 may be sent without sending a full header.

 DEFAULT is 256

 F_MAX_PERIOD must be at least 1 and at most 65535.

 F_MAX_TIME - Compressed headers may not be sent more than
 F_MAX_TIME seconds after sending last full header.

 DEFAULT is 5

Degermark, et. al. Standards Track [Page 42]

RFC 2507 IP Header Compression February 1999

 F_MAX_TIME must be at least 1 and at most 255.

 NOTE: F_MAX_PERIOD and F_MAX_TIME should be lower when it is
 likely that a decompressor loses its state.

 MAX_HEADER - The largest header size in octets that may
 be compressed.

 DEFAULT is 168 octets, which covers

 - Two IPv6 base headers
 - A Keyed MD5 Authentication Header
 - A maximum-sized TCP header

 MAX_HEADER must be at least 60 octets and
 at most 65535 octets.

 TCP_SPACE - Maximum CID value for TCP.

 DEFAULT is 15 (which gives 16 CID values)

 TCP_SPACE must be at least 3 and at most 255.

 NON_TCP_SPACE - Maximum CID value for non-TCP.

 DEFAULT is 15 (which gives 16 CID values)

 NON_TCP_SPACE must be at least 3 and at most 65535.

 EXPECT_REORDERING - The mechanisms in section 11 are used.

 DEFAULT no.

15. Implementation Status

 A prototype using UDP as the link layer has been operational since
 March 1996. A NetBSD implementation for PPP has been operational
 since October 1996.

Degermark, et. al. Standards Track [Page 43]

RFC 2507 IP Header Compression February 1999

16. Acknowledgments

 This protocol uses many ideas originated by Van Jacobson in the
 design of header compression for TCP/IP over slow-speed links [RFC-
 1144]. It has benefited from discussions with Stephen Casner and
 Carsten Bormann.

 We thank Craig Partridge for pointing out a problem that can occur
 when the TCP window scale option is used. A solution to this problem
 relying on the packet sequence numbers used for reordering is
 described in section 11.2.

17. Security Considerations

 The compression protocols in this document run on top of a link-layer
 protocol. The compression protocols themselves introduce no new
 additional vulnerabilities beyond those associated with the specific
 link-layer technology being used.

 Denial-of-service attacks are possible if an intruder can introduce
 (for example) bogus Full Header packets onto the link. However, an
 intruder having the ability to inject arbitrary packets at the link-
 layer in this manner raises additional security issues that dwarf
 those related to the use of header compression.

 We advise implementors against identifying packet streams with the
 aid of information that is encrypted, even if such information
 happens to be available to the compressor. Doing so may expose
 traffic patterns.

Degermark, et. al. Standards Track [Page 44]

RFC 2507 IP Header Compression February 1999

18. Authors’ Addresses

 Mikael Degermark
 Department of Computer Science and Electrical Engineering
 Lulea University of Technology
 SE-971 87 Lulea, Sweden

 Phone: +46 920 91188
 Fax: +46 920 72831
 Mobile: +46 70 833 8933
 EMail: micke@sm.luth.se

 Bjorn Nordgren
 CDT/Telia Research AB
 Aurorum 6
 S-977 75 Lulea, Sweden

 Phone: +46 920 75400
 Fax: +46 920 75490
 EMail: bcn@lulea.trab.se, bcn@cdt.luth.se

 Stephen Pink
 Department of Computer Science and Electrical Engineering
 Lulea University of Technology
 SE-971 87 Lulea, Sweden

 Phone: +46 920 752 29
 Fax: +46 920 728 31
 Mobile: +46 70 532 0007
 EMail: steve@sm.luth.se

Degermark, et. al. Standards Track [Page 45]

RFC 2507 IP Header Compression February 1999

19. References

 [RFC-768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC-791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC-793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC-1144] Jacobson, V., "Compressing TCP/IP Headers for Low-
 Speed Serial Links", RFC 1144, February 1990.

 [RFC-1553] Mathur, A. and M. Lewis, "Compressing IPX Headers
 Over WAN Media (CIPX)", RFC 1553, December 1993.

 [RFC-1700] Reynolds, J. and J. Postel, "Assigned Numbers", STD
 2, RFC 1700, October 1994. See also:
 http://www.iana.org/numbers.html

 [RFC-2402] Kent, S. and R. Atkinson, "IP Authentication Header",
 RFC 2402, November 1998.

 [RFC-2406] Kent, S. and R. Atkinson, "IP Encapsulating Security
 Protocol (ESP)", RFC 2406, November 1998.

 [RFC-1828] Metzger, W., "IP Authentication using Keyed MD5", RFC
 1828, August 1995.

 [IPv6] Deering, S. and R. Hinden, "Internet Protocol,
 Version 6 (IPv6) Specification", RFC 2460, December
 1998.

 [ICMPv6] Conta, A. and S. Deering, "Internet Control Message
 Protocol (ICMPv6) for the Internet Protocol Version 6
 (IPv6) Specification.", RFC 2463, December 1998.

 [RFC-2004] Perkins, C., "Minimal Encapsulation within IP", RFC
 2004, October 1996.

 [CRTP] Casner, S. and V. Jacobson, "Compressing IP/UDP/RTP
 Headers for Low-Speed Serial Links", RFC 2508,
 February 1999.

 [PPP-HC] Engan, M., Casner, S. and C. Bormann, "IP Header
 Compression for PPP", RFC 2509, February 1999.

Degermark, et. al. Standards Track [Page 46]

RFC 2507 IP Header Compression February 1999

20. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. .fi

Degermark, et. al. Standards Track [Page 47]

