
Network Working Group D. Levi
Request for Comments: 2591 Nortel Networks
Category: Standards Track J. Schoenwaelder
 TU Braunschweig
 May 1999

 Definitions of Managed Objects for
 Scheduling Management Operations

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 In particular, it describes a set of managed objects that are used to
 schedule management operations periodically or at specified dates and
 times.

Table of Contents

 1. Introduction ..2
 2. The SNMP Management Framework....................................2
 3. Overview ..3
 3.1 Periodic Schedules ...3
 3.2 Calendar Schedules ...4
 3.3 One-shot Schedules ...4
 3.4 Time Transitions ...4
 3.5 Actions ..5
 4. Definitions ...5
 5. Usage Examples ...18
 5.1 Starting a script to ping devices every 20 minutes18
 5.2 Starting a script at the next Friday the 13th18
 5.3 Turning an interface off during weekends19
 6. Security Considerations ..21
 7. Intellectual Property ..22
 8. Acknowledgments ..22

Levi & Schoenwaelder Standards Track [Page 1]

RFC 2591 Scheduling MIB May 1999

 9. References ...22
 10. Editors’ Addresses ..24
 11. Full Copyright Statement25

1. Introduction

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 In particular, it describes a set of managed objects that are used to
 schedule management operations periodically or at specified dates and
 times.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [19].

2. The SNMP Management Framework

 The SNMP Management Framework presently consists of five major
 components:

 o An overall architecture, described in RFC 2271 [1].

 o Mechanisms for describing and naming objects and events for the
 purpose of management. The first version of this Structure of
 Management Information (SMI) is called SMIv1 and described in STD
 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The
 second version, called SMIv2, is described in STD 58, RFC 2578
 [5], RFC 2579 [6] and RFC 2580 [7].

 o Message protocols for transferring management information. The
 first version of the SNMP message protocol is called SNMPv1 and
 described in RFC 1157 [8]. A second version of the SNMP message
 protocol, which is not an Internet standards track protocol, is
 called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10].
 The third version of the message protocol is called SNMPv3 and
 described in RFC 1906 [10], RFC 2272 [11] and RFC 2274 [12].

 o Protocol operations for accessing management information. The
 first set of protocol operations and associated PDU formats is
 described in STD 15, RFC 1157 [8]. A second set of protocol
 operations and associated PDU formats is described in RFC 1905
 [13].

 o A set of fundamental applications described in RFC 2273 [14] and
 the view-based access control mechanism described in RFC 2275
 [15].

Levi & Schoenwaelder Standards Track [Page 2]

RFC 2591 Scheduling MIB May 1999

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using the mechanisms defined in the SMI.

 This memo specifies a MIB module that is compliant to the SMIv2. A
 MIB conforming to the SMIv1 can be produced through the appropriate
 translations. The resulting translated MIB must be semantically
 equivalent, except where objects or events are omitted because no
 translation is possible (use of Counter64). Some machine readable
 information in SMIv2 will be converted into textual descriptions in
 SMIv1 during the translation process. However, this loss of machine
 readable information is not considered to change the semantics of the
 MIB.

3. Overview

 The MIB defined in this memo provides scheduling of actions
 periodically or at specified dates and times. The actions can be used
 to realize on-duty / off-duty schedules or to trigger management
 functions in a distributed management application.

 Schedules can be enabled or disabled by modifying a control object.
 This allows pre-configured schedules which are activated or de-
 activated by some other management functions.

 The term ‘scheduler’ is used throughout this memo to refer to the
 entity which implements the scheduling MIB and which invokes the
 actions at the specified points in time.

3.1. Periodic Schedules

 Periodic schedules are based on fixed time periods between the
 initiation of scheduled actions. Periodic schedules are defined by
 specifying the number of seconds between two initiations. The time
 needed to complete the action is usually not known by the scheduler
 and does therefore not influence the next scheduling point.

 Implementations must guarantee that action invocations will not occur
 before their next scheduled time. However, implementations may be
 forced to delay invocations in the face of local constraints (e.g., a
 heavy load on higher-priority tasks). An accumulation of such delays
 would result in a drift of the scheduling interval with respect to
 time, and should be avoided.

 Scheduled actions collecting statistical data should retrieve time
 stamps from the data source and not rely on the accuracy of the
 periodic scheduler in order to obtain accurate statistics.

Levi & Schoenwaelder Standards Track [Page 3]

RFC 2591 Scheduling MIB May 1999

3.2. Calendar Schedules

 Calendar schedules trigger scheduled actions at specified days of the
 week and days of the month. Calendar schedules are therefore aware of
 the notion of months, days, weekdays, hours and minutes.

 It is possible to specify multiple values for each calendar item.
 This provides a mechanism for defining complex schedules. For
 example, a schedule could be defined which triggers an action every
 15 minutes on a given weekday.

 Months, days and weekdays are specified using the objects schedMonth,
 schedDay and schedWeekDay of type BITS. Setting multiple bits to one
 in these objects causes an OR operation. For example, setting the
 bits monday(1) and friday(5) in schedWeekDay restricts the schedule
 to Mondays and Fridays.

 The bit fields for schedMonth, schedDay and schedWeekDay are combined
 using an AND operation. For example, setting the bits june(5) and
 july(6) in schedMonth and combining it with the bits monday(1) and
 friday(5) set in schedWeekDay will result in a schedule which is
 restricted to every Monday and Friday in the months June and July.
 Wildcarding of calendar items is achieved by setting all bits to one.

 It is possible to define calendar schedules that will never trigger
 an action. For example, one can define a calendar schedule which
 should trigger an action on February 31st. Schedules like this will
 simply be ignored by the scheduler.

 Finally, calendar schedules are always expressed in local time. A
 scalar, schedLocalTime is provided so that a manager can retrieve the
 notion of local time and the offset to GMT time.

3.3. One-shot Schedules

 One-shot Schedules are similar to calendar schedules. The difference
 between a calendar schedule and a one-shot schedule is that a one-
 shot schedule will automatically disable itself once an action has
 been invoked.

3.4. Time Transitions

 When a system’s notion of time is changed for some reason,
 implementations of the Schedule MIB must schedule actions
 differently. One example of a change to a system’s notion of time is
 when a daylight savings time transition occurs.

Levi & Schoenwaelder Standards Track [Page 4]

RFC 2591 Scheduling MIB May 1999

 There are two possible situations when a time transition occurs.
 First, time may be set backwards, in which case particular times will
 appear to occur twice within the same day. These are called
 ’ambiguous times’. Second, time may be set forwards, in which case
 particular times will appear to not occur within a day. This are
 called ’nonexistent times’.

 When an action is configured in the Schedule MIB to occur at an
 ambiguous time during a time transition, the action SHALL only be
 invoked at the first occurence of the ambiguous time. For example,
 if an action is scheduled to occur at 2:00 am, and a time transition
 occurs at 3:00 am which sets the clock back to 2:00 am, the action
 SHALL only be invoked at the first occurence of 2:00 am.

 When an action is configured in the Schedule MIB to occur at a
 nonexistent time, the action SHOULD be invoked immediately upon a
 time transition. If multiple actions are invoked in this way, they
 SHALL be invoked in the order in which they normally would be invoked
 had the time transition not occured. For example, if an action (a) is
 scheduled at 2:05 am and another action (b) at 2:10 am, then both
 actions SHOULD be invoked at 3:00 am in the order (a),(b) if the time
 jumps forward from 2:00 am to 3:00 am.

3.5. Actions

 Scheduled actions are modeled by SNMP set operations on local MIB
 variables. Scheduled actions described in this MIB are further
 restricted to objects of type INTEGER. This restriction does not
 limit the usefulness of the MIB. Simple schedules such as on-duty /
 off-duty schedules for resources that have a status MIB object (e.g.
 ifAdminStatus) are possible.

 More complex actions can be realized by triggering a management
 script which is responsible for performing complex state transitions.
 A management script can also be used to perform SNMP set operations
 on remote SNMP engines.

4. Definitions

 DISMAN-SCHEDULE-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
 Integer32, Unsigned32, Counter32, mib-2
 FROM SNMPv2-SMI

 TEXTUAL-CONVENTION,
 DateAndTime, RowStatus, StorageType, VariablePointer

Levi & Schoenwaelder Standards Track [Page 5]

RFC 2591 Scheduling MIB May 1999

 FROM SNMPv2-TC

 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
 FROM SNMPv2-CONF

 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB;

 schedMIB MODULE-IDENTITY
 LAST-UPDATED "9811171800Z"
 ORGANIZATION "IETF Distributed Management Working Group"
 CONTACT-INFO
 "David B. Levi
 Nortel Networks
 4401 Great America Parkway
 Santa Clara, CA 95052-8185
 U.S.A.
 Tel: +1 423 686 0432
 E-mail: dlevi@nortelnetworks.com

 Juergen Schoenwaelder
 TU Braunschweig
 Bueltenweg 74/75
 38106 Braunschweig
 Germany
 Tel: +49 531 391-3283
 E-mail: schoenw@ibr.cs.tu-bs.de"
 DESCRIPTION
 "This MIB module defines a MIB which provides mechanisms
 to schedule SNMP set operations periodically or at
 specific points in time."
 ::= { mib-2 63 }

 --
 -- The various groups defined within this MIB definition:
 --

 schedObjects OBJECT IDENTIFIER ::= { schedMIB 1 }
 schedNotifications OBJECT IDENTIFIER ::= { schedMIB 2 }
 schedConformance OBJECT IDENTIFIER ::= { schedMIB 3 }

 --
 -- Textual Conventions:
 --

 SnmpPduErrorStatus ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION

Levi & Schoenwaelder Standards Track [Page 6]

RFC 2591 Scheduling MIB May 1999

 "This TC enumerates the SNMPv1 and SNMPv2 PDU error status
 codes as defined in RFC 1157 and RFC 1905. It also adds a
 pseudo error status code ‘noResponse’ which indicates a
 timeout condition."
 SYNTAX INTEGER {
 noResponse(-1),
 noError(0),
 tooBig(1),
 noSuchName(2),
 badValue(3),
 readOnly(4),
 genErr(5),
 noAccess(6),
 wrongType(7),
 wrongLength(8),
 wrongEncoding(9),
 wrongValue(10),
 noCreation(11),
 inconsistentValue(12),
 resourceUnavailable(13),
 commitFailed(14),
 undoFailed(15),
 authorizationError(16),
 notWritable(17),
 inconsistentName(18)
 }

 --
 -- Some scalars which provide information about the local time
 -- zone.
 --

 schedLocalTime OBJECT-TYPE
 SYNTAX DateAndTime (SIZE (11))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The local time used by the scheduler. Schedules which
 refer to calendar time will use the local time indicated
 by this object. An implementation MUST return all 11 bytes
 of the DateAndTime textual-convention so that a manager
 may retrieve the offset from GMT time."
 ::= { schedObjects 1 }

 --
 -- The schedule table which controls the scheduler.
 --

Levi & Schoenwaelder Standards Track [Page 7]

RFC 2591 Scheduling MIB May 1999

 schedTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SchedEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table defines scheduled actions triggered by
 SNMP set operations."
 ::= { schedObjects 2 }

 schedEntry OBJECT-TYPE
 SYNTAX SchedEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry describing a particular scheduled action."
 INDEX { schedOwner, schedName }
 ::= { schedTable 1 }

 SchedEntry ::= SEQUENCE {
 schedOwner SnmpAdminString,
 schedName SnmpAdminString,
 schedDescr SnmpAdminString,
 schedInterval Unsigned32,
 schedWeekDay BITS,
 schedMonth BITS,
 schedDay BITS,
 schedHour BITS,
 schedMinute BITS,
 schedContextName SnmpAdminString,
 schedVariable VariablePointer,
 schedValue Integer32,
 schedType INTEGER,
 schedAdminStatus INTEGER,
 schedOperStatus INTEGER,
 schedFailures Counter32,
 schedLastFailure SnmpPduErrorStatus,
 schedLastFailed DateAndTime,
 schedStorageType StorageType,
 schedRowStatus RowStatus
 }

 schedOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The owner of this scheduling entry. The exact semantics of
 this string are subject to the security policy defined by

Levi & Schoenwaelder Standards Track [Page 8]

RFC 2591 Scheduling MIB May 1999

 the security administrator."
 ::= { schedEntry 1 }

 schedName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally-unique, administratively assigned name for this
 scheduling entry. This object allows a schedOwner to have
 multiple entries in the schedTable."
 ::= { schedEntry 2 }

 schedDescr OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The human readable description of the purpose of this
 scheduling entry."
 DEFVAL { ’’H }
 ::= { schedEntry 3 }

 schedInterval OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "seconds"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The number of seconds between two action invocations of
 a periodic scheduler. Implementations must guarantee
 that action invocations will not occur before at least
 schedInterval seconds have passed.

 The scheduler must ignore all periodic schedules that
 have a schedInterval value of 0. A periodic schedule
 with a scheduling interval of 0 seconds will therefore
 never invoke an action.

 Implementations may be forced to delay invocations in the
 face of local constraints. A scheduled management function
 should therefore not rely on the accuracy provided by the
 scheduler implementation."
 DEFVAL { 0 }
 ::= { schedEntry 4 }

 schedWeekDay OBJECT-TYPE
 SYNTAX BITS {

Levi & Schoenwaelder Standards Track [Page 9]

RFC 2591 Scheduling MIB May 1999

 sunday(0),
 monday(1),
 tuesday(2),
 wednesday(3),
 thursday(4),
 friday(5),
 saturday(6)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The set of weekdays on which the scheduled action should
 take place. Setting multiple bits will include several
 weekdays in the set of possible weekdays for this schedule.
 Setting all bits will cause the scheduler to ignore the
 weekday."
 DEFVAL { {} }
 ::= { schedEntry 5 }

 schedMonth OBJECT-TYPE
 SYNTAX BITS {
 january(0),
 february(1),
 march(2),
 april(3),
 may(4),
 june(5),
 july(6),
 august(7),
 september(8),
 october(9),
 november(10),
 december(11)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The set of months during which the scheduled action should
 take place. Setting multiple bits will include several
 months in the set of possible months for this schedule.
 Setting all bits will cause the scheduler to ignore the
 month."
 DEFVAL { {} }
 ::= { schedEntry 6 }

 schedDay OBJECT-TYPE
 SYNTAX BITS {
 d1(0), d2(1), d3(2), d4(3), d5(4),

Levi & Schoenwaelder Standards Track [Page 10]

RFC 2591 Scheduling MIB May 1999

 d6(5), d7(6), d8(7), d9(8), d10(9),
 d11(10), d12(11), d13(12), d14(13), d15(14),
 d16(15), d17(16), d18(17), d19(18), d20(19),
 d21(20), d22(21), d23(22), d24(23), d25(24),
 d26(25), d27(26), d28(27), d29(28), d30(29),
 d31(30),
 r1(31), r2(32), r3(33), r4(34), r5(35),
 r6(36), r7(37), r8(38), r9(39), r10(40),
 r11(41), r12(42), r13(43), r14(44), r15(45),
 r16(46), r17(47), r18(48), r19(49), r20(50),
 r21(51), r22(52), r23(53), r24(54), r25(55),
 r26(56), r27(57), r28(58), r29(59), r30(60),
 r31(61)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The set of days in a month on which a scheduled action
 should take place. There are two sets of bits one can
 use to define the day within a month:

 Enumerations starting with the letter ’d’ indicate a
 day in a month relative to the first day of a month.
 The first day of the month can therefore be specified
 by setting the bit d1(0) and d31(30) means the last
 day of a month with 31 days.

 Enumerations starting with the letter ’r’ indicate a
 day in a month in reverse order, relative to the last
 day of a month. The last day in the month can therefore
 be specified by setting the bit r1(31) and r31(61) means
 the first day of a month with 31 days.

 Setting multiple bits will include several days in the set
 of possible days for this schedule. Setting all bits will
 cause the scheduler to ignore the day within a month.
 Setting all bits starting with the letter ’d’ or the
 letter ’r’ will also cause the scheduler to ignore the
 day within a month."
 DEFVAL { {} }
 ::= { schedEntry 7 }

 schedHour OBJECT-TYPE
 SYNTAX BITS {
 h0(0), h1(1), h2(2), h3(3), h4(4),
 h5(5), h6(6), h7(7), h8(8), h9(9),
 h10(10), h11(11), h12(12), h13(13), h14(14),
 h15(15), h16(16), h17(17), h18(18), h19(19),

Levi & Schoenwaelder Standards Track [Page 11]

RFC 2591 Scheduling MIB May 1999

 h20(20), h21(21), h22(22), h23(23)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The set of hours within a day during which the scheduled
 action should take place."
 DEFVAL { {} }
 ::= { schedEntry 8 }

 schedMinute OBJECT-TYPE
 SYNTAX BITS {
 m0(0), m1(1), m2(2), m3(3), m4(4),
 m5(5), m6(6), m7(7), m8(8), m9(9),
 m10(10), m11(11), m12(12), m13(13), m14(14),
 m15(15), m16(16), m17(17), m18(18), m19(19),
 m20(20), m21(21), m22(22), m23(23), m24(24),
 m25(25), m26(26), m27(27), m28(28), m29(29),
 m30(30), m31(31), m32(32), m33(33), m34(34),
 m35(35), m36(36), m37(37), m38(38), m39(39),
 m40(40), m41(41), m42(42), m43(43), m44(44),
 m45(45), m46(46), m47(47), m48(48), m49(49),
 m50(50), m51(51), m52(52), m53(53), m54(54),
 m55(55), m56(56), m57(57), m58(58), m59(59)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The set of minutes within an hour when the scheduled action
 should take place."
 DEFVAL { {} }
 ::= { schedEntry 9 }

 schedContextName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The context which contains the local MIB variable pointed
 to by schedVariable."
 ::= { schedEntry 10 }

 schedVariable OBJECT-TYPE
 SYNTAX VariablePointer
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "An object identifier pointing to a local MIB variable

Levi & Schoenwaelder Standards Track [Page 12]

RFC 2591 Scheduling MIB May 1999

 which resolves to an ASN.1 primitive type of INTEGER."
 ::= { schedEntry 11 }

 schedValue OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value which is written to the MIB object pointed to by
 schedVariable when the scheduler invokes an action. The
 implementation shall enforce the use of access control
 rules when performing the set operation on schedVariable.
 This is accomplished by calling the isAccessAllowed abstract
 service interface as defined in RFC 2271."
 ::= { schedEntry 12 }

 schedType OBJECT-TYPE
 SYNTAX INTEGER {
 periodic(1),
 calendar(2),
 oneshot(3)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The type of this schedule. The value periodic(1) indicates
 that this entry specifies a periodic schedule. A periodic
 schedule is defined by the value of schedInterval. The
 values of schedWeekDay, schedMonth, schedDay, schedHour
 and schedMinute are ignored.

 The value calendar(2) indicates that this entry describes a
 calendar schedule. A calendar schedule is defined by the
 values of schedWeekDay, schedMonth, schedDay, schedHour and
 schedMinute. The value of schedInterval is ignored. A
 calendar schedule will trigger on all local times that
 satisfy the bits set in schedWeekDay, schedMonth, schedDay,
 schedHour and schedMinute.

 The value oneshot(3) indicates that this entry describes a
 one-shot schedule. A one-shot schedule is similar to a
 calendar schedule with the additional feature that it
 disables itself by changing in the ‘finished’
 schedOperStatus once the schedule triggers an action.

 Changing a schedule’s type is equivalent to deleting the
 old-type schedule and creating a new-type one."
 DEFVAL { periodic }

Levi & Schoenwaelder Standards Track [Page 13]

RFC 2591 Scheduling MIB May 1999

 ::= { schedEntry 13 }

 schedAdminStatus OBJECT-TYPE
 SYNTAX INTEGER {
 enabled(1),
 disabled(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The desired state of the schedule."
 DEFVAL { disabled }
 ::= { schedEntry 14 }

 schedOperStatus OBJECT-TYPE
 SYNTAX INTEGER {
 enabled(1),
 disabled(2),
 finished(3)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The current operational state of this schedule. The state
 enabled(1) indicates this entry is active and that the
 scheduler will invoke actions at appropriate times. The
 disabled(2) state indicates that this entry is currently
 inactive and ignored by the scheduler. The finished(3)
 state indicates that the schedule has ended. Schedules
 in the finished(3) state are ignored by the scheduler.
 A one-shot schedule enters the finished(3) state when it
 deactivates itself."
 ::= { schedEntry 15 }

 schedFailures OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This variable counts the number of failures while invoking
 the scheduled action."
 ::= { schedEntry 16 }

 schedLastFailure OBJECT-TYPE
 SYNTAX SnmpPduErrorStatus
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION

Levi & Schoenwaelder Standards Track [Page 14]

RFC 2591 Scheduling MIB May 1999

 "The most recent error that occured during the invocation of
 a scheduled action. The value noError(0) is returned
 if no errors have occurred yet."
 DEFVAL { noError }
 ::= { schedEntry 17 }

 schedLastFailed OBJECT-TYPE
 SYNTAX DateAndTime
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The date and time when the most recent failure occured. The
 value ’0000000000000000’H is returned if no failure occured
 since the last re-initialization of the scheduler."
 DEFVAL { ’0000000000000000’H }
 ::= { schedEntry 18 }

 schedStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object defines whether this scheduled action is kept
 in volatile storage and lost upon reboot or if this row is
 backed up by non-volatile or permanent storage.
 Conceptual rows having the value ‘permanent’ must allow
 write access to the columnar objects schedDescr,
 schedInterval, schedContextName, schedVariable, schedValue,
 and schedAdminStatus. If an implementation supports the
 schedCalendarGroup, write access must be also allowed to
 the columnar objects schedWeekDay, schedMonth, schedDay,
 schedHour, schedMinute."
 DEFVAL { volatile }
 ::= { schedEntry 19 }

 schedRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this scheduled action. A control that allows
 entries to be added and removed from this table.

 The miminum number of objects that need to be set during
 row creation before a row can be set to ‘active’ are
 schedContextName, schedVariable and schedValue."
 ::= { schedEntry 20 }

Levi & Schoenwaelder Standards Track [Page 15]

RFC 2591 Scheduling MIB May 1999

 --
 -- Notifications that are emitted to indicate failures. The
 -- definition of schedTraps makes notification registrations
 -- reversible (see STD 58, RFC 2578).
 --

 schedTraps OBJECT IDENTIFIER ::= { schedNotifications 0 }

 schedActionFailure NOTIFICATION-TYPE
 OBJECTS { schedLastFailure, schedLastFailed }
 STATUS current
 DESCRIPTION
 "This notification is generated whenever the invocation of a
 scheduled action fails."
 ::= { schedTraps 1 }

 -- conformance information

 schedCompliances OBJECT IDENTIFIER ::= { schedConformance 1 }
 schedGroups OBJECT IDENTIFIER ::= { schedConformance 2 }

 -- compliance statements

 schedCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP entities which implement
 the scheduling MIB."
 MODULE -- this module
 MANDATORY-GROUPS {
 schedGroup, schedNotificationsGroup
 }
 GROUP schedCalendarGroup
 DESCRIPTION
 "The schedCalendarGroup is mandatory only for those
 implementations that support calendar based schedules."
 OBJECT schedType
 DESCRIPTION
 "The values calendar(2) or oneshot(3) are not valid for
 implementations that do not implement the
 schedCalendarGroup. Such an implementation must return
 inconsistentValue error responses for attempts to set
 schedAdminStatus to calendar(2) or oneshot(3)."
 ::= { schedCompliances 1 }

 schedGroup OBJECT-GROUP
 OBJECTS {
 schedDescr,

Levi & Schoenwaelder Standards Track [Page 16]

RFC 2591 Scheduling MIB May 1999

 schedInterval,
 schedContextName,
 schedVariable,
 schedValue,
 schedType,
 schedAdminStatus,
 schedOperStatus,
 schedFailures,
 schedLastFailure,
 schedLastFailed,
 schedStorageType,
 schedRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing scheduling capabilities."
 ::= { schedGroups 1 }

 schedCalendarGroup OBJECT-GROUP
 OBJECTS {
 schedLocalTime,
 schedWeekDay,
 schedMonth,
 schedDay,
 schedHour,
 schedMinute
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing calendar based schedules."
 ::= { schedGroups 2 }

 schedNotificationsGroup NOTIFICATION-GROUP
 NOTIFICATIONS {
 schedActionFailure
 }
 STATUS current
 DESCRIPTION
 "The notifications emitted by the scheduler."
 ::= { schedGroups 3 }

 END

Levi & Schoenwaelder Standards Track [Page 17]

RFC 2591 Scheduling MIB May 1999

5. Usage Examples

 This section presents some examples how the scheduling MIB can be
 used to schedule scripts with the Script MIB [17] or to realize on-
 duty/off-duty schedules by modifying status objects of other MIB
 modules.

5.1. Starting a script to ping devices every 20 minutes

 It is assumed that the schedule entry is owned by schedOwner = "joe"
 and its name is schedName = "ping". The instance identifier for the
 scheduling entry is therefore 3.106.111.101.4.112.105.110.103.

 It is further assumed that the smLaunchTable entry is owned by
 smLaunchOwner = "joe" and its name is smLaunchName = "ping-devs". The
 complete object identifier for the smLaunchStart object is therefore
 smLaunchStart.3.106.111.101.9.112.105.110.103.45.100.101.118.115. The
 script lives in the context identified by the string "engine1".

 The configuration of the scheduler entry which launches the script
 every 20 minutes would look as follows:

 schedInterval.3.106.111.101.4.112.105.110.103 = 1200

 schedValue.3.106.111.101.4.112.105.110.103 = 0
 schedContextName.3.106.111.101.4.112.105.110.103 = "engine1"
 schedVariable.3.106.111.101.4.112.105.110.103 =
 smLaunchStart.3.106.111.101.9.112.105.110.103.45.100.101.118.115

 schedType.3.106.111.101.4.112.105.110.103 = periodic(1)
 schedAdminStatus.3.106.111.101.4.112.105.110.103 = enabled(1)
 schedStorageType.3.106.111.101.4.112.105.110.103 = nonVolatile(3)
 schedRowStatus.3.106.111.101.4.112.105.110.103 = active(1)

 All the remaining columns in the schedTable represent status
 information and are not shown here.

5.2. Starting a script at the next Friday the 13th

 It is assumed that the schedule entry is owned by schedOwner = "joe"
 and its name is schedName = "13th". The instance identifier for the
 scheduling entry is therefore 3.106.111.101.4.49.51.116.104.

 It is further assumed that the smLaunchTable entry is owned by
 smLaunchOwner = "joe" and its name is smLaunchName = "ghost". The
 complete object identifier for the smLaunchStart object is therefore
 smLaunchStart.3.106.111.101.5.103.104.111.115.116. The script lives
 in the context identified by the string "engine1".

Levi & Schoenwaelder Standards Track [Page 18]

RFC 2591 Scheduling MIB May 1999

 The configuration of the scheduler entry which launches the script on
 every Friday 13th at midnight would look as follows:

 schedWeekDay.3.106.111.101.4.49.51.116.104 = { friday }
 schedMonth.3.106.111.101.4.49.51.116.104 = {
 january, february, march, april, may, june,
 july, august, september, october, november, december
 }
 schedDay.3.106.111.101.4.49.51.116.104 = { d13 }
 schedHour.3.106.111.101.4.49.51.116.104 = { h0 }
 schedMinute.3.106.111.101.4.49.51.116.104 = { m0 }

 schedValue.3.106.111.101.4.49.51.116.104 = 0
 schedContextName.3.106.111.101.4.49.51.116.104 = "engine1"
 schedVariable.3.106.111.101.4.49.51.116.104 =
 smLaunchStart.3.106.111.101.5.103.104.111.115.116

 schedType.3.106.111.101.4.49.51.116.104 = oneshot(3)
 schedAdminStatus.3.106.111.101.4.49.51.116.104 = enabled(2)
 schedStorageType.3.106.111.101.4.49.51.116.104 = nonVolatile(3)
 schedRowStatus.3.106.111.101.4.49.51.116.104 = active(1)

 All the remaining columns in the schedTable represent status
 information and are not shown here.

5.3. Turning an interface off during weekends

 This example assumes that a network interface should be taken down
 during weekends. The interface table (ifTable) of the IF-MIB [18] is
 assumed to exist in the context identified by an empty string and the
 index of the interface is ifIndex = 6.

 The scheduling entry which brings the interface down on every Friday
 evening at 20:30 (8:30 pm) is owned by schedOwner = "bob" and its
 name is schedName = "if-off". The instance identifier for the
 scheduling entry is therefore 3.98.111.98.6.105.102.45.111.102.102.

 schedWeekDay.3.98.111.98.6.105.102.45.111.102.102 = { friday }
 schedMonth.3.98.111.98.6.105.102.45.111.102.102 = {
 january, february, march, april, may, june,
 july, august, september, october, november, december
 }
 schedDay.3.98.111.98.6.105.102.45.111.102.102 = {
 d1, d2, d3, d4, d5, d6, d7, d8, d9, d10,
 d11, d12, d13, d14, d15, d16, d17, d18, d19, d20,
 d21, d22, d23, d24, d25, d26, d27, d28, d29, d30, d31
 }
 schedHour.3.98.111.98.6.105.102.45.111.102.102 = { h20 }

Levi & Schoenwaelder Standards Track [Page 19]

RFC 2591 Scheduling MIB May 1999

 schedMinute.3.98.111.98.6.105.102.45.111.102.102 = { m30 }

 schedValue.3.98.111.98.6.105.102.45.111.102.102 = down(2)
 schedContextName.3.98.111.98.6.105.102.45.111.102.102 = ""
 schedVariable.3.98.111.98.6.105.102.45.111.102.102 =
 ifAdminStatus.6

 schedType.3.98.111.98.6.105.102.45.111.102.102 = calendar(2)
 schedAdminStatus.3.98.111.98.6.105.102.45.111.102.102 = enabled(1)
 schedStorageType.3.98.111.98.6.105.102.45.111.102.102 =
 nonVolatile(3)
 schedRowStatus.3.98.111.98.6.105.102.45.111.102.102 = active(1)

 The scheduling entry which brings the interface up on every Monday
 morning at 5:30 is owned by schedOwner = "bob" and its name is
 schedName = "if-on". The instance identifier for the scheduling
 entry is therefore 3.98.111.98.5.105.102.45.111.110.

 The entry in the schedTable which brings the interface up again on
 every Monday morning at 5:30 looks as follows:

 schedWeekDay.3.98.111.98.5.105.102.45.111.110 = { monday }
 schedMonth.3.98.111.98.5.105.102.45.111.110 = {
 january, february, march, april, may, june,
 july, august, september, october, november, december
 }
 schedDay.3.98.111.98.5.105.102.45.111.110 = {
 d1, d2, d3, d4, d5, d6, d7, d8, d9, d10,
 d11, d12, d13, d14, d15, d16, d17, d18, d19, d20,
 d21, d22, d23, d24, d25, d26, d27, d28, d29, d30, d31
 }
 schedHour.3.98.111.98.5.105.102.45.111.110 = { h5 }
 schedMinute.3.98.111.98.5.105.102.45.111.110 = { m30 }

 schedValue.3.98.111.98.5.105.102.45.111.110 = up(1)
 schedContextName.3.98.111.98.5.105.102.45.111.110 = ""
 schedVariable.3.98.111.98.5.105.102.45.111.110 = ifAdminStatus.6

 schedType.3.98.111.98.5.105.102.45.111.110 = calendar(2)
 schedAdminStatus.3.98.111.98.5.105.102.45.111.110 = enabled(1)
 schedStorageType.3.98.111.98.5.105.102.45.111.110 = nonVolatile(3)
 schedRowStatus.3.98.111.98.5.105.102.45.111.110 = active(1)

 A similar configuration could be used to control other schedules. For
 example, one could change the "if-on" and "if-off" schedules to
 enable and disable the periodic scheduler defined in the first
 example.

Levi & Schoenwaelder Standards Track [Page 20]

RFC 2591 Scheduling MIB May 1999

6. Security Considerations

 Scheduled SNMP set operations must use the security credentials that
 were present when the corresponding row in the scheduling entry was
 created. An implementation must therefore record and maintain the
 credentials for every scheduling entry.

 An implementation must ensure that access control rules are applied
 when doing the set operation. This is accomplished by calling the
 isAccessAllowed abstract service interface defined in RFC 2271 [1]:

 statusInformation = -- success or errorIndication
 isAccessAllowed(
 IN securityModel -- Security Model in use
 IN securityName -- principal who wants to access
 IN securityLevel -- Level of Security
 IN viewType -- read, write, or notify view
 IN contextName -- context containing variableName
 IN variableName -- OID for the managed object
)
 The securityModel, securityName and securityLevel parameters are set
 to the values that were recorded when the scheduling entry was
 created. The viewType parameter must select the write view and the
 contextName and variableName parameters are taken from the
 schedContextName and schedVariableName values of the scheduling
 entry.

 This MIB limits scheduled actions to objects in the local MIB. This
 avoids security problems with the delegation of access rights.
 However, it might be possible for a user of this MIB to own some
 schedules that might trigger far in the future. This can cause
 security risks if the security administrator did not properly update
 the access control lists when a user is withdrawn from an SNMP
 engine. Therefore, entries in the schedTable SHOULD be cleaned up
 whenever a user is removed from an SNMP engine.

 To facilitate the provisioning of access control by a security
 administrator using the View-Based Access Control Model (VACM)
 defined in RFC 2275 [15] for tables in which multiple users may need
 to independently create or modify entries, the initial index is used
 as an "owner index". Such an initial index has a syntax of
 SnmpAdminString, and can thus be trivially mapped to a securityName
 or groupName as defined in VACM, in accordance with a security
 policy.

 All entries in related tables belonging to a particular user will
 have the same value for this initial index. For a given user’s
 entries in a particular table, the object identifiers for the

Levi & Schoenwaelder Standards Track [Page 21]

RFC 2591 Scheduling MIB May 1999

 information in these entries will have the same subidentifiers
 (except for the "column" subidentifier) up to the end of the encoded
 owner index. To configure VACM to permit access to this portion of
 the table, one would create vacmViewTreeFamilyTable entries with the
 value of vacmViewTreeFamilySubtree including the owner index portion,
 and vacmViewTreeFamilyMask "wildcarding" the column subidentifier.
 More elaborate configurations are possible.

7. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

8. Acknowledgments

 This document was produced by the IETF Distributed Management
 (DISMAN) working group.

9. References

 [1] Harrington, D., Presuhn, R. and B. Wijnen, "An Architecture for
 Describing SNMP Management Frameworks", RFC 2271, January 1998.

 [2] Rose, M. and K. McCloghrie, "Structure and Identification of
 Management Information for TCP/IP-based Internets", STD 16, RFC
 1155, May 1990.

 [3] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,
 RFC 1212, March 1991.

Levi & Schoenwaelder Standards Track [Page 22]

RFC 2591 Scheduling MIB May 1999

 [4] Rose, M., "A Convention for Defining Traps for use with the
 SNMP", RFC 1215, March 1991.

 [5] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
 M. and S. Waldbusser, "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [6] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
 M. and S. Waldbusser, "Textual Conventions for SMIv2", STD 58,
 RFC 2579, April 1999.

 [7] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
 M. and S. Waldbusser, "Conformance Statements for SMIv2", STD
 58, RFC 2580, April 1999.

 [8] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
 Network Management Protocol", STD 15, RFC 1157, May 1990.

 [9] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Introduction to Community-based SNMPv2", RFC 1901, January
 1996.

 [10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Transport
 Mappings for Version 2 of the Simple Network Management Protocol
 (SNMPv2)", RFC 1906, January 1996.

 [11] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
 Processing and Dispatching for the Simple Network Management
 Protocol (SNMP)", RFC 2272, January 1998.

 [12] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
 for version 3 of the Simple Network Management Protocol
 (SNMPv3)", RFC 2274, January 1998.

 [13] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
 Operations for Version 2 of the Simple Network Management
 Protocol (SNMPv2)", January 1996.

 [14] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC
 2273, January 1998

 [15] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
 Control Model (VACM) for the Simple Network Management Protocol
 (SNMP)", RFC 2275, January 1998.

 [16] Hovey, R. and S. Bradner, "The Organizations Involved in the
 IETF Standards Process", BCP 11, RFC 2028, October 1996.

Levi & Schoenwaelder Standards Track [Page 23]

RFC 2591 Scheduling MIB May 1999

 [17] Levi, D. and J. Schoenwaelder, "Definitions of Managed Objects
 for the Delegation of Management Scripts", RFC 2592, May 1999.

 [18] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB
 using SMIv2", RFC 2233, November 1997.

 [19] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

10. Editors’ Addresses

 David B. Levi
 Nortel Networks
 4401 Great America Parkway
 Santa Clara, CA 95052-8185
 U.S.A.

 Phone: +1 423 686 0432
 EMail: dlevi@nortelnetworks.com

 Juergen Schoenwaelder
 TU Braunschweig
 Bueltenweg 74/75
 38106 Braunschweig
 Germany

 Phone: +49 531 391-3283
 EMail: schoenw@ibr.cs.tu-bs.de

Levi & Schoenwaelder Standards Track [Page 24]

RFC 2591 Scheduling MIB May 1999

11. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Levi & Schoenwaelder Standards Track [Page 25]

