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Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

   This document describes a method for compressing the headers of
   IP/UDP/RTP datagrams to reduce overhead on low-speed serial links.
   In many cases, all three headers can be compressed to 2-4 bytes.

   Comments are solicited and should be addressed to the working group
   mailing list rem-conf@es.net and/or the author(s).

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119.

1.  Introduction

   Since the Real-time Transport Protocol was published as an RFC [1],
   there has been growing interest in using RTP as one step to achieve
   interoperability among different implementations of network
   audio/video applications.  However, there is also concern that the
   12-byte RTP header is too large an overhead for 20-byte payloads when
   operating over low speed lines such as dial-up modems at 14.4 or 28.8
   kb/s.  (Some existing applications operating in this environment use
   an application-specific protocol with a header of a few bytes that
   has reduced functionality relative to RTP.)
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   Header size may be reduced through compression techniques as has been
   done with great success for TCP [2].  In this case, compression might
   be applied to the RTP header alone, on an end-to-end basis, or to the
   combination of IP, UDP and RTP headers on a link-by-link basis.
   Compressing the 40 bytes of combined headers together provides
   substantially more gain than compressing 12 bytes of RTP header alone
   because the resulting size is approximately the same (2-4 bytes) in
   either case.  Compressing on a link-by-link basis also provides
   better performance because the delay and loss rate are lower.
   Therefore, the method defined here is for combined compression of IP,
   UDP and RTP headers on a link-by-link basis.

   This document defines a compression scheme that may be used with
   IPv4, IPv6 or packets encapsulated with more than one IP header,
   though the initial focus is on IPv4.  The IP/UDP/RTP compression
   defined here is intended to fit within the more general compression
   framework specified in [3] for use with both IPv6 and IPv4.  That
   framework defines TCP and non-TCP as two classes of transport above
   IP.  This specification creates IP/UDP/RTP as a third class extracted
   from the non-TCP class.

2.  Assumptions and Tradeoffs

   The goal of this compression scheme is to reduce the IP/UDP/RTP
   headers to two bytes for most packets in the case where no UDP
   checksums are being sent, or four bytes with checksums.  It is
   motivated primarily by the specific problem of sending audio and
   video over 14.4 and 28.8 dialup modems.  These links tend to provide
   full-duplex communication, so the protocol takes advantage of that
   fact, though the protocol may also be used with reduced performance
   on simplex links.  This compression scheme performs best on local
   links with low round-trip-time.

   This specification does not address segmentation and preemption of
   large packets to reduce the delay across the slow link experienced by
   small real-time packets, except to identify in Section 4 some
   interactions between segmentation and compression that may occur.
   Segmentation schemes may be defined separately and used in
   conjunction with the compression defined here.

   It should be noted that implementation simplicity is an important
   factor to consider in evaluating a compression scheme.
   Communications servers may need to support compression over perhaps
   as many as 100 dial-up modem lines using a single processor.
   Therefore, it may be appropriate to make some simplifications in the
   design at the expense of generality, or to produce a flexible design
   that is general but can be subsetted for simplicity.  Higher
   compression gain might be achieved by communicating more complex
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   models for the changing header fields from the compressor to the
   decompressor, but that complexity is deemed unnecessary.  The next
   sections discuss some of the tradeoffs listed here.

2.1.  Simplex vs. Full Duplex

   In the absence of other constraints, a compression scheme that worked
   over simplex links would be preferred over one that did not.
   However, operation over a simplex link requires periodic refreshes
   with an uncompressed packet header to restore compression state in
   case of error.  If an explicit error signal can be returned instead,
   the delay to recovery may be shortened substantially.  The overhead
   in the no-error case is also reduced.  To gain these performance
   improvements, this specification includes an explicit error
   indication sent on the reverse path.

   On a simplex link, it would be possible to use a periodic refresh
   instead.  Whenever the decompressor detected an error in a particular
   packet stream, it would simply discard all packets in that stream
   until an uncompressed header was received for that stream, and then
   resume decompression.  The penalty would be the potentially large
   number of packets discarded.  The periodic refresh method described
   in Section 3.3 of [3] applies to IP/UDP/RTP compression on simplex
   links or links with high delay as well as to other non-TCP packet
   streams.

2.2.  Segmentation and Layering

   Delay induced by the time required to send a large packet over the
   slow link is not a problem for one-way audio, for example, because
   the receiver can adapt to the variance in delay.  However, for
   interactive conversations, minimizing the end-to-end delay is
   critical.  Segmentation of large, non-real-time packets to allow
   small real-time packets to be transmitted between segments can reduce
   the delay.

   This specification deals only with compression and assumes
   segmentation, if included, will be handled as a separate layer.  It
   would be inappropriate to integrate segmentation and compression in
   such a way that the compression could not be used by itself in
   situations where segmentation was deemed unnecessary or impractical.
   Similarly, one would like to avoid any requirements for a reservation
   protocol.  The compression scheme can be applied locally on the two
   ends of a link independent of any other mechanisms except for the
   requirements that the link layer provide some packet type codes, a
   packet length indication, and good error detection.
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   Conversely, separately compressing the IP/UDP and RTP layers loses
   too much of the compression gain that is possible by treating them
   together.  Crossing these protocol layer boundaries is appropriate
   because the same function is being applied across all layers.

3.  The Compression Algorithm

   The compression algorithm defined in this document draws heavily upon
   the design of TCP/IP header compression as described in RFC 1144 [2].
   Readers are referred to that RFC for more information on the
   underlying motivations and general principles of header compression.

3.1.  The basic idea

   In TCP header compression, the first factor-of-two reduction in data
   rate comes from the observation that half of the bytes in the IP and
   TCP headers remain constant over the life of the connection.  After
   sending the uncompressed header once, these fields may be elided from
   the compressed headers that follow.  The remaining compression comes
   from differential coding on the changing fields to reduce their size,
   and from eliminating the changing fields entirely for common cases by
   calculating the changes from the length of the packet.  This length
   is indicated by the link-level protocol.

   For RTP header compression, some of the same techniques may be
   applied.  However, the big gain comes from the observation that
   although several fields change in every packet, the difference from
   packet to packet is often constant and therefore the second-order
   difference is zero.  By maintaining both the uncompressed header and
   the first-order differences in the session state shared between the
   compressor and decompressor, all that must be communicated is an
   indication that the second-order difference was zero.  In that case,
   the decompressor can reconstruct the original header without any loss
   of information simply by adding the first-order differences to the
   saved uncompressed header as each compressed packet is received.

   Just as TCP/IP header compression maintains shared state for multiple
   simultaneous TCP connections, this IP/UDP/RTP compression SHOULD
   maintain state for multiple session contexts.  A session context is
   defined by the combination of the IP source and destination
   addresses, the UDP source and destination ports, and the RTP SSRC
   field.  A compressor implementation might use a hash function on
   these fields to index a table of stored session contexts.  The
   compressed packet carries a small integer, called the session context
   identifier or CID, to indicate in which session context that packet
   should be interpreted.  The decompressor can use the CID to index its
   table of stored session contexts directly.
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   Because the RTP compression is lossless, it may be applied to any UDP
   traffic that benefits from it.  Most likely, the only packets that
   will benefit are RTP packets, but it is acceptable to use heuristics
   to determine whether or not the packet is an RTP packet because no
   harm is done if the heuristic gives the wrong answer.  This does
   require executing the compression algorithm for all UDP packets, or
   at least those with even port numbers (see section 3.4).

   Most compressor implementations will need to maintain a "negative
   cache" of packet streams that have failed to compress as RTP packets
   for some number of attempts in order to avoid further attempts.
   Failing to compress means that some fields in the potential RTP
   header that are expected to remain constant most of the time, such as
   the payload type field, keep changing.  Even if the other such fields
   remain constant, a packet stream with a constantly changing SSRC
   field SHOULD be entered in the negative cache to avoid consuming all
   of the available session contexts.  The negative cache is indexed by
   the source and destination IP address and UDP port pairs but not the
   RTP SSRC field since the latter may be changing.  When RTP
   compression fails, the IP and UDP headers MAY still be compressed.

   Fragmented IP Packets that are not initial fragments and packets that
   are not long enough to contain a complete UDP header MUST NOT be sent
   as FULL_HEADER packets.  Furthermore, packets that do not
   additionally contain at least 12 bytes of UDP data MUST NOT be used
   to establish RTP context.  If such a packet is sent as a FULL_HEADER
   packet, it MAY be followed by COMPRESSED_UDP packets but MUST NOT be
   followed by COMPRESSED_RTP packets.

3.2.  Header Compression for RTP Data Packets

   In the IPv4 header, only the total length, packet ID, and header
   check-sum fields will normally change.  The total length is redundant
   with the length provided by the link layer, and since this
   compression scheme must depend upon the link layer to provide good
   error detection (e.g., PPP’s CRC [4]), the header checksum may also
   be elided.  This leaves only the packet ID, which, assuming no IP
   fragmentation, would not need to be communicated.  However, in order
   to maintain lossless compression, changes in the packet ID will be
   transmitted.  The packet ID usually increments by one or a small
   number for each packet.  (Some systems increment the ID with the
   bytes swapped, which results in slightly less compression.)  In the
   IPv6 base header, there is no packet ID nor header checksum and only
   the payload length field changes.
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   In the UDP header, the length field is redundant with the IP total
   length field and the length indicated by the link layer.  The UDP
   check-sum field will be a constant zero if the source elects not to
   generate UDP checksums.  Otherwise, the checksum must be communicated
   intact in order to preserve the lossless compression.  Maintaining
   end-to-end error detection for applications that require it is an
   important principle.

   In the RTP header, the SSRC identifier is constant in a given context
   since that is part of what identifies the particular context.  For
   most packets, only the sequence number and the timestamp will change
   from packet to packet.  If packets are not lost or misordered
   upstream from the compressor, the sequence number will increment by
   one for each packet.  For audio packets of constant duration, the
   timestamp will increment by the number of sample periods conveyed in
   each packet.  For video, the timestamp will change on the first
   packet of each frame, but then stay constant for any additional
   packets in the frame.  If each video frame occupies only one packet,
   but the video frames are generated at a constant rate, then again the
   change in the timestamp from frame to frame is constant.  Note that
   in each of these cases the second-order difference of the sequence
   number and timestamp fields is zero, so the next packet header can be
   constructed from the previous packet header by adding the first-order
   differences for these fields that are stored in the session context
   along with the previous uncompressed header.  When the second-order
   difference is not zero, the magnitude of the change is usually much
   smaller than the full number of bits in the field, so the size can be
   reduced by encoding the new first-order difference and transmitting
   it rather than the absolute value.

   The M bit will be set on the first packet of an audio talkspurt and
   the last packet of a video frame.  If it were treated as a constant
   field such that each change required sending the full RTP header,
   this would reduce the compression significantly.  Therefore, one bit
   in the compressed header will carry the M bit explicitly.

   If the packets are flowing through an RTP mixer, most commonly for
   audio, then the CSRC list and CC count will also change.  However,
   the CSRC list will typically remain constant during a talkspurt or
   longer, so it need be sent only when it changes.

3.3.  The protocol

   The compression protocol must maintain a collection of shared
   information in a consistent state between the compressor and
   decompressor.  There is a separate session context for each
   IP/UDP/RTP packet stream, as defined by a particular combination of
   the IP source and destination addresses, UDP source and destination
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   ports, and the RTP SSRC field.  The number of session contexts to be
   maintained MAY be negotiated between the compressor and decompressor.
   Each context is identified by an 8- or 16-bit identifier, depending
   upon the number of contexts negotiated, so the maximum number is
   65536.  Both uncompressed and compressed packets MUST carry the
   context ID and a 4-bit sequence number used to detect packet loss
   between the compressor and decompressor.  Each context has its own
   separate sequence number space so that a single packet loss need only
   invalidate one context.

   The shared information in each context consists of the following
   items:

      o The full IP, UDP and RTP headers, possibly including a CSRC
        list, for the last packet sent by the compressor or
        reconstructed by the decompressor.

      o The first-order difference for the IPv4 ID field, initialized to
        1 whenever an uncompressed IP header for this context is
        received and updated each time a delta IPv4 ID field is received
        in a compressed packet.

      o The first-order difference for the RTP timestamp field,
        initialized to 0 whenever an uncompressed packet for this
        context is received and updated each time a delta RTP timestamp
        field is received in a compressed packet.

      o The last value of the 4-bit sequence number, which is used to
        detect packet loss between the compressor and decompressor.

      o The current generation number for non-differential coding of UDP
        packets with IPv6 (see [3]).  For IPv4, the generation number
        may be set to zero if the COMPRESSED_NON_TCP packet type,
        defined below, is never used.

      o A context-specific delta encoding table (see section 3.3.4) may
        optionally be negotiated for each context.

   In order to communicate packets in the various uncompressed and
   compressed forms, this protocol depends upon the link layer being
   able to provide an indication of four new packet formats in addition
   to the normal IPv4 and IPv6 packet formats:

      FULL_HEADER - communicates the uncompressed IP header plus any
      following headers and data to establish the uncompressed header
      state in the decompressor for a particular context.  The FULL-
      HEADER packet also carries the 8- or 16-bit session context
      identifier and the 4-bit sequence number to establish
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      synchronization between the compressor and decompressor.  The
      format is shown in section 3.3.1.

      COMPRESSED_UDP - communicates the IP and UDP headers compressed to
      6 or fewer bytes (often 2 if UDP checksums are disabled), followed
      by any subsequent headers (possibly RTP) in uncompressed form,
      plus data.  This packet type is used when there are differences in
      the usually constant fields of the (potential) RTP header.  The
      RTP header includes a potentially changed value of the SSRC field,
      so this packet may redefine the session context.  The format is
      shown in section 3.3.3.

      COMPRESSED_RTP - indicates that the RTP header is compressed along
      with the IP and UDP headers.  The size of this header may still be
      just two bytes, or more if differences must be communicated.  This
      packet type is used when the second-order difference (at least in
      the usually constant fields) is zero.  It includes delta encodings
      for those fields that have changed by other than the expected
      amount to establish the first-order differences after an
      uncompressed RTP header is sent and whenever they change.  The
      format is shown in section 3.3.2.

      CONTEXT_STATE - indicates a special packet sent from the
      decompressor to the compressor to communicate a list of context
      IDs for which synchronization has or may have been lost.  This
      packet is only sent across the point-to-point link so it requires
      no IP header.  The format is shown in section 3.3.5.

   When this compression scheme is used with IPv6 as part of the general
   header compression framework specified in [3], another packet type
   MAY be used:

      COMPRESSED_NON_TCP - communicates the compressed IP and UDP
      headers as defined in [3] without differential encoding.  If it
      were used for IPv4, it would require one or two bytes more than
      the COMPRESSED_UDP form listed above in order to carry the IPv4 ID
      field.  For IPv6, there is no ID field and this non-differential
      compression is more resilient to packet loss.

   Assignments of numeric codes for these packet formats in the Point-
   to-Point Protocol [4] are to be made by the Internet Assigned Numbers
   Authority.

3.3.1.  FULL_HEADER (uncompressed) packet format

   The definition of the FULL_HEADER packet given here is intended to be
   the consistent with the definition given in [3].  Full details on
   design choices are given there.
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   The format of the FULL_HEADER packet is the same as that of the
   original packet.  In the IPv4 case, this is usually an IP header,
   followed by a UDP header and UDP payload that may be an RTP header
   and its payload.  However, the FULL_HEADER packet may also carry IP
   encapsulated packets, in which case there would be two IP headers
   followed by UDP and possibly RTP.  Or in the case of IPv6, the packet
   may be built of some combination of IPv6 and IPv4 headers.  Each
   successive header is indicated by the type field of the previous
   header, as usual.

   The FULL_HEADER packet differs from the corresponding normal IPv4 or
   IPv6 packet in that it must also carry the compression context ID and
   the 4-bit sequence number.  In order to avoid expanding the size of
   the header, these values are inserted into length fields in the IP
   and UDP headers since the actual length may be inferred from the
   length provided by the link layer.  Two 16-bit length fields are
   needed; these are taken from the first two available headers in the
   packet.  That is, for an IPv4/UDP packet, the first length field is
   the total length field of the IPv4 header, and the second is the
   length field of the UDP header.  For an IPv4 encapsulated packet, the
   first length field would come from the total length field of the
   first IP header, and the second length field would come from the
   total length field of the second IP header.

   As specified in Sections 5.3.2 of [3], the position of the context ID
   (CID) and 4-bit sequence number varies depending upon whether 8- or
   16-bit context IDs have been selected, as shown in the following
   diagram (16 bits wide, with the most-significant bit is to the left):

           For 8-bit context ID:

           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |0|1| Generation|      CID      |  First length field
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |            0          |  seq  |  Second length field
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           For 16-bit context ID:

           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |1|1| Generation|   0   |  seq  |  First length field
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           |              CID              |  Second length field
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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   The first bit in the first length field indicates the length of the
   CID.  The length of the CID MUST either be constant for all contexts
   or two additional distinct packet types MUST be provided to
   separately indicate COMPRESSED_UDP and COMPRESSED_RTP packet formats
   with 8- and 16-bit CIDs.  The second bit in the first length field is
   1 to indicate that the 4-bit sequence number is present, as is always
   the case for this IP/UDP/RTP compression scheme.

   The generation field is used with IPv6 for COMPRESSED_NON_TCP packets
   as described in [3].  For IPv4-only implementations that do not use
   COMPRESSED_NON_TCP packets, the compressor SHOULD set the generation
   value to zero.  For consistent operation between IPv4 and IPv6, the
   generation value is stored in the context when it is received by the
   decompressor, and the most recent value is returned in the
   CONTEXT_STATE packet.

   When a FULL_HEADER packet is received, the complete set of headers is
   stored into the context selected by the context ID.  The 4-bit
   sequence number is also stored in the context, thereby
   resynchronizing the decompressor to the compressor.

   When COMPRESSED_NON_TCP packets are used, the 4-bit sequence number
   is inserted into the "Data Field" of that packet and the D bit is set
   as described in Section 6 of [3].  When a COMPRESSED_NON_TCP packet
   is received, the generation number is compared to the value stored in
   the context.  If they are not the same, the context is not up to date
   and MUST be refreshed by a FULL_HEADER packet.  If the generation
   does match, then the compressed IP and UDP header information, the
   4-bit sequence number, and the (potential) RTP header are all stored
   into the saved context.

   The amount of memory required to store the context will vary
   depending upon how many encapsulating headers are included in the
   FULL_HEADER packet.  The compressor and decompressor MAY negotiate a
   maximum header size.

3.3.2.  COMPRESSED_RTP packet format

   When the second-order difference of the RTP header from packet to
   packet is zero, the decompressor can reconstruct a packet simply by
   adding the stored first-order differences to the stored uncompressed
   header representing the previous packet.  All that need be
   communicated is the session context identifier and a small sequence
   number (not related to the RTP sequence number) to maintain
   synchronization and detect packet loss between the compressor and
   decompressor.
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   If the second-order difference of the RTP header is not zero for some
   fields, the new first-order difference for just those fields is
   communicated using a compact encoding.  The new first-order
   difference values are added to the corresponding fields in the
   uncompressed header in the decompressor’s session context, and are
   also stored explicitly in the context to be added to the
   corresponding fields again on each subsequent packet in which the
   second-order difference is zero.  Each time the first-order
   difference changes, it is transmitted and stored in the context.

   In practice, the only fields for which it is useful to store the
   first-order difference are the IPv4 ID field and the RTP timestamp.
   For the RTP sequence number field, the usual increment is 1.  If the
   sequence number changes by other than 1, the difference must be
   communicated but does not set the expected difference for the next
   packet.  Instead, the expected first-order difference remains fixed
   at 1 so that the difference need not be explicitly communicated on
   the next packet assuming it is in order.

   For the RTP timestamp, when a FULL_HEADER, COMPRESSED_NON_TCP or
   COMPRESSED_UDP packet is sent to refresh the RTP state, the stored
   first-order difference is initialized to zero.  If the timestamp is
   the same on the next packet (e.g., same video frame), then the
   second-order difference is zero.  Otherwise, the difference between
   the timestamps of the two packets is transmitted as the new first-
   order difference to be added to the timestamp in the uncompressed
   header stored in the decompressor’s context and also stored as the
   first-order difference in that context.  Each time the first-order
   difference changes on subsequent packets, that difference is again
   transmitted and used to update the context.

   Similarly, since the IPv4 ID field frequently increments by one, the
   first-order difference for that field is initialized to one when the
   state is refreshed by a FULL_HEADER packet, or when a
   COMPRESSED_NON_TCP packet is sent since it carries the ID field in
   uncompressed form.  Thereafter, whenever the first-order difference
   changes, it is transmitted and stored in the context.

   A bit mask will be used to indicate which fields have changed by
   other than the expected difference.  In addition to the small link
   sequence number, the list of items to be conditionally communicated
   in the compressed IP/UDP/RTP header is as follows:
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      I = IPv4 packet ID (always 0 if no IPv4 header)
      U = UDP checksum
      M = RTP marker bit
      S = RTP sequence number
      T = RTP timestamp
      L = RTP CSRC count and list

   If 4 bits are needed for the link sequence number to get a reasonable
   probability of loss detection, there are too few bits remaining to
   assign one bit to each of these items and still fit them all into a
   single byte to go along with the context ID.

   It is not necessary to explicitly carry the U bit to indicate the
   presence of the UDP checksum because a source will typically include
   check-sums on all packets of a session or none of them.  When the
   session state is initialized with an uncompressed header, if there is
   a nonzero checksum present, an unencoded 16-bit checksum will be
   inserted into the compressed header in all subsequent packets until
   this setting is changed by sending another uncompressed packet.

   Of the remaining items, the L bit for the CSRC count and list may be
   the one least frequently used.  Rather than dedicating a bit in the
   mask to indicate CSRC change, an unusual combination of the other
   bits may be used instead.  This bit combination is denoted MSTI.  If
   all four of the bits for the IP packet ID, RTP marker bit, RTP
   sequence number and RTP timestamp are set, this is a special case
   indicating an extended form of the compressed RTP header will follow.
   That header will include an additional byte containing the real
   values of the four bits plus the CC count.  The CSRC list, of length
   indicated by the CC count, will be included just as it appears in the
   uncompressed RTP header.

   The other fields of the RTP header (version, P bit, X bit, payload
   type and SSRC identifier) are assumed to remain relatively constant.
   In particular, the SSRC identifier is defined to be constant for a
   given context because it is one of the factors selecting the context.
   If any of the other fields change, the uncompressed RTP header MUST
   sent as described in Section 3.3.3.

   The following diagram shows the compressed IP/UDP/RTP header with
   dotted lines indicating fields that are conditionally present.  The
   most significant bit is numbered 0.  Multi-byte fields are sent in
   network byte order (most significant byte first).  The delta fields
   are often a single byte as shown but may be two or three bytes
   depending upon the delta value as explained in Section 3.3.4.
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             0   1   2   3   4   5   6   7
           +...............................+
           :   msb of session context ID   :  (if 16-bit CID)
           +-------------------------------+
           |   lsb of session context ID   |
           +---+---+---+---+---+---+---+---+
           | M | S | T | I | link sequence |
           +---+---+---+---+---+---+---+---+
           :                               :
           +         UDP checksum          +  (if nonzero in context)
           :                               :
           +...............................+
           :                               :
           +        "RANDOM" fields        +  (if encapsulated)
           :                               :
           +...............................+
           : M’| S’| T’| I’|      CC       :  (if MSTI = 1111)
           +...............................+
           :         delta IPv4 ID         :  (if I or I’ = 1)
           +...............................+
           :      delta RTP sequence       :  (if S or S’ = 1)
           +...............................+
           :      delta RTP timestamp      :  (if T or T’ = 1)
           +...............................+
           :                               :
           :           CSRC list           :  (if MSTI = 1111
           :                               :   and CC nonzero)
           :                               :
           +...............................+
           :                               :
           :      RTP header extension     :  (if X set in context)
           :                               :
           :                               :
           +-------------------------------+
           |                               |
           |            RTP data           |
           /                               /
           /                               /
           |                               |
           +-------------------------------+
           :            padding            :  (if P set in context)
           +...............................+

   When more than one IPv4 header is present in the context as
   initialized by the FULL_HEADER packet, then the IP ID fields of
   encapsulating headers MUST be sent as absolute values as described in
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   [3].  These fields are identified as "RANDOM" fields.  They are
   inserted into the COMPRESSED_RTP packet in the same order as they
   appear in the original headers, immediately following the UDP
   checksum if present or the MSTI byte if not, as shown in the diagram.
   Only if an IPv4 packet immediately precedes the UDP header will the
   IP ID of that header be sent differentially, i.e., potentially with
   no bits if the second difference is zero, or as a delta IPv4 ID field
   if not.  If there is not an IPv4 header immediately preceding the UDP
   header, then the I bit MUST be 0 and no delta IPv4 ID field will be
   present.

3.3.3.  COMPRESSED_UDP packet format

   If there is a change in any of the fields of the RTP header that are
   normally constant (such as the payload type field), then an
   uncompressed RTP header MUST be sent.  If the IP and UDP headers do
   not also require updating, this RTP header MAY be carried in a
   COMPRESSED_UDP packet rather than a FULL_HEADER packet.  The
   COMPRESSED_UDP packet has the same format as the COMPRESSED_RTP
   packet except that the M, S and T bits are always 0 and the
   corresponding delta fields are never included:

             0   1   2   3   4   5   6   7
           +...............................+
           :   msb of session context ID   :  (if 16-bit CID)
           +-------------------------------+
           |   lsb of session context ID   |
           +---+---+---+---+---+---+---+---+
           | 0 | 0 | 0 | I | link sequence |
           +---+---+---+---+---+---+---+---+
           :                               :
           +         UDP checksum          +  (if nonzero in context)
           :                               :
           +...............................+
           :                               :
           +        "RANDOM" fields        +  (if encapsulated)
           :                               :
           +...............................+
           :         delta IPv4 ID         :  (if I = 1)
           +-------------------------------+
           |           UDP data            |
           :   (uncompressed RTP header)   :

   Note that this constitutes a form of IP/UDP header compression
   different from COMPRESSED_NON_TCP packet type defined in [3].  The
   motivation is to allow reaching the target of two bytes when UDP
   checksums are disabled, as IPv4 allows.  The protocol in [3] does not
   use differential coding for UDP packets, so in the IPv4 case, two

Casner & Jacobson           Standards Track                    [Page 14]



RFC 2508             Compressing IP/UDP/RTP Headers        February 1999

   bytes of IP ID, and two bytes of UDP checksum if nonzero, would
   always be transmitted in addition to two bytes of compression prefix.
   For IPv6, the COMPRESSED_NON_TCP packet type MAY be used instead.

3.3.4.  Encoding of differences

   The delta fields in the COMPRESSED_RTP and COMPRESSED_UDP packets are
   encoded with a variable-length mapping for compactness of the more
   commonly-used values.  A default encoding is specified below, but it
   is RECOMMENDED that implementations use a table-driven delta encoder
   and decoder to allow negotiation of a table specific for each session
   if appropriate, possibly even an optimal Huffman encoding.  Encodings
   based on sequential interpretation of the bit stream, of which this
   default table and Huffman encoding are examples, allow a reasonable
   table size and may result in an execution speed faster than a non-
   table-driven implementation with explicit tests for ranges of values.

   The default delta encoding is specified in the following table.  This
   encoding was designed to efficiently encode the small changes that
   may occur in the IP ID and in RTP sequence number when packets are
   lost upstream from the compressor, yet still handling most audio and
   video deltas in two bytes.  The column on the left is the decimal
   value to be encoded, and the column on the right is the resulting
   sequence of bytes shown in hexadecimal and in the order in which they
   are transmitted (network byte order).  The first and last values in
   each contiguous range are shown, with ellipses in between:

         Decimal  Hex

          -16384  C0 00 00
               :  :
            -129  C0 3F 7F
            -128  80 00
               :  :
              -1  80 7F
               0  00
               :  :
             127  7F
             128  80 80
               :  :
           16383  BF FF
           16384  C0 40 00
               :  :
         4194303  FF FF FF

   For positive values, a change of zero through 127 is represented
   directly in one byte.  If the most significant two bits of the byte
   are 10 or 11, this signals an extension to a two- or three-byte
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   value, respectively.  The least significant six bits of the first
   byte are combined, in decreasing order of significance, with the next
   one or two bytes to form a 14- or 22-bit value.

   Negative deltas may occur when packets are misordered or in the
   intentionally out-of-order RTP timestamps on MPEG video [5].  These
   events are less likely, so a smaller range of negative values is
   encoded using otherwise redundant portions of the positive part of
   the table.

   A change in the RTP timestamp value less than -16384 or greater than
   4194303 forces the RTP header to be sent uncompressed using a
   FULL_HEADER, COMPRESSED_NON_TCP or COMPRESSED_UDP packet type.  The
   IP ID and RTP sequence number fields are only 16 bits, so negative
   deltas for those fields SHOULD be masked to 16 bits and then encoded
   (as large positive 16-bit numbers).

3.3.5.  Error Recovery

   Whenever the 4-bit sequence number for a particular context
   increments by other than 1, except when set by a FULL_HEADER or
   COMPRESSED_NON_TCP packet, the decompressor MUST invalidate that
   context and send a CONTEXT_STATE packet back to the compressor
   indicating that the context has been invalidated.  All packets for
   the invalid context MUST be discarded until a FULL_HEADER or
   COMPRESSED_NON_TCP packet is received for that context to re-
   establish consistent state (unless the "twice" algorithm is used as
   described later in this section).  Since multiple compressed packets
   may arrive in the interim, the decompressor SHOULD NOT retransmit the
   CONTEXT_STATE packet for every compressed packet received, but
   instead SHOULD limit the rate of retransmission to avoid flooding the
   reverse channel.

   When an error occurs on the link, the link layer will usually discard
   the packet that was damaged (if any), but may provide an indication
   of the error.  Some time may elapse before another packet is
   delivered for the same context, and then that packet would have to be
   discarded by the decompressor when it is observed to be out of
   sequence, resulting in at least two packets lost.  To allow faster
   recovery if the link does provide an explicit error indication, the
   decompressor MAY optionally send an advisory CONTEXT_STATE packet
   listing the last valid sequence number and generation number for one
   or more recently active contexts (not necessarily all).  For a given
   context, if the compressor has sent no compressed packet with a
   higher sequence number, and if the generation number matches the
   current generation, no corrective action is required.  Otherwise, the
   compressor MAY choose to mark the context invalid so that the next
   packet is sent in FULL_HEADER or COMPRESSED_NON_TCP mode (FULL_HEADER
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   is required if the generation doesn’t match).  However, note that if
   the link round-trip-time is large compared to the inter-packet
   spacing, there may be several packets from multiple contexts in
   flight across the link, increasing the probability that the sequence
   numbers will already have advanced when the CONTEXT_STATE packet is
   received by the compressor.  The result could be that some contexts
   are invalidated unnecessarily, causing extra bandwidth to be
   consumed.

   The format of the CONTEXT_STATE packet is shown in the following
   diagrams.  The first byte is a type code to allow the CONTEXT_STATE
   packet type to be shared by multiple compression schemes within the
   general compression framework specified in [3].  The contents of the
   remainder of the packet depends upon the compression scheme.  For the
   IP/UDP/RTP compression scheme specified here, the remainder of the
   CONTEXT_STATE packet is structured as a list of blocks to allow the
   state for multiple contexts to be indicated, preceded by a one-byte
   count of the number of blocks.

   Two type code values are used for the IP/UDP/RTP compression scheme.
   The value 1 indicates that 8-bit session context IDs are being used:

             0   1   2   3   4   5   6   7
           +---+---+---+---+---+---+---+---+
           | 1 = IP/UDP/RTP with 8-bit CID |
           +---+---+---+---+---+---+---+---+
           |         context count         |
           +---+---+---+---+---+---+---+---+
           +---+---+---+---+---+---+---+---+
           |       session context ID      |
           +---+---+---+---+---+---+---+---+
           | I | 0 | 0 | 0 |    sequence   |
           +---+---+---+---+---+---+---+---+
           | 0 | 0 |       generation      |
           +---+---+---+---+---+---+---+---+
                          ...
           +---+---+---+---+---+---+---+---+
           |       session context ID      |
           +---+---+---+---+---+---+---+---+
           | I | 0 | 0 | 0 |    sequence   |
           +---+---+---+---+---+---+---+---+
           | 0 | 0 |       generation      |
           +---+---+---+---+---+---+---+---+

   The value 2 indicates that 16-bit session context IDs are being used.
   The session context ID is sent in network byte order (most
   significant byte first):
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             0   1   2   3   4   5   6   7
           +---+---+---+---+---+---+---+---+
           | 2 = IP/UDP/RTP with 16-bit CID|
           +---+---+---+---+---+---+---+---+
           |         context count         |
           +---+---+---+---+---+---+---+---+
           +---+---+---+---+---+---+---+---+
           |                               |
           +       session context ID      +
           |                               |
           +---+---+---+---+---+---+---+---+
           | I | 0 | 0 | 0 |    sequence   |
           +---+---+---+---+---+---+---+---+
           | 0 | 0 |       generation      |
           +---+---+---+---+---+---+---+---+
                          ...
           +---+---+---+---+---+---+---+---+
           |                               |
           +       session context ID      +
           |                               |
           +---+---+---+---+---+---+---+---+
           | I | 0 | 0 | 0 |    sequence   |
           +---+---+---+---+---+---+---+---+
           | 0 | 0 |       generation      |
           +---+---+---+---+---+---+---+---+

   The bit labeled "I" is set to one for contexts that have been marked
   invalid and require a FULL_HEADER of COMPRESSED_NON_TCP packet to be
   transmitted.  If the I bit is zero, the context state is advisory.
   The I bit is set to zero to indicate advisory context state that MAY
   be sent following a link error indication.

   Since the CONTEXT_STATE packet itself may be lost, retransmission of
   one or more blocks is allowed.  It is expected that retransmission
   will be triggered only by receipt of another packet, but if the line
   is near idle, retransmission MAY be triggered by a relatively long
   timer (on the order of 1 second).

   If a CONTEXT_STATE block for a given context is retransmitted, it may
   cross paths with the FULL_HEADER or COMPRESSED_NON_TCP packet
   intended to refresh that context.  In that case, the compressor MAY
   choose to ignore the error indication.

   In the case where UDP checksums are being transmitted, the
   decompressor MAY attempt to use the "twice" algorithm described in
   section 10.1 of [3].  In this algorithm, the delta is applied more
   than once on the assumption that the delta may have been the same on
   the missing packet(s) and the one subsequently received.  Success is
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   indicated by a checksum match.  For the scheme defined here, the
   difference in the 4- bit sequence number tells number of times the
   delta must be applied.  Note, however, that there is a nontrivial
   risk of an incorrect positive indication.  It may be advisable to
   request a FULL_HEADER or COMPRESSED_NON_TCP packet even if the
   "twice" algorithm succeeds.

   Some errors may not be detected, for example if 16 packets are lost
   in a row and the link level does not provide an error indication.  In
   that case, the decompressor will generate packets that are not valid.
   If UDP checksums are being transmitted, the receiver will probably
   detect the invalid packets and discard them, but the receiver does
   not have any means to signal the decompressor.  Therefore, it is
   RECOMMENDED that the decompressor verify the UDP checksum
   periodically, perhaps one out of 16 packets.  If an error is
   detected, the decompressor would invalidate the context and signal
   the compressor with a CONTEXT_STATE packet.

3.4.  Compression of RTCP Control Packets

   By relying on the RTP convention that data is carried on an even port
   number and the corresponding RTCP packets are carried on the next
   higher (odd) port number, one could tailor separate compression
   schemes to be applied to RTP and RTCP packets.  For RTCP, the
   compression could apply not only to the header but also the "data",
   that is, the contents of the different packet types.  The numbers in
   Sender Report (SR) and Receiver Report (RR) RTCP packets would not
   compress well, but the text information in the Source Description
   (SDES) packets could be compressed down to a bit mask indicating each
   item that was present but compressed out (for timing purposes on the
   SDES NOTE item and to allow the end system to measure the average
   RTCP packet size for the interval calculation).

   However, in the compression scheme defined here, no compression will
   be done on the RTCP headers and "data" for several reasons (though
   compression SHOULD still be applied to the IP and UDP headers).
   Since the RTP protocol specification suggests that the RTCP packet
   interval be scaled so that the aggregate RTCP bandwidth used by all
   participants in a session will be no more than 5% of the session
   bandwidth, there is not much to be gained from RTCP compression.
   Compressing out the SDES items would require a significant increase
   in the shared state that must be stored for each context ID.  And, in
   order to allow compression when SDES information for several sources
   was sent through an RTP "mixer", it would be necessary to maintain a
   separate RTCP session context for each SSRC identifier.  In a session
   with more than 255 participants, this would cause perfect thrashing
   of the context cache even when only one participant was sending data.
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   Even though RTCP is not compressed, the fraction of the total
   bandwidth occupied by RTCP packets on the compressed link remains no
   more than 5% in most cases, assuming that the RTCP packets are sent
   as COMPRESSED_UDP packets.  Given that the uncompressed RTCP traffic
   consumes no more than 5% of the total session bandwidth, then for a
   typical RTCP packet length of 90 bytes, the portion of the compressed
   bandwidth used by RTCP will be no more than 5% if the size of the
   payload in RTP data packets is at least 108 bytes.  If the size of
   the RTP data payload is smaller, the fraction will increase, but is
   still less than 7% for a payload size of 37 bytes.  For large data
   payloads, the compressed RTCP fraction is less than the uncompressed
   RTCP fraction (for example, 4% at 1000 bytes).

3.5.  Compression of non-RTP UDP Packets

   As described earlier, the COMPRESSED_UDP packet MAY be used to
   compress UDP packets that don’t carry RTP.  Whatever data follows the
   UDP header is unlikely to have some constant values in the bits that
   correspond to usually constant fields in the RTP header.  In
   particular, the SSRC field would likely change.  Therefore, it is
   necessary to keep track of the non-RTP UDP packet streams to avoid
   using up all the context slots as the "SSRC field" changes (since
   that field is part of what identifies a particular RTP context).
   Those streams may each be given a context, but the encoder would set
   a flag in the context to indicate that the changing SSRC field should
   be ignored and COMPRESSED_UDP packets should always be sent instead
   of COMPRESSED_RTP packets.

4.  Interaction With Segmentation

   A segmentation scheme may be used in conjunction with RTP header
   compression to allow small, real-time packets to interrupt large,
   presumably non-real-time packets in order to reduce delay.  It is
   assumed that the large packets bypass the compressor and decompressor
   since the interleaving would modify the sequencing of packets at the
   decompressor and cause the appearance of errors.  Header compression
   should be less important for large packets since the overhead ratio
   is smaller.

   If some packets from an RTP session context are selected for
   segmentation (perhaps based on size) and some are not, there is a
   possibility of re-ordering.  This would reduce the compression
   efficiency because the large packets would appear as lost packets in
   the sequence space.  However, this should not cause more serious
   problems because the RTP sequence numbers should be reconstructed
   correctly and will allow the application to correct the ordering.
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   Link errors detected by the segmentation scheme using its own
   sequencing information MAY be indicated to the compressor with an
   advisory CONTEXT_STATE message just as for link errors detected by
   the link layer itself.

   The context ID byte is placed first in the COMPRESSED_RTP header so
   that this byte MAY be shared with the segmentation layer if such
   sharing is feasible and has been negotiated.  Since the compressor
   may assign context ID values arbitrarily, the value can be set to
   match the context identifier from the segmentation layer.

5.  Negotiating Compression

   The use of IP/UDP/RTP compression over a particular link is a
   function of the link-layer protocol.  It is expected that such
   negotiation will be defined separately for PPP [4], for example.  The
   following items MAY be negotiated:

      o The size of the context ID.
      o The maximum size of the stack of headers in the context.
      o A context-specific table for decoding of delta values.
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8.  Security Considerations

   Because encryption eliminates the redundancy that this compression
   scheme tries to exploit, there is some inducement to forego
   encryption in order to achieve operation over a low-bandwidth link.
   However, for those cases where encryption of data and not headers is
   satisfactory, RTP does specify an alternative encryption method in
   which only the RTP payload is encrypted and the headers are left in
   the clear.  That would allow compression to still be applied.

   A malfunctioning or malicious compressor could cause the decompressor
   to reconstitute packets that do not match the original packets but
   still have valid IP, UDP and RTP headers and possibly even valid UDP
   check-sums.  Such corruption may be detected with end-to-end
   authentication and integrity mechanisms which will not be affected by
   the compression.  Constant portions of authentication headers will be
   compressed as described in [3].

   No authentication is performed on the CONTEXT_STATE control packet
   sent by this protocol.  An attacker with access to the link between
   the decompressor and compressor could inject false CONTEXT_STATE
   packets and cause compression efficiency to be reduced, probably
   resulting in congestion on the link.  However, an attacker with
   access to the link could also disrupt the traffic in many other ways.

   A potential denial-of-service threat exists when using compression
   techniques that have non-uniform receiver-end computational load.
   The attacker can inject pathological datagrams into the stream which
   are complex to decompress and cause the receiver to be overloaded and
   degrading processing of other streams.  However, this compression
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   does not exhibit any significant non-uniformity.

   A security review of this protocol found no additional security
   considerations.

9.  Authors’ Addresses

   Stephen L. Casner
   Cisco Systems, Inc.
   170 West Tasman Drive
   San Jose, CA 95134-1706
   United States

   EMail: casner@cisco.com

   Van Jacobson
   Cisco Systems, Inc.
   170 West Tasman Drive
   San Jose, CA 95134-1706
   United States

   EMail: van@cisco.com

Casner & Jacobson           Standards Track                    [Page 23]



RFC 2508             Compressing IP/UDP/RTP Headers        February 1999

10.  Full Copyright Statement
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   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
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