
Network Working Group J. Kempf
Request for Comments: 2614 E. Guttman
Category: Informational Sun Microsystems
 June 1999

 An API for Service Location

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Abstract

 The Service Location Protocol (SLP) provides a new way for clients to
 dynamically discovery network services. With SLP, it is simple to
 offer highly available services that require no user configuration or
 assistance from network administrators prior to use. This document
 describes standardized APIs for SLP in C and Java. The APIs are
 modular and are designed to allow implementations to offer just the
 feature set needed. In addition, standardized file formats for
 configuration and serialized registrations are defined, allowing SLP
 agents to set network and other parameters in a portable way. The
 serialized file format allows legacy services to be registered with
 SLP directory agents in cases where modifying the legacy service
 program code is difficult or impossible, and to portably exchange a
 registration database.

Table of Contents

 1. Introduction 4
 1.1. Goals . 4
 1.2. Terminology . 4
 2. File Formats 7
 2.1. Configuration File Format 8
 2.1.1. DA configuration 9
 2.1.2. Static Scope Configuration 9
 2.1.3. Tracing and Logging 11
 2.1.4. Serialized Proxy Registrations 11
 2.1.5. Network Configuration Properties 12
 2.1.6. SA Configuration 14
 2.1.7. UA Configuration 14
 2.1.8. Security 15
 2.2. Multihomed Machines. 16
 2.3. Serialized Registration File 16

Kempf & Guttman Informational [Page 1]

RFC 2614 Service Location API June 1999

 2.4. Processing Serialized Registration and Configuration
 Files . 18
 3. Binding Independent Implementation Considerations 18
 3.1. Multithreading . 18
 3.2. Asynchronous and Incremental 19
 3.3. Type Checking for Service Types. 19
 3.4. Refreshing Registrations 19
 3.5. Configuration File Processing 19
 3.6. Attribute Types 20
 3.7. Removal of Duplicates 20
 3.8. Character Set Encoding 20
 3.9. Error Semantics 20
 3.10. Modular Implementations 24
 3.11. Handling Special Service Types 24
 3.12. Scope Discovery and Handling 24
 4. C Language Binding 25
 4.1. Constant Types . 26
 4.1.1. URL Lifetimes. 26
 4.1.2. Error Codes. 26
 4.1.3. SLPBoolean 27
 4.2. Struct Types . 28
 4.2.1. SLPSrvURL 28
 4.2.2. SLPHandle 29
 4.3. Callbacks . 29
 4.3.1. SLPRegReport 30
 4.3.2. SLPSrvTypeCallback 30
 4.3.3. SLPSrvURLCallback 31
 4.3.4. SLPAttrCallback 33
 4.4. Opening and Closing an SLPHandle 34
 4.4.1. SLPOpen. 34
 4.4.2. SLPClose 35
 4.5. Protocol API . 36
 4.5.1. SLPReg . 36
 4.5.2. SLPDereg 37
 4.5.3. SLPDelAttrs 38
 4.5.4. SLPFindSrvTypes. 39
 4.5.5. SLPFindSrvs 41
 4.5.6. SLPFindAttrs 42
 4.6. Miscellaneous Functions 43
 4.6.1. SLPGetRefreshInterval 44
 4.6.2. SLPFindScopes 44
 4.6.3. SLPParseSrvURL 45
 4.6.4. SLPEscape 46
 4.6.5. SLPUnescape 47
 4.6.6. SLPFree 48
 4.6.7. SLPGetProperty 48
 4.6.8. SLPSetProperty 49
 4.7. Implementation Notes 49

Kempf & Guttman Informational [Page 2]

RFC 2614 Service Location API June 1999

 4.7.1. Refreshing Registrations 49
 4.7.2. Syntax for String Parameters 49
 4.7.3. Client Side Syntax Checking 50
 4.7.4. System Properties 50
 4.7.5. Memory Management 51
 4.7.6. Asynchronous and Incremental Return Semantics. 51
 4.8. Example. 52
 5. Java Language Binding 56
 5.1. Introduction . 56
 5.2. Exceptions and Errors 56
 5.2.1. Class ServiceLocationException 57
 5.3. Basic Data Structures 58
 5.3.1. Interface ServiceLocationEnumeration 58
 5.3.2. Class ServiceLocationAttribute 58
 5.3.3. Class ServiceType 61
 5.3.4. Class ServiceURL 63
 5.4. SLP Access Interfaces 67
 5.4.1. Interface Advertiser 67
 5.4.2. Interface Locator 69
 5.5. The Service Location Manager 72
 5.5.1. Class ServiceLocationManager 72
 5.6. Service Template Introspection 74
 5.6.1. Abstract Class TemplateRegistry 74
 5.6.2. Interface ServiceLocationAttributeVerifier . . 77
 5.6.3. Interface ServiceLocationAttributeDescriptor . 79
 5.7. Implementation Notes 81
 5.7.1. Refreshing Registrations 81
 5.7.2. Parsing Alternate Transports in ServiceURL . . 81
 5.7.3. String Attribute Values 82
 5.7.4. Client Side Syntax Checking. 82
 5.7.5. Language Locale Handling 82
 5.7.6. Setting SLP System Properties. 83
 5.7.7. Multithreading 83
 5.7.8. Modular Implementations 83
 5.7.9. Asynchronous and Incremental Return Semantics. 84
 5.8. Example. 85
 6. Internationalization Considerations 87
 6.1. service URL. 87
 6.2. Character Set Encoding 87
 6.3. Language Tagging 88
 7. Security Considerations 88
 8. Acknowledgements 88
 9. References 89
 10. Authors’ Addresses 90
 11. Full Copyright Statement 91

Kempf & Guttman Informational [Page 3]

RFC 2614 Service Location API June 1999

1. Introduction

 The Service Location API is designed for standardized access to the
 Service Location Protocol (SLP). The APIs allow client and service
 programs to be be written or modified in a very simple manner to
 provide dynamic service discovery and selection. Bindings in the C
 and Java languages are defined in this document. In addition,
 standardized formats for configuration files and for serialized
 registration files are presented. These files allow SLP agents to
 configure network parameters, to register legacy services that have
 not been SLP enabled, and to portably exchange registration
 databases.

1.1. Goals

 The overall goal of the API is to enable source portability of
 applications that use the API between different implementations of
 SLP. The result should facilitate the adoption of SLP, and conversion
 of clients and service programs to SLP.

 The goals of the C binding are to create a minimal but complete
 access to the functionality of the SLP protocol, allowing for simple
 memory management and limited code size.

 The Java API provides for modular implementations (where unneeded
 features can be omitted) and an object oriented interface to the
 complete set of SLP data and functionality.

 The standardized configuration file and serialized file formats
 provide a simple syntax with complete functional coverage of the
 protocol, but without system dependent properties and secure
 information.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

 Service Location Protocol (SLP)

 The underlying protocol allowing dynamic and scalable service
 discovery. This protocol is specified in the Service Location
 Protocol Version 2 [7].

Kempf & Guttman Informational [Page 4]

RFC 2614 Service Location API June 1999

 SLP framework

 When a ’Service Location framework’ is mentioned, it refers to
 both the SLP implementation and interface implementation; i.e.
 whatever provides the SLP functionality to user level programs.
 This includes remote agents.

 Directory Agent (DA)

 A service that automatically gathers service advertisements
 from SAs in order to provide them to UAs.

 User Agent (UA)

 This is the Service Location process or library that allows SLP
 requests to be made on behalf of a client process. UAs
 automatically direct requests to DAs when they exist. In their
 absence, UAs make requests to SAs.

 Service Agent (SA)

 This is the Service Location process or library that allows
 service software to register and deregister itself with the SLP
 framework. SAs respond to UA service requests, detect DAs and
 register service advertisements with them.

 SA Server

 Many operating system platforms only allow a single process to
 listen on a particular port number. Since SAs are required to
 listen on a multicast address for SLP service requests,
 implementations of the SLP framework on such platforms that
 want to support multiple SAs on one machine need to arrange for
 a single process to do the listening while the advertising SAs
 communicate with that process through another mechanism. The
 single listening process is called an SA server. SA servers
 share many characteristics with DAs, but they are not the same.

 Service Advertisement

 A URL possibly combined with service attributes. These are
 made available to UAs by SAs, either directly or via a DA.

 Locale

 The language localization that applies to strings passed into
 or returned from the SLP API. The Locale is expressed using a
 Language Tag [6]. All attribute strings are associated with a

Kempf & Guttman Informational [Page 5]

RFC 2614 Service Location API June 1999

 particular locale. The locale is completely orthogonal to the
 ANSI C locale. The SLP locale is mapped into the Java locale
 in the Java API.

 Service Template

 A document that describes the syntax of the URL for a given
 service type and a definition of all service attributes
 including the meaning, defaults, and constraints on values the
 attributes may take. See [8] for more information on service
 templates.

 The service: URL

 A service of a particular type announces its availability with
 a service: URL that includes its service access point (domain
 name or IP address, and possibly its port number) and
 optionally basic configuration parameters. The syntax of the
 service: URL is defined in the service template. Other URL’s
 can be used in service advertisements if desired.

 Service Attributes

 The attributes associated with a given service. The values
 that can be assigned to service attributes are defined by the
 service template.

 Scope

 A string used to control the availability of service
 advertisements. Every SLP Agent is configured with one or more
 scope strings. Scopes are assigned by site administrators to
 group services for many purposes, but chiefly as a means of
 scalability. DAs store only services advertised having a scope
 string matching the scopes with which they are configured.

 Naming Authority (NA)

 This is a ’suffix’ to the service type string. It completely
 changes the meaning of the service type. NAs are used for
 private definitions of well known Service Types and
 experimental Service Type extensions. The default NA is
 "IANA", which must not be explicitly included. Service types
 with the IANA naming authority are registered with the Internet
 Assigned Numbers Authority (see [8] for more information on the
 registration procedure).

Kempf & Guttman Informational [Page 6]

RFC 2614 Service Location API June 1999

2. File Formats

 This section describes the configuration and serialized registration
 file formats. Both files are defined in the UTF-8 character set [3].

 Attribute tags and values in the serialized registration file require
 SLP reserved characters to be escaped. The SLP reserved characters
 are ‘(’, ‘)’, ‘,’, ‘\’, ‘!’, ‘<’, ‘=’, ‘>’, ‘˜’ and control
 characters (characters with UTF codes less than 0x0020 and the
 character 0x007f, which is US-ASCII DEL). The escapes are formed
 exactly as for the wire protocol, i.e. a backslash followed by two
 hex digits representing the character. For example, the escape for ’
 ,’ is ’\2c’. In addition, the characters ‘\n’, ‘\r’, ‘\t’, and ‘_’
 are prohibited from attribute tags by the SLP wire syntax grammar.
 [7]

 In serialized registration files, escaped strings beginning with
 ‘\ff‘, an encoding for a nonUTF-8 character, are treated as opaques.
 Exactly as in the wire protocol, syntactically correct opaque
 encodings consist of a string beginning with ‘\ff‘ and containing
 only escaped characters that are transformed to bytes. Such
 strings are only syntactically correct in the serialized registration
 file as attribute values. In other cases, whenever an escape is
 encountered and the character is not an SLP reserved character, an
 error is signaled.

 Escaped characters in URLs in serialized registration files use the
 URL escape convention. [2].

 Property names and values in the configuration file have a few
 reserved characters that are involved in file’s lexical definition.
 The characters ’.’ and ’=’ are reserved in property names and must
 be escape. The characters ’,’, ’(’, and ’)’ are reserved in property
 values and must be escaped. In addition, scope names in the
 net.slp.useScopes property use the SLP wire format escape convention
 for SLP reserved characters. This simplifies implementation, since
 the same code can be used to unescape scope names as is used in
 processing the serialized registration file or for formatting wire
 messages.

 On platforms that only support US-ASCII and not UTF-8, the upper bit
 of bytes incoming from the configuration and registration files
 determines whether the character is US-ASCII or not US-ASCII.
 According to the standard UTF-8 encoding, the upper bit is zero if
 the character is US-ASCII and one if the character is multibyte and
 thus not US-ASCII. Platforms without intrinsic UTF-8 support are
 required to parse the multibyte character and store it in an
 appropriate internal format. Support for UTF-8 is required to

Kempf & Guttman Informational [Page 7]

RFC 2614 Service Location API June 1999

 implement the SLP protocol (see [7]), and can therefore be used in
 file processing as well.

 The location and name of the configuration file is system-dependent,
 but implementations of the API are encouraged to locate it together
 with other configuration files and name it consistently.

2.1. Configuration File Format

 The configuration file format consists of a newline delimited list of
 zero or more property definitions. Each property definition
 corresponds to a particular configurable SLP, network, or other
 parameter in one or more of the three SLP agents. The file format
 grammar in ABNF [5] syntax is:

 config-file = line-list
 line-list = line / line line-list
 line = property-line / comment-line
 comment-line = ("#" / ";") 1*allchar newline
 property-line = property newline
 property = tag "=" value-list
 tag = prop / prop "." tag
 prop = 1*tagchar
 value-list = value / value "," value-list
 value = int / bool /
 "(" value-list ")" / string
 int = 1*DIGIT
 bool = "true" / "false" / "TRUE" / "FALSE"
 newline = CR / (CRLF)
 string = 1*stringchar
 tagchar = DIGIT / ALPHA / tother / escape
 tother = %x21-%x2d / %x2f /
 %x3a / %x3c-%x40 /
 %x5b-%x60 / %7b-%7e
 ; i.e., all characters except ‘.’,
 ; and ‘=’.
 stringchar = DIGIT / ALPHA / sother / escape
 sother = %x21-%x29 / %x2a-%x2b /
 %x2d-%x2f / %x3a-%x40 /
 %x5b-%x60 / %7b-%7e
 ; i.e., all characters except ‘,’
 allchar = DIGIT / ALPHA / HTAB / SP
 escape = "\" HEXDIG HEXDIG
 ; Used for reserved characters

 With the exception of net.slp.useScopes, net.slp.DAAddresses, and
 net.slp.isBroadcastOnly, all other properties can be changed through
 property accessors in the C and Java APIs. The property accessors

Kempf & Guttman Informational [Page 8]

RFC 2614 Service Location API June 1999

 only change the property values in the running agent program and do
 not affect the values in the configuration file. The
 net.slp.useScopes and net.slp.DAAddresses properties are read-only
 because they control the agent’s view of the scopes and DAs and are
 therefore critical to the function of the API scope discovery
 algorithm. Attempts to modify them are unlikely to yield productive
 results, and could harm the ability of the agent to find scopes and
 use DAs. The net.slp.isBroadcastOnly property is read-only because
 the API library needs to configure networking upon start up and
 changing this property might invalidate the configuration. Whether
 the local network uses broadcast or multicast is not likely to change
 during the course of the program’s execution.

 The properties break down into the following subsections describes an
 area and its properties.

2.1.1. DA configuration

 Important configuration properties for DAs are included in this
 section. These are:

 net.slp.isDA

 A boolean indicating if the SLP server is to act as a DA. If
 false, not run as a DA. Default is false.

 net.slp.DAHeartBeat

 A 32 bit integer giving the number of seconds for the
 DA heartbeat. Default is 3 hours (10800 seconds). This
 property corresponds to the protocol specification parameter
 CONFIG_DA_BEAT [7]. Ignored if isDA is false.

 net.slp.DAAttributes

 A comma-separated list of parenthesized attribute/value list
 pairs that the DA must advertise in DAAdverts. The property
 must be in the SLP attribute list wire format, including
 escapes for reserved characters. [7]

2.1.2. Static Scope Configuration

 These properties allow various aspects of scope handling to be
 configured.

Kempf & Guttman Informational [Page 9]

RFC 2614 Service Location API June 1999

 net.slp.useScopes

 A value-list of strings indicating the only scopes a UA or SA
 is allowed to use when making requests or registering, or the
 scopes a DA must support. If not present for the DA and SA,
 then in the absence of scope information from DHCP, the default
 scope "DEFAULT" is used. If not present for the UA, and there
 is no scope information available from DHCP, then the user
 scoping model is in force. Active and passive DA discovery
 or SA discovery are used for scope discovery, and the scope
 "DEFAULT" is used if no other information is available. If a
 DA or SA gets another scope in a request, a SCOPE_NOT_SUPPORTED
 error should be returned, unless the request was multicast, in
 which case it should be dropped. If a DA gets another scope in
 a registration, a SCOPE_NOT_SUPPORTED error must be returned.
 Unlike other properties, this property is "read-only", so
 attempts to change it after the configuration file has been
 read are ignored. See Section 3.12 for the algorithm the API
 uses in determining what scope information to present.

 net.slp.DAAddresses

 A value-list of IP addresses or DNS resolvable host names
 giving the SLPv2 DAs to use for statically configured UAs and
 SAs. Ignored by DAs (unless the DA is also an SA server).
 Default is none. Unlike other properties, this property is
 "read-only", so attempts to change it after the configuration
 file has been read are ignored.

 The following grammar describes the property:

 addr-list = addr / addr "," addr-list
 addr = fqdn / hostnumber
 fqdn = ALPHA / ALPHA *[anum / "-"] anum
 anum = ALPHA / DIGIT
 hostnumber = 1*3DIGIT 3("." 1*3DIGIT)

 An example is:

 sawah,mandi,sambal

 IP addresses can be used instead of host names in networks
 where DNS is not deployed, but network administrators are
 reminded that using IP addresses will complicate machine

Kempf & Guttman Informational [Page 10]

RFC 2614 Service Location API June 1999

 renumbering, since the SLP configuration property files
 in statically configured networks will have to be changed.
 Similarly, if host names are used, implementors must be careful
 that a name service is available before SLP starts, in other
 words, SLP cannot be used to find the name service.

2.1.3. Tracing and Logging

 This section allows tracing and logging information to be printed by
 the various agents.

 net.slp.traceDATraffic

 A boolean controlling printing of messages about traffic with
 DAs. Default is false.

 net.slp.traceMsg

 A boolean controlling printing of details on SLP messages.
 The fields in all incoming messages and outgoing replies are
 printed. Default is false.

 net.slp.traceDrop

 A boolean controlling printing details when a SLP message is
 dropped for any reason. Default is false.

 net.slp.traceReg

 A boolean controlling dumps of all registered services upon
 registration and deregistration. If true, the contents
 of the DA or SA server are dumped after a registration or
 deregistration occurs. Default is false.

2.1.4. Serialized Proxy Registrations

 These properties control the reading and writing of serialized
 registrations.

 net.slp.serializedRegURL

 A string containing a URL pointing to a document containing
 serialized registrations that should be processed when the DA
 or SA server starts up. Default is none.

Kempf & Guttman Informational [Page 11]

RFC 2614 Service Location API June 1999

2.1.5. Network Configuration Properties

 The properties in this section allow various network configuration
 properties to be set.

 net.slp.isBroadcastOnly

 A boolean indicating if broadcast should be used instead of
 multicast. Like the net.slp.useScopes and net.slp.DAAddresses
 properties, this property is "read-only", so attempts to change
 it after the configuration file has been read are ignored.
 Default is false.

 net.slp.passiveDADetection

 A boolean indicating whether passive DA detection should be
 used. Default is true.

 net.slp.multicastTTL

 A positive integer less than or equal to 255, giving the
 multicast TTL. Default is 255.

 net.slp.DAActiveDiscoveryInterval

 A 16 bit positive integer giving the number of seconds
 between DA active discovery queries. Default is 900 seconds
 (15 minutes). This property corresponds to the protocol
 specification parameter CONFIG_DA_FIND [7]. If the property is
 set to zero, active discovery is turned off. This is useful
 when the DAs available are explicitly restricted to those
 obtained from DHCP or the net.slp.DAAddresses property.

 net.slp.multicastMaximumWait

 A 32 bit integer giving the maximum amount of time to perform
 multicast, in milliseconds. Default is 15000 ms (15 sec.).
 This property corresponds to the CONFIG_MC_MAX parameter in the
 protocol specification [7].

 net.slp.multicastTimeouts

 A value-list of 32 bit integers used as timeouts, in
 milliseconds, to implement the multicast convergence
 algorithm. Each value specifies the time to wait before
 sending the next request, or until nothing new has
 been learned from two successive requests. Default
 is: 3000,3000,3000,3000,3000. In a fast network the

Kempf & Guttman Informational [Page 12]

RFC 2614 Service Location API June 1999

 aggressive values of 1000,1250,1500,2000,4000 allow better
 performance. This property corresponds to the CONFIG_MC_RETRY
 parameter in the protocol specification [7]. Note that the
 net.slp.DADiscoveryTimeouts property must be used for active DA
 discovery.

 net.slp.DADiscoveryTimeouts

 A value-list of 32 bit integers used as timeouts, in
 milliseconds, to implement the multicast convergence algorithm
 during active DA discovery. Each value specifies the time
 to wait before sending the next request, or until nothing
 new has been learned from two successive requests. This
 property corresponds to the protocol specification parameter
 CONFIG_RETRY [7]. Default is: 2000,2000,2000,2000,3000,4000.

 net.slp.datagramTimeouts

 A value-list of 32 bit integers used as timeouts, in
 milliseconds, to implement unicast datagram transmission to
 DAs. The nth value gives the time to block waiting for a reply
 on the nth try to contact the DA. The sum of these values is
 the protocol specification property CONFIG_RETRY_MAX [7].

 net.slp.randomWaitBound

 A 32 bit integer giving the maximum value for all random
 wait parameters, in milliseconds. Default is 1000 (1
 sec.). This value corresponds to the protocol specification
 parameters CONFIG_START_WAIT, CONFIG_REG_PASSIVE, and
 CONFIG_REG_ACTIVE [7].

 net.slp.MTU

 A 16 bit integer giving the network packet MTU, in bytes.
 This is the maximum size of any datagram to send, but the
 implementation might receive a larger datagram. The maximum
 size includes IP, and UDP or TCP headers. Default is 1400.

 net.slp.interfaces

 Value-list of strings giving the IP addresses of network
 interfaces on which the DA or SA should listen on port 427 for
 multicast, unicast UDP, and TCP messages. Default is empty,
 i.e. use the default network interface. The grammar for this
 property is:

Kempf & Guttman Informational [Page 13]

RFC 2614 Service Location API June 1999

 addr-list = hostnumber / hostnumber "," addr-list
 hostnumber = 1*3DIGIT 3("." 1*3DIGIT)

 An example is:

 195.42.42.42,195.42.142.1,195.42.120.1

 The example machine has three interfaces on which the DA should
 listen.

 Note that since this property only takes IP addresses, it will
 need to be changed if the network is renumbered.

2.1.6. SA Configuration

 This section contains configuration properties for the SA. These
 properties are typically set programmatically by the SA, since they
 are specific to each SA.

 net.slp.SAAttributes

 A comma-separated list of parenthesized attribute/value list
 pairs that the SA must advertise in SAAdverts. The property
 must be in the SLP attribute list wire format, including
 escapes for reserved characters. [7]

2.1.7. UA Configuration

 This section contains configuration properties for the UA. These
 properties can be set either programmatically by the UA or in the
 configuration file.

 net.slp.locale

 A RFC 1766 Language Tag [6] for the language locale. Setting
 this property causes the property value to become the default
 locale for SLP messages. Default is "en". This property is
 also used for SA and DA configuration.

 net.slp.maxResults

 A 32 bit integer giving the maximum number of results to
 accumulate and return for a synchronous request before the
 timeout, or the maximum number of results to return through a
 callback if the request results are reported asynchronously.

Kempf & Guttman Informational [Page 14]

RFC 2614 Service Location API June 1999

 Positive integers and -1 are legal values. If -1, indicates
 that all results should be returned. Default value is -1.

 DAs and SAs always return all results that match the
 request. This configuration value applies only to UAs, that
 filter incoming results and only return as many values as
 net.slp.maxResults indicates.

 net.slp.typeHint

 A value-list of service type names. In the absence of any
 DAs, UAs perform SA discovery for finding scopes. These SA
 discovery requests may contain a request for service types as
 an attribute.

 The API implementation will use the service type names supplied
 by this property to discover only those SAs (and their scopes)
 which support the desired service type or types. For example,
 if net.slp.typeHint is set to "service:imap,service:pop3" then
 SA discovery requests will include the search filter:

 (|(service-type=service:imap)(service-type=service:pop3))

 The API library can also use unicast to contact the discovered
 SAs for subsequent requests for these service types, to
 optimize network access.

2.1.8. Security

 The property in this section allows security for all agents to be set
 on or off. When the property is true, then the agent must include
 security information on all SLP messages transacted by that agent.
 Since security policy must be set network wide to be effective, a
 single property controls security for all agents. Key management and
 management of SLP SPI strings [7] are implementation and policy
 dependent.

 net.slp.securityEnabled

 A boolean indicating whether the agent should enable
 security for URLs, attribute lists, DAAdverts, and SAAdverts.
 Each agent is responsible for interpreting the property
 appropriately. Default is false.

Kempf & Guttman Informational [Page 15]

RFC 2614 Service Location API June 1999

2.2. Multihomed Machines

 On multihomed machines, the bandwidth and latency characteristics on
 different network interfaces may differ considerably, to the point
 where different configuration properties are necessary to achieve
 optimal performance. The net.slp.interfaces property indicates which
 network interfaces are SLP enabled. An API library implementation
 may support configuration customization on a per network interface
 basis by allowing the interface IP address to be appended to the
 property name. In that case, the values of the property are only
 used for that particular interface, the generic property (or defaults
 if no generic property is set) applies to all others.

 For example, if a configuration has the following properties:

 net.slp.interfaces=125.196.42.41,125.196.42.42,125.196.42.43
 net.slp.multicastTTL.125.196.42.42=1

 then the network interface on subnet 42 is restricted to a TTL of 1,
 while the interfaces on the other subnets have the default multicast
 radius, 255.

 The net.slp.interfaces property must only be set if there is no
 routing between the interfaces. If the property is set, the DA (if
 any) and SAs should advertise with the IP address or host name
 appropriate to the interface on the interfaces in the list. If
 packets are routed between the interfaces, then the DA and SAs should
 only advertise on the default interface. The property should also be
 set if broadcast is used rather than multicast on the subnets
 connected to the interfaces. Note that even if unicast packets are
 not routed between the interfaces, multicast may be routed through
 another router. The danger in listening for multicast on multiple
 interfaces when multicast packets are routed is that the DA or SA may
 receive the same multicast request via more than one interface.
 Since the IP address is different on each interface, the DA or SA
 cannot identify the request as having already being answered via the
 previous responder’s list. The requesting agent will end up getting
 URLs that refer to the same DA or service but have different
 addresses or host names.

2.3. Serialized Registration File

 The serialized registration file contains a group of registrations
 that a DA or SA server (if one exists) registers when it starts up.
 These registrations are primarily for older service programs that do
 not internally support SLP and cannot be converted, and for portably

Kempf & Guttman Informational [Page 16]

RFC 2614 Service Location API June 1999

 exchanging registrations between SLP implementations. The character
 encoding of the registrations is required to be UTF-8.

 The syntax of the serialized registration file, in ABNF format [5],
 is as follows:

 ser-file = reg-list
 reg-list = reg / reg reg-list
 reg = creg / ser-reg
 creg = comment-line ser-reg
 comment-line = ("#" / ";") 1*allchar newline
 ser-reg = url-props [slist] [attr-list] newline
 url-props = surl "," lang "," ltime ["," type] newline
 surl = ;The registration’s URL. See
 ; [8] for syntax.
 lang = 1*8ALPHA ["-" 1*8ALPHA]
 ;RFC 1766 Language Tag see [6].
 ltime = 1*5DIGIT
 ; A positive 16-bit integer
 ; giving the lifetime
 ; of the registration.
 type = ; The service type name, see [7]
 ; and [8] for syntax.
 slist = "scopes" "=" scope-list newline
 scope-list = scope-name / scope-name "," scope-list
 scope = ; See grammar of [7] for
 ; scope-name syntax.
 attr-list = attr-def / attr-def attr-list
 attr-def = (attr / keyword) newline
 keyword = attr-id
 attr = attr-id "=" attr-val-list
 attr-id = ;Attribute id, see [7] for syntax.
 attr-val-list = attr-val / attr-val "," attr-val-list
 attr-val = ;Attribute value, see [7] for syntax.
 allchar = char / WSP
 char = DIGIT / ALPHA / other
 other = %x21-%x2f / %x3a-%x40 /
 %x5b-%x60 / %7b-%7e
 ; All printable, nonwhitespace US-ASCII
 ; characters.
 newline = CR / (CRLF)

 The syntax for scope names, attribute tags, and attribute values
 requires escapes for special characters as specified in [7]. DAs and
 SA servers that process serialized registrations must handle them
 exactly as if they were registered by an SA. In the url-props

Kempf & Guttman Informational [Page 17]

RFC 2614 Service Location API June 1999

 production, the type token is optional. If the type token is present
 for a service: URL, a warning is signaled and the type name is
 ignored. If the maximum lifetime is specified (65535 sec.), the
 registration is taken to be permanent, and is continually refreshed
 by the DA or SA server until it exits. Scopes can be included in a
 registration by including an attribute definition with tag "scopes"
 followed by a comma separated list of scope names immediately after
 the url-props production. If the optional scope list is present, the
 registrations are made in the indicated scopes; otherwise, they are
 registered in the scopes with which the DA or SA server was
 configured through the net.slp.useScopes property.

 If the scope list contains scopes that are not in the
 net.slp.useScopes property (provided that property is set) or are not
 specified by DHCP, the API library should reject the registration and
 issue a warning message.

2.4. Processing Serialized Registration and Configuration Files

 Implementations are encouraged to make processing of configuration
 and serialized files as transparent as possible to clients of the
 API. At the latest, errors must be caught when the relevant
 configuration item is used. At the earliest, errors may be caught
 when the relevant file is loaded into the executing agent. Errors
 should be reported by logging to the appropriate platform logging
 file, error output, or log device, and the default value substituted.
 Serialized registration file entries should be caught and reported
 when the file is loaded.

 Configuration file loading must be complete prior to the initiation
 of the first networking connection. Serialized registration must be
 complete before the DA accepts the first network request.

3. Binding Independent Implementation Considerations

 This section discusses a number of implementation considerations
 independent of language binding, with language specific notes where
 applicable.

3.1. Multithreading

 Implementations of both the C and Java APIs are required to make API
 calls thread-safe. Access to data structures shared between threads
 must be co-ordinated to avoid corruption or invalid access. One way
 to achieve this goal is to allow only one thread at a time in the
 implementing library. Performance in such an implementation suffers,
 however. Therefore, where possible, implementations are encouraged
 to allow multiple threads within the SLP API library.

Kempf & Guttman Informational [Page 18]

RFC 2614 Service Location API June 1999

3.2. Asynchronous and Incremental

 The APIs are designed to encourage implementations supporting
 asynchronous and incremental client interaction. The goal is to
 allow large numbers of returned service URLs, service types, and
 attributes without requiring the allocation of huge chunks of memory.
 The particular design features to support this goal differ in the two
 language bindings.

3.3. Type Checking for Service Types

 Service templates [8] allow SLP registrations to be type checked for
 correctness. Implementations of the API are free to make use of
 service type information for type checking, but are not required to
 do so. If a type error occurs, the registration should terminate
 with TYPE_ERROR.

3.4. Refreshing Registrations

 SLP advertisements carry an explicit lifetime with them. After the
 lifetime expires, the DA flushes the registration from its cache. In
 some cases, an application may want to have the URL continue being
 registered for the entire time during which the application is
 executing. The API includes provision for clients to indicate
 whether they want URLs to be automatically refreshed.
 Implementations of the SA API must provide this automatic refreshing
 capability. Note that a client which uses this facility should
 explicitly deregister the service URL before exiting, since the API
 implementation may not be able to assure that the URL is deregistered
 when the application exits, although it will time out in the DA
 eventually.

3.5. Configuration File Processing

 DAs, SAs and UAs processing the configuration file, and DAs and SA
 servers processing the serialized registration file are required to
 log any errors using whatever underlying error mechanism is
 appropriate for the platform. Examples include writing error
 messages to the standard output, writing to a system logging device,
 or displaying the errors to a logging window. After the error is
 reported, the offending property must be set to the default and
 program execution continued. An agent MUST NOT fail if a file format
 error occurs.

Kempf & Guttman Informational [Page 19]

RFC 2614 Service Location API June 1999

3.6. Attribute Types

 String encoded attribute values do not include explicit type
 information. All UA implementations and those SA and DA
 implementations that choose to support type checking should use the
 type rules described in [8] in order to convert from the string
 representation on the wire to an object typed appropriately.

3.7. Removal of Duplicates

 The UA implementation SHOULD always collate results to remove
 duplicates during synchronous operations and for the Java API. During
 asynchronous operation in C, the UA implementation SHOULD forgo
 duplicate elimination to reduce memory requirements in the library.
 This allows the API library to simply take the returned attribute
 value list strings, URL strings, or service type list strings and
 call the callback function with it, without any additional
 processing. Naturally, the burden of duplicate elimination is thrown
 onto the client in this case.

3.8. Character Set Encoding

 Character string parameters in the Java API are all represented in
 Unicode internally because that is the Java-supported character set.
 Characters buffer parameters in the C API are represented in UTF-8 to
 maintain maximum compatibility on platforms that only support US-
 ASCII and not UTF-8. API functions are still required to handle the
 full range of UTF-8 characters because the SLP protocol requires it,
 but the API implementation can represent the characters internally in
 any convenient way. On the wire, all characters are converted to
 UTF-8. Inside URLs, characters that are not allowed by URL syntax
 [2] must be escaped according to the URL escape character convention.
 Strings that are included in SLP messages may include SLP reserved
 characters and can be escaped by clients through convenience
 functions provided by the API. The character encoding used in escapes
 is UTF-8.

 Due to constraints in SLP, no string parameter passed to the C or
 Java API may exceed 64K bytes in length.

3.9. Error Semantics

 All errors encountered processing SLP messages should be logged. For
 synchronous calls, an error is only reported on a call if no
 successful replies were received from any SLP framework entity. If
 an error occurred among one of several successful replies, then the
 error should be logged and the successful replies returned. For
 asynchronous calls, an error occurring during correspondence with a

Kempf & Guttman Informational [Page 20]

RFC 2614 Service Location API June 1999

 particular remote SLP agent is reported through the first callback
 (in the C API) or enumeration method invocation (in the Java API)
 after the error occurs, which would normally report the results of
 the correspondence. This allows the callback or client code to
 determine whether the operation should be terminated or continue. In
 some cases, the error returned from the SLP framework may be fatal
 (SLP_PARSE_ERROR, etc.). In these cases, the API library terminates
 the operation.

 Both the Java and C APIs contain language specific error code
 mechanisms for returning error information. The names of the error
 codes are consistent between the two implementations, however.

 The following error codes are returned from a remote agent (DA or SA
 server):

 LANGUAGE_NOT_SUPPORTED

 No DA or SA has service advertisement or attribute information
 in the language requested, but at least one DA or SA indicated,
 via the LANGUAGE_NOT_SUPPORTED error code, that it might have
 information for that service in another language.

 PARSE_ERROR

 The SLP message was rejected by a remote SLP agent. The API
 returns this error only when no information was retrieved, and
 at least one SA or DA indicated a protocol error. The data
 supplied through the API may be malformed or a may have been
 damaged in transit.

 INVALID_REGISTRATION

 The API may return this error if an attempt to register a
 service was rejected by all DAs because of a malformed URL or
 attributes. SLP does not return the error if at least one DA
 accepted the registration.

 AUTHENTICATION_ABSENT

 If the SLP framework supports authentication, this error arises
 when the UA or SA failed to send an authenticator for requests
 or registrations in a protected scope.

Kempf & Guttman Informational [Page 21]

RFC 2614 Service Location API June 1999

 INVALID_UPDATE

 An update for a non-existing registration was issued, or the
 update includes a service type or scope different than that in
 the initial registration, etc.

 The following errors result from interactions with remote agents or
 can occur locally:

 AUTHENTICATION_FAILED

 If the SLP framework supports authentication, this error arises
 when a authentication on an SLP message failed.

 SCOPE_NOT_SUPPORTED

 The API returns this error if the SA has been configured with
 net.slp.useScopes value-list of scopes and the SA request did
 not specify one or more of these allowable scopes, and no
 others. It may be returned by a DA or SA if the scope included
 in a request is not supported by the DA or SA.

 REFRESH_REJECTED

 The SA attempted to refresh a registration more frequently
 than the minimum refresh interval. The SA should call the
 appropriate API function to obtain the minimum refresh interval
 to use.

 The following errors are generated through a program interacting with
 the API implementation. They do not involve a remote SLP agent.

 NOT_IMPLEMENTED

 If an unimplemented feature is used, this error is returned.

 NETWORK_INIT_FAILED

 If the network cannot initialize properly, this error is
 returned.

 NETWORK_TIMED_OUT

 When no reply can be obtained in the time specified by the
 configured timeout interval for a unicast request, this error
 is returned.

Kempf & Guttman Informational [Page 22]

RFC 2614 Service Location API June 1999

 NETWORK_ERROR

 The failure of networking during normal operations causes this
 error to be returned.

 BUFFER_OVERFLOW

 An outgoing request overflowed the maximum network MTU size.
 The request should be reduced in size or broken into pieces and
 tried again.

 MEMORY_ALLOC_FAILED

 If the API fails to allocate memory, the operation is aborted
 and returns this.

 PARAMETER_BAD

 If a parameter passed into an interface is bad, this error is
 returned.

 INTERNAL_SYSTEM_ERROR

 A basic failure of the API causes this error to be returned.
 This occurs when a system call or library fails. The operation
 could not recover.

 HANDLE_IN_USE

 In the C API, callback functions are not permitted to
 recursively call into the API on the same SLPHandle, either
 directly or indirectly. If an attempt is made to do so, this
 error is returned from the called API function.

 TYPE_ERROR

 If the API supports type checking of registrations against
 service type templates, this error can arise if the attributes
 in a registration do not match the service type template for
 the service.

 Some error codes are handled differently in the Java API. These
 differences are discussed in Section 5.

 The SLP protocol errors OPTION_NOT_UNDERSTOOD, VERSION_NOT_SUPPORTED,
 INTERNAL_ERROR, MSG_NOT_SUPPORTED, AUTHENTICATON_UNKNOWN, and
 DA_BUSY_NOW should be handled internally and not surfaced to clients
 through the API.

Kempf & Guttman Informational [Page 23]

RFC 2614 Service Location API June 1999

3.10. Modular Implementations

 Subset implementations that do not support the full range of
 functionality are required to nevertheless support every interface in
 order to maintain link compatibility between compliant API
 implementations and applications. If a particular operation is not
 supported, a NOT_IMPLEMENTED error should be returned. The Java API
 has some additional conventions for handling subsets. Applications
 that are expected to run on a wide variety of platforms should be
 prepared for subset API implementations by checking returned error
 codes.

3.11. Handling Special Service Types

 The service types service:directory-agent and service:service-agent
 are used internally in the SLP framework to discover DAs and SAs.
 The mechanism of DA and SA discovery is not normally exposed to the
 API client; however, the client may have interest in discovering DAs
 and SAs independently of their role in discovering other services.
 For example, a network management application may want to determine
 which machines are running SLP DAs. To facilitate that, API
 implementations must handle requests to find services and attributes
 for these two service types so that API clients obtain the
 information they expect.

 In particular, if the UA is using a DA, SrvRqst and AttrRqst for
 these service types must be multicast and not unicast to the DA, as
 is the case for other service types. If the requests are not
 multicast, the DA will respond with an empty reply to a request for
 services of type service:service-agent and with its URL only to a
 request for services of type service:directory-agent. The UA would
 therefore not obtain a complete picture of the available DAs and SAs.

3.12. Scope Discovery and Handling

 Both APIs contain an operation to obtain a list of currently known
 scope names. This scope information comes from a variety of places:
 DHCP, the net.slp.useScopes property, unicast to DAs configured via
 DHCP or the net.slp.DAAddresses property, and active and passive
 discovery.

 The API is required to be implemented in a way that re-enforces the
 administrative and user scoping models described in [7]. SA clients
 only support the administrative scoping model. SAs must know a
 priori what DAs they need to register with since there is typically
 no human intervention in scope selection for SAs. UAs must support
 both administrative and user scoping because an application may
 require human intervention in scope selection.

Kempf & Guttman Informational [Page 24]

RFC 2614 Service Location API June 1999

 API implementations are required to support administrative scoping in
 the following way. Scopes configured by DHCP and scopes of DAs
 configured by DHCP have first priority (in that order) and must be
 returned if they are available. The net.slp.useScopes property has
 second priority, and scopes discovered through the net.slp.useScopes
 property must be returned if this property is set and there are no
 scopes available from DHCP. If scopes are not available from either
 of these sources and the net.slp.DAAddresses property is set, then
 the scopes available from the configured DAs must be returned. Note
 that if both DAs and scopes are configured, the scopes of the
 configured DAs must match the configured scope list; otherwise and
 error is signaled and agent execution is terminated. If no
 configured scope information is available, then an SA client has
 default scope, "DEFAULT", and a UA client employs user scoping.

 User scoping is supported in the following way. Scopes discovered
 from active DA discovery, and from passive DA discovery all must be
 returned. If no information is available from active and passive DA
 discovery, then the API library may perform SA discovery, using the
 service types in the net.slp.typeHint property to limit the search to
 SAs supporting particular service types. If no net.slp.typeHint
 property is set, the UA may perform SA discovery without any service
 type query. In the absence of any of the above sources of
 information, the API must return the default scope, "DEFAULT". Note
 that the API must always return some scope information.

 SLP requires that SAs must perform their operations in all scopes
 currently known to them. [7]. The API enforces this constraint by
 not requiring the API client to supply any scopes as parameters to
 API operations. The API library must obtain all currently known
 scopes and use them in SA operations. UA API clients should use a
 scope obtained through one of the API operations for finding scopes.
 Any other scope name may result in a SCOPE_NOT_SUPPORTED error from a
 remote agent. The UA API library can optionally check the scope and
 return the error without contacting a remote agent.

4. C Language Binding

 The C language binding presents a minimal overhead implementation
 that maps directly into the protocol. There is one C language
 function per protocol request, with the exception of the SLPDereg()
 and SLPDelAttrs() functions, which map into different uses of the SLP
 deregister request. Parameters are for the most part character
 buffers. Memory management is kept simple by having the client
 allocate most memory and requiring that client callback functions
 copy incoming parameters into memory allocated by the client code.
 Any memory returned directly from the API functions is deallocated
 using the SLPFree() function.

Kempf & Guttman Informational [Page 25]

RFC 2614 Service Location API June 1999

 To conform with standard C practice, all character strings passed to
 and returned through the API are null terminated, even though the SLP
 protocol does not use null terminated strings. Strings passed as
 parameters are UTF-8 but they may still be passed as a C string (a
 null terminated sequence of bytes.) Escaped characters must be
 encoded by the API client as UTF-8. In the common case of US-ASCII,
 the usual one byte per character C strings work. API functions
 assist in escaping and unescaping strings.

 Unless otherwise noted, parameters to API functions and callbacks are
 non-NULL. Some parameters may have other restrictions. If any
 parameter fails to satisfy the restrictions on its value, the
 operation returns a PARAMETER_BAD error.

4.1. Constant Types

4.1.1. URL Lifetimes

4.1.1.1. Synopsis

 typedef enum {
 SLP_LIFETIME_DEFAULT = 10800,
 SLP_LIFETIME_MAXIMUM = 65535
 } SLPURLLifetime;

4.1.1.2. Description

 The SLPURLLifetime enum type contains URL lifetime values, in
 seconds, that are frequently used. SLP_LIFETIME_DEFAULT is 3 hours,
 while SLP_LIFETIME_MAXIMUM is about 18 hours and corresponds to the
 maximum size of the lifetime field in SLP messages.

4.1.2. Error Codes

4.1.2.1. Synopsis

 typedef enum {
 SLP_LAST_CALL = 1,
 SLP_OK = 0,
 SLP_LANGUAGE_NOT_SUPPORTED = -1,
 SLP_PARSE_ERROR = -2,
 SLP_INVALID_REGISTRATION = -3,
 SLP_SCOPE_NOT_SUPPORTED = -4,
 SLP_AUTHENTICATION_ABSENT = -6,
 SLP_AUTHENTICATION_FAILED = -7,

Kempf & Guttman Informational [Page 26]

RFC 2614 Service Location API June 1999

 SLP_INVALID_UPDATE = -13,
 SLP_REFRESH_REJECTED = -15,
 SLP_NOT_IMPLEMENTED = -17,
 SLP_BUFFER_OVERFLOW = -18,
 SLP_NETWORK_TIMED_OUT = -19,
 SLP_NETWORK_INIT_FAILED = -20,
 SLP_MEMORY_ALLOC_FAILED = -21,
 SLP_PARAMETER_BAD = -22,
 SLP_NETWORK_ERROR = -23,
 SLP_INTERNAL_SYSTEM_ERROR = -24,
 SLP_HANDLE_IN_USE = -25,
 SLP_TYPE_ERROR = -26
 } SLPError ;

4.1.2.2. Description

 The SLPError enum contains error codes that are returned from API
 functions.

 The SLP_OK code indicates that the no error occurred during the
 operation.

 The SLP_LAST_CALL code is passed to callback functions when the API
 library has no more data for them and therefore no further calls will
 be made to the callback on the currently outstanding operation. The
 callback can use this to signal the main body of the client code that
 no more data will be forthcoming on the operation, so that the main
 body of the client code can break out of data collection loops. On
 the last call of a callback during both a synchronous and
 asynchronous call, the error code parameter has value SLP_LAST_CALL,
 and the other parameters are all NULL. If no results are returned by
 an API operation, then only one call is made, with the error
 parameter set to SLP_LAST_CALL.

4.1.3. SLPBoolean

4.1.3.1. Synopsis

 typedef enum {
 SLP_FALSE = 0,
 SLP_TRUE = 1

 } SLPBoolean;

Kempf & Guttman Informational [Page 27]

RFC 2614 Service Location API June 1999

4.1.3.2. Description

 The SLPBoolean enum is used as a boolean flag.

4.2. Struct Types

4.2.1. SLPSrvURL

4.2.1.1. Synopsis

 typedef struct srvurl {
 char *s_pcSrvType;
 char *s_pcHost;
 int s_iPort;
 char *s_pcNetFamily;
 char *s_pcSrvPart;
 } SLPSrvURL;

4.2.1.2. Description

 The SLPSrvURL structure is filled in by the SLPParseSrvURL() function
 with information parsed from a character buffer containing a service
 URL. The fields correspond to different parts of the URL. Note that
 the structure is in conformance with the standard Berkeley sockets
 struct servent, with the exception that the pointer to an array of
 characters for aliases (s_aliases field) is replaced by the pointer
 to host name (s_pcHost field).

 s_pcSrvType

 A pointer to a character string containing the service
 type name, including naming authority. The service type
 name includes the "service:" if the URL is of the service:
 scheme. [7]

 s_pcHost

 A pointer to a character string containing the host
 identification information.

 s_iPort

 The port number, or zero if none. The port is only available
 if the transport is IP.

Kempf & Guttman Informational [Page 28]

RFC 2614 Service Location API June 1999

 s_pcNetFamily

 A pointer to a character string containing the network address
 family identifier. Possible values are "ipx" for the IPX
 family, "at" for the Appletalk family, and "" (i.e. the empty
 string) for the IP address family.

 s_pcSrvPart

 The remainder of the URL, after the host identification.

 The host and port should be sufficient to open a socket to the
 machine hosting the service, and the remainder of the URL should
 allow further differentiation of the service.

4.2.2. SLPHandle

4.2.2.1. Synopsis

 typedef void* SLPHandle;

 The SLPHandle type is returned by SLPOpen() and is a parameter to all
 SLP functions. It serves as a handle for all resources allocated on
 behalf of the process by the SLP library. The type is opaque, since
 the exact nature differs depending on the implementation.

4.3. Callbacks

 A function pointer to a callback function specific to a particular
 API operation is included in the parameter list when the API function
 is invoked. The callback function is called with the results of the
 operation in both the synchronous and asynchronous cases. The memory
 included in the callback parameters is owned by the API library, and
 the client code in the callback must copy out the contents if it
 wants to maintain the information longer than the duration of the
 current callback call.

 In addition to parameters for reporting the results of the operation,
 each callback parameter list contains an error code parameter and a
 cookie parameter. The error code parameter reports the error status
 of the ongoing (for asynchronous) or completed (for synchronous)
 operation. The cookie parameter allows the client code that starts
 the operation by invoking the API function to pass information down
 to the callback without using global variables. The callback returns
 an SLPBoolean to indicate whether the API library should continue
 processing the operation. If the value returned from the callback is

Kempf & Guttman Informational [Page 29]

RFC 2614 Service Location API June 1999

 SLP_TRUE, asynchronous operations are terminated, synchronous
 operations ignore the return (since the operation is already
 complete).

4.3.1. SLPRegReport

4.3.1.1. Synopsis

 typedef void SLPRegReport(SLPHandle hSLP,
 SLPError errCode,
 void *pvCookie);

4.3.1.2. Description

 The SLPRegReport callback type is the type of the callback function
 to the SLPReg(), SLPDereg(), and SLPDelAttrs() functions.

4.3.1.3. Parameters

 hSLP

 The SLPHandle used to initiate the operation.

 errCode

 An error code indicating if an error occurred during the
 operation.

 pvCookie

 Memory passed down from the client code that called the
 original API function, starting the operation. May be NULL.

4.3.2. SLPSrvTypeCallback

4.3.2.1. Synopsis

 typedef SLPBoolean SLPSrvTypeCallback(SLPHandle hSLP,
 const char* pcSrvTypes,
 SLPError errCode,
 void *pvCookie);

Kempf & Guttman Informational [Page 30]

RFC 2614 Service Location API June 1999

4.3.2.2. Description

 The SLPSrvTypeCallback type is the type of the callback function
 parameter to SLPFindSrvTypes() function. If the hSLP handle
 parameter was opened asynchronously, the results returned through the
 callback MAY be uncollated. If the hSLP handle parameter was opened
 synchronously, then the returned results must be collated and
 duplicates eliminated.

4.3.2.3. Parameters

 hSLP

 The SLPHandle used to initiate the operation.

 pcSrvTypes

 A character buffer containing a comma separated, null
 terminated list of service types.

 errCode

 An error code indicating if an error occurred during the
 operation. The callback should check this error code before
 processing the parameters. If the error code is other than
 SLP_OK, then the API library may choose to terminate the
 outstanding operation.

 pvCookie

 Memory passed down from the client code that called the
 original API function, starting the operation. May be NULL.

4.3.2.4. Returns

 The client code should return SLP_TRUE if more data is desired,
 otherwise SLP_FALSE.

4.3.3. SLPSrvURLCallback

4.3.3.1. Synopsis

 typedef SLPBoolean SLPSrvURLCallback(SLPHandle hSLP,
 const char* pcSrvURL,
 unsigned short sLifetime,
 SLPError errCode,
 void *pvCookie);

Kempf & Guttman Informational [Page 31]

RFC 2614 Service Location API June 1999

4.3.3.2. Description

 The SLPSrvURLCallback type is the type of the callback function
 parameter to SLPFindSrvs() function. If the hSLP handle parameter
 was opened asynchronously, the results returned through the callback
 MAY be uncollated. If the hSLP handle parameter was opened
 synchronously, then the returned results must be collated and
 duplicates eliminated.

4.3.3.3. Parameters

 hSLP

 The SLPHandle used to initiate the operation.

 pcSrvURL

 A character buffer containing the returned service URL.

 sLifetime

 An unsigned short giving the life time of the service
 advertisement, in seconds. The value must be an unsigned
 integer less than or equal to SLP_LIFETIME_MAXIMUM.

 errCode

 An error code indicating if an error occurred during the
 operation. The callback should check this error code before
 processing the parameters. If the error code is other than
 SLP_OK, then the API library may choose to terminate the
 outstanding operation.

 pvCookie

 Memory passed down from the client code that called the
 original API function, starting the operation. May be NULL.

4.3.3.4. Returns

 The client code should return SLP_TRUE if more data is desired,
 otherwise SLP_FALSE.

Kempf & Guttman Informational [Page 32]

RFC 2614 Service Location API June 1999

4.3.4. SLPAttrCallback

4.3.4.1. Synopsis

 typedef SLPBoolean SLPAttrCallback(SLPHandle hSLP,
 const char* pcAttrList,
 SLPError errCode,
 void *pvCookie);

4.3.4.2. Description

 The SLPAttrCallback type is the type of the callback function
 parameter to SLPFindAttrs() function.

 The behavior of the callback differs depending on whether the
 attribute request was by URL or by service type. If the
 SLPFindAttrs() operation was originally called with a URL, the
 callback is called once regardless of whether the handle was opened
 asynchronously or synchronously. The pcAttrList parameter contains
 the requested attributes as a comma separated list (or is empty if no
 attributes matched the original tag list).

 If the SLPFindAttrs() operation was originally called with a service
 type, the value of pcAttrList and calling behavior depend on whether
 the handle was opened asynchronously or synchronously. If the handle
 was opened asynchronously, the callback is called every time the API
 library has results from a remote agent. The pcAttrList parameter
 MAY be uncollated between calls. It contains a comma separated list
 with the results from the agent that immediately returned results.
 If the handle was opened synchronously, the results must be collated
 from all returning agents and the callback is called once, with the
 pcAttrList parameter set to the collated result.

4.3.4.3. Parameters

 hSLP

 The SLPHandle used to initiate the operation.

 pcAttrList

 A character buffer containing a comma separated, null
 terminated list of attribute id/value assignments, in SLP wire
 format; i.e. "(attr-id=attr-value-list)" [7].

Kempf & Guttman Informational [Page 33]

RFC 2614 Service Location API June 1999

 errCode

 An error code indicating if an error occurred during the
 operation. The callback should check this error code before
 processing the parameters. If the error code is other than
 SLP_OK, then the API library may choose to terminate the
 outstanding operation.

 pvCookie

 Memory passed down from the client code that called the
 original API function, starting the operation. May be NULL.

4.3.4.4. Returns

 The client code should return SLP_TRUE if more data is desired,
 otherwise SLP_FALSE.

4.4. Opening and Closing an SLPHandle

4.4.1. SLPOpen

4.4.1.1. Synopsis

 SLPError SLPOpen(const char *pcLang, SLPBoolean isAsync, SLPHandle
 *phSLP);

4.4.1.2. Description

 Returns a SLPHandle handle in the phSLP parameter for the language
 locale passed in as the pcLang parameter. The client indicates if
 operations on the handle are to be synchronous or asynchronous
 through the isAsync parameter. The handle encapsulates the language
 locale for SLP requests issued through the handle, and any other
 resources required by the implementation. However, SLP properties
 are not encapsulated by the handle; they are global. The return
 value of the function is an SLPError code indicating the status of
 the operation. Upon failure, the phSLP parameter is NULL.

 An SLPHandle can only be used for one SLP API operation at a time.
 If the original operation was started asynchronously, any attempt to
 start an additional operation on the handle while the original
 operation is pending results in the return of an SLP_HANDLE_IN_USE
 error from the API function. The SLPClose() API function terminates
 any outstanding calls on the handle. If an implementation is unable
 to support a asynchronous(resp. synchronous) operation, due to
 memory constraints or lack of threading support, the
 SLP_NOT_IMPLEMENTED flag may be returned when the isAsync flag is

Kempf & Guttman Informational [Page 34]

RFC 2614 Service Location API June 1999

 SLP_TRUE (resp. SLP_FALSE).

4.4.1.3. Parameters

 pcLang

 A pointer to an array of characters containing the RFC 1766
 Language Tag [6] for the natural language locale of requests
 and registrations issued on the handle.

 isAsync

 An SLPBoolean indicating whether the SLPHandle should be opened
 for asynchronous operation or not.

 phSLP

 A pointer to an SLPHandle, in which the open SLPHandle is
 returned. If an error occurs, the value upon return is NULL.

4.4.2. SLPClose

4.4.2.1. Synopsis

 void SLPClose(SLPHandle hSLP);

4.4.2.2. Description

 Frees all resources associated with the handle. If the handle was
 invalid, the function returns silently. Any outstanding synchronous
 or asynchronous operations are cancelled so their callback functions
 will not be called any further.

4.4.2.3. Parameters

 SLPHandle

 A SLPHandle handle returned from a call to SLPOpen().

Kempf & Guttman Informational [Page 35]

RFC 2614 Service Location API June 1999

4.5. Protocol API

4.5.1. SLPReg

4.5.1.1. Synopsis

 SLPError SLPReg(SLPHandle hSLP,
 const char *pcSrvURL,
 const unsigned short usLifetime,
 const char *pcSrvType,
 const char *pcAttrs
 SLPBoolean fresh,
 SLPRegReport callback,
 void *pvCookie);

4.5.1.2. Description

 Registers the URL in pcSrvURL having the lifetime usLifetime with the
 attribute list in pcAttrs. The pcAttrs list is a comma separated
 list of attribute assignments in the wire format (including escaping
 of reserved characters). The usLifetime parameter must be nonzero
 and less than or equal to SLP_LIFETIME_MAXIMUM. If the fresh flag is
 SLP_TRUE, then the registration is new (the SLP protocol FRESH flag
 is set) and the registration replaces any existing registrations.
 The pcSrvType parameter is a service type name and can be included
 for service URLs that are not in the service: scheme. If the URL is
 in the service: scheme, the pcSrvType parameter is ignored. If the
 fresh flag is SLP_FALSE, then an existing registration is updated.
 Rules for new and updated registrations, and the format for pcAttrs
 and pcScopeList can be found in [7]. Registrations and updates take
 place in the language locale of the hSLP handle.

 The API library is required to perform the operation in all scopes
 obtained through configuration.

4.5.1.3. Parameters

 hSLP

 The language specific SLPHandle on which to register the
 advertisement.

 pcSrvURL

 The URL to register. May not be the empty string.

Kempf & Guttman Informational [Page 36]

RFC 2614 Service Location API June 1999

 usLifetime

 An unsigned short giving the life time of the service
 advertisement, in seconds. The value must be an unsigned
 integer less than or equal to SLP_LIFETIME_MAXIMUM and greater
 than zero.

 pcSrvType

 The service type. If pURL is a service: URL, then this
 parameter is ignored.

 pcAttrs

 A comma separated list of attribute assignment expressions for
 the attributes of the advertisement. Use empty string, "" for
 no attributes.

 fresh

 An SLPBoolean that is SLP_TRUE if the registration is new or
 SLP_FALSE if a reregistration.

 callback

 A callback to report the operation completion status.

 pvCookie

 Memory passed to the callback code from the client. May be
 NULL.

4.5.1.4. Returns

 If an error occurs in starting the operation, one of the SLPError
 codes is returned.

4.5.2. SLPDereg

4.5.2.1. Synopsis

 SLPError SLPDereg(SLPHandle hSLP,
 const char *pcURL,
 SLPRegReport callback,
 void *pvCookie);

Kempf & Guttman Informational [Page 37]

RFC 2614 Service Location API June 1999

4.5.2.2. Description

 Deregisters the advertisement for URL pcURL in all scopes where the
 service is registered and all language locales. The deregistration
 is not just confined to the locale of the SLPHandle, it is in all
 locales. The API library is required to perform the operation in all
 scopes obtained through configuration.

4.5.2.3. Parameters

 hSLP

 The language specific SLPHandle to use for deregistering.

 pcURL

 The URL to deregister. May not be the empty string.

 callback

 A callback to report the operation completion status.

 pvCookie

 Memory passed to the callback code from the client. May be
 NULL.

4.5.2.4. Returns

 If an error occurs in starting the operation, one of the SLPError
 codes is returned.

4.5.3. SLPDelAttrs

4.5.3.1. Synopsis

 SLPError SLPDelAttrs(SLPHandle hSLP,
 const char *pcURL,
 const char *pcAttrs,
 SLPRegReport callback,
 void *pvCookie);

Kempf & Guttman Informational [Page 38]

RFC 2614 Service Location API June 1999

4.5.3.2. Description

 Delete the selected attributes in the locale of the SLPHandle. The
 API library is required to perform the operation in all scopes
 obtained through configuration.

4.5.3.3. Parameters

 hSLP

 The language specific SLPHandle to use for deleting attributes.

 pcURL

 The URL of the advertisement from which the attributes should
 be deleted. May not be the empty string.

 pcAttrs

 A comma separated list of attribute ids for the attributes to
 deregister. See Section 9.8 in [7] for a description of the
 list format. May not be the empty string.

 callback

 A callback to report the operation completion status.

 pvCookie

 Memory passed to the callback code from the client. May be
 NULL.

4.5.3.4. Returns

 If an error occurs in starting the operation, one of the SLPError
 codes is returned.

4.5.4. SLPFindSrvTypes

4.5.4.1. Synopsis

 SLPError SLPFindSrvTypes(SLPHandle hSLP,
 const char *pcNamingAuthority,
 const char *pcScopeList,
 SLPSrvTypeCallback callback,
 void *pvCookie);

Kempf & Guttman Informational [Page 39]

RFC 2614 Service Location API June 1999

 The SLPFindSrvType() function issues an SLP service type request for
 service types in the scopes indicated by the pcScopeList. The
 results are returned through the callback parameter. The service
 types are independent of language locale, but only for services
 registered in one of scopes and for the indicated naming authority.

 If the naming authority is "*", then results are returned for all
 naming authorities. If the naming authority is the empty string,
 i.e. "", then the default naming authority, "IANA", is used. "IANA"
 is not a valid naming authority name, and it is a PARAMETER_BAD error
 to include it explicitly.

 The service type names are returned with the naming authority intact.
 If the naming authority is the default (i.e. empty string) then it
 is omitted, as is the separating ".". Service type names from URLs
 of the service: scheme are returned with the "service:" prefix
 intact. [7] See [8] for more information on the syntax of service
 type names.

4.5.4.2. Parameters

 hSLP

 The SLPHandle on which to search for types.

 pcNamingAuthority

 The naming authority to search. Use "*" for all naming
 authorities and the empty string, "", for the default naming
 authority.

 pcScopeList

 A pointer to a char containing comma separated list of scope
 names to search for service types. May not be the empty
 string, "".

 callback

 A callback function through which the results of the operation
 are reported.

 pvCookie

 Memory passed to the callback code from the client. May be
 NULL.

Kempf & Guttman Informational [Page 40]

RFC 2614 Service Location API June 1999

4.5.4.3. Returns

 If an error occurs in starting the operation, one of the SLPError
 codes is returned.

4.5.5. SLPFindSrvs

4.5.5.1. Synopsis

 SLPError SLPFindSrvs(SLPHandle hSLP,
 const char *pcServiceType,
 const char *pcScopeList,
 const char *pcSearchFilter,
 SLPSrvURLCallback callback,
 void *pvCookie);

4.5.5.2. Description

 Issue the query for services on the language specific SLPHandle and
 return the results through the callback. The parameters determine
 the results

4.5.5.3. Parameters

 hSLP

 The language specific SLPHandle on which to search for
 services.

 pcServiceType

 The Service Type String, including authority string if any, for
 the request, such as can be discovered using SLPSrvTypes().
 This could be, for example "service:printer:lpr" or
 "service:nfs". May not be the empty string.

 pcScopeList

 A pointer to a char containing comma separated list of scope
 names. May not be the empty string, "".

 pcSearchFilter

 A query formulated of attribute pattern matching expressions in
 the form of a LDAPv3 Search Filter, see [4]. If this filter
 is empty, i.e. "", all services of the requested type in the

Kempf & Guttman Informational [Page 41]

RFC 2614 Service Location API June 1999

 specified scopes are returned.

 callback

 A callback function through which the results of the operation
 are reported.

 pvCookie

 Memory passed to the callback code from the client. May be
 NULL.

4.5.5.4. Returns

 If an error occurs in starting the operation, one of the SLPError
 codes is returned.

4.5.6. SLPFindAttrs

4.5.6.1. Synopsis

 SLPError SLPFindAttrs(SLPHandle hSLP,
 const char *pcURLOrServiceType,
 const char *pcScopeList,
 const char *pcAttrIds,
 SLPAttrCallback callback,
 void *pvCookie);

4.5.6.2. Description

 This function returns service attributes matching the attribute ids
 for the indicated service URL or service type. If pcURLOrServiceType
 is a service URL, the attribute information returned is for that
 particular advertisement in the language locale of the SLPHandle.

 If pcURLOrServiceType is a service type name (including naming
 authority if any), then the attributes for all advertisements of that
 service type are returned regardless of the language of registration.
 Results are returned through the callback.

 The result is filtered with an SLP attribute request filter string
 parameter, the syntax of which is described in [7]. If the filter
 string is the empty string, i.e. "", all attributes are returned.

Kempf & Guttman Informational [Page 42]

RFC 2614 Service Location API June 1999

4.5.6.3. Parameters

 hSLP

 The language specific SLPHandle on which to search for
 attributes.

 pcURLOrServiceType

 The service URL or service type. See [7] for URL and service
 type syntax. May not be the empty string.

 pcScopeList

 A pointer to a char containing a comma separated list of scope
 names. May not be the empty string, "".

 pcAttrIds

 The filter string indicating which attribute values to return.
 Use empty string, "", to indicate all values. Wildcards
 matching all attribute ids having a particular prefix or suffix
 are also possible. See [7] for the exact format of the filter
 string.

 callback

 A callback function through which the results of the operation
 are reported.

 pvCookie

 Memory passed to the callback code from the client. May be
 NULL.

4.5.6.4. Returns

 If an error occurs in starting the operation, one of the SLPError
 codes is returned.

4.6. Miscellaneous Functions

4.6.1. SLPGetRefreshInterval

4.6.1.1. Synopsis

 unsigned short SLPGetRefreshInterval();

Kempf & Guttman Informational [Page 43]

RFC 2614 Service Location API June 1999

4.6.1.2. Description

 Returns the maximum across all DAs of the min-refresh-interval
 attribute. This value satisfies the advertised refresh interval
 bounds for all DAs, and, if used by the SA, assures that no refresh
 registration will be rejected. If no DA advertises a min-refresh-
 interval attribute, a value of 0 is returned.

4.6.1.3. Returns

 If no error, the maximum refresh interval value allowed by all DAs (a
 positive integer). If no DA advertises a min-refresh-interval
 attribute, returns 0. If an error occurs, returns an SLP error code.

4.6.2. SLPFindScopes

4.6.2.1. Synopsis

 SLPError SLPFindScopes(SLPHandle hSLP,
 char** ppcScopeList);

4.6.2.2. Description

 Sets ppcScopeList parameter to a pointer to a comma separated list
 including all available scope values. The list of scopes comes from
 a variety of sources: the configuration file’s net.slp.useScopes
 property, unicast to DAs on the net.slp.DAAddresses property, DHCP,
 or through the DA discovery process. If there is any order to the
 scopes, preferred scopes are listed before less desirable scopes.
 There is always at least one name in the list, the default scope,
 "DEFAULT".

4.6.2.3. Parameters

 hSLP

 The SLPHandle on which to search for scopes.

 ppcScopeList

 A pointer to char pointer into which the buffer pointer is
 placed upon return. The buffer is null terminated. The memory
 should be freed by calling SLPFree().

Kempf & Guttman Informational [Page 44]

RFC 2614 Service Location API June 1999

4.6.2.4. Returns

 If no error occurs, returns SLP_OK, otherwise, the appropriate error
 code.

4.6.3. SLPParseSrvURL

4.6.3.1. Synopsis

 SLPError SLPParseSrvURL(char *pcSrvURL
 SLPSrvURL** ppSrvURL);

4.6.3.2. Description

 Parses the URL passed in as the argument into a service URL structure
 and returns it in the ppSrvURL pointer. If a parse error occurs,
 returns SLP_PARSE_ERROR. The input buffer pcSrvURL is destructively
 modified during the parse and used to fill in the fields of the
 return structure. The structure returned in ppSrvURL should be freed
 with SLPFreeURL(). If the URL has no service part, the s_pcSrvPart
 string is the empty string, "", i.e. not NULL. If pcSrvURL is not a
 service: URL, then the s_pcSrvType field in the returned data
 structure is the URL’s scheme, which might not be the same as the
 service type under which the URL was registered. If the transport is
 IP, the s_pcTransport field is the empty string. If the transport is
 not IP or there is no port number, the s_iPort field is zero.

4.6.3.3. Parameters

 pcSrvURL

 A pointer to a character buffer containing the null terminated
 URL string to parse. It is destructively modified to produce
 the output structure.

 ppSrvURL

 A pointer to a pointer for the SLPSrvURL structure to receive
 the parsed URL. The memory should be freed by a call to
 SLPFree() when no longer needed.

4.6.3.4. Returns

 If no error occurs, the return value is SLP_OK. Otherwise, the
 appropriate error code is returned.

Kempf & Guttman Informational [Page 45]

RFC 2614 Service Location API June 1999

4.6.4. SLPEscape

4.6.4.1. Synopsis

 SLPError SLPEscape(const char* pcInbuf,
 char** ppcOutBuf,
 SLPBoolean isTag);

4.6.4.2. Description

 Process the input string in pcInbuf and escape any SLP reserved
 characters. If the isTag parameter is SLPTrue, then look for bad tag
 characters and signal an error if any are found by returning the
 SLP_PARSE_ERROR code. The results are put into a buffer allocated by
 the API library and returned in the ppcOutBuf parameter. This buffer
 should be deallocated using SLPFree() when the memory is no longer
 needed.

4.6.4.3. Parameters

 pcInbuf

 Pointer to he input buffer to process for escape characters.

 ppcOutBuf

 Pointer to a pointer for the output buffer with the SLP
 reserved characters escaped. Must be freed using SLPFree()
 when the memory is no longer needed.

 isTag

 When true, the input buffer is checked for bad tag characters.

4.6.4.4. Returns

 Return SLP_PARSE_ERROR if any characters are bad tag characters and
 the isTag flag is true, otherwise SLP_OK, or the appropriate error
 code if another error occurs.

Kempf & Guttman Informational [Page 46]

RFC 2614 Service Location API June 1999

4.6.5. SLPUnescape

4.6.5.1. Synopsis

 SLPError SLPUnescape(const char* pcInbuf,
 char** ppcOutBuf,
 SLPBoolean isTag);

4.6.5.2. Description

 Process the input string in pcInbuf and unescape any SLP reserved
 characters. If the isTag parameter is SLPTrue, then look for bad tag
 characters and signal an error if any are found with the
 SLP_PARSE_ERROR code. No transformation is performed if the input
 string is an opaque. The results are put into a buffer allocated by
 the API library and returned in the ppcOutBuf parameter. This buffer
 should be deallocated using SLPFree() when the memory is no longer
 needed.

4.6.5.3. Parameters

 pcInbuf

 Pointer to he input buffer to process for escape characters.

 ppcOutBuf

 Pointer to a pointer for the output buffer with the SLP
 reserved characters escaped. Must be freed using SLPFree()
 when the memory is no longer needed.

 isTag

 When true, the input buffer is checked for bad tag characters.

4.6.5.4. Returns

 Return SLP_PARSE_ERROR if any characters are bad tag characters and
 the isTag flag is true, otherwise SLP_OK, or the appropriate error
 code if another error occurs.

Kempf & Guttman Informational [Page 47]

RFC 2614 Service Location API June 1999

4.6.6. SLPFree

4.6.6.1. Synopsis

 void SLPFree(void* pvMem);

4.6.6.2. Description

 Frees memory returned from SLPParseSrvURL(), SLPFindScopes(),
 SLPEscape(), and SLPUnescape().

4.6.6.3. Parameters

 pvMem

 A pointer to the storage allocated by the SLPParseSrvURL(),
 SLPEscape(), SLPUnescape(), or SLPFindScopes() function.
 Ignored if NULL.

4.6.7. SLPGetProperty

4.6.7.1. Synopsis

 const char* SLPGetProperty(const char* pcName);

4.6.7.2. Description

 Returns the value of the corresponding SLP property name. The
 returned string is owned by the library and MUST NOT be freed.

4.6.7.3. Parameters

 pcName

 Null terminated string with the property name, from
 Section 2.1.

4.6.7.4. Returns

 If no error, returns a pointer to a character buffer containing the
 property value. If the property was not set, returns the default
 value. If an error occurs, returns NULL. The returned string MUST
 NOT be freed.

Kempf & Guttman Informational [Page 48]

RFC 2614 Service Location API June 1999

4.6.8. SLPSetProperty

4.6.8.1. Synopsis

 void SLPSetProperty(const char *pcName,
 const char *pcValue);

4.6.8.2. Description

 Sets the value of the SLP property to the new value. The pcValue
 parameter should be the property value as a string.

4.6.8.3. Parameters

 pcName

 Null terminated string with the property name, from
 Section 2.1.

 pcValue

 Null terminated string with the property value, in UTF-8
 character encoding.

4.7. Implementation Notes

4.7.1. Refreshing Registrations

 Clients indicate that they want URLs to be automatically refreshed by
 setting the usLifetime parameter in the SLPReg() function call to
 SLP_LIFETIME_MAXIMUM. This will cause the API implementation to
 refresh the URL before it times out. Although using
 SLP_LIFETIME_MAXIMUM to designate automatic reregistration means that
 a transient URL can’t be registered for the maximum lifetime, little
 hardship is likely to occur, since service URL lifetimes are measured
 in seconds and the client can simply use a lifetime of
 SLP_LIFETIME_MAXIMUM - 1 if a transient URL near the maximum lifetime
 is desired. API implementations MUST provide this facility.

4.7.2. Syntax for String Parameters

 Query strings, attribute registration lists, attribute deregistration
 lists, scope lists, and attribute selection lists follow the syntax
 described in [7] for the appropriate requests. The API directly
 reflects the strings passed in from clients into protocol requests,
 and directly reflects out strings returned from protocol replies to

Kempf & Guttman Informational [Page 49]

RFC 2614 Service Location API June 1999

 clients. As a consequence, clients are responsible for formatting
 request strings, including escaping and converting opaque values to
 escaped byte encoded strings. Similarly, on output, clients are
 required to unescape strings and convert escaped string encoded
 opaques to binary. The functions SLPEscape() and SLPUnescape() can
 be used for escaping SLP reserved characters, but perform no opaque
 processing.

 Opaque values consist of a character buffer containing a UTF-8-
 encoded string, the first characters of which are the nonUTF-8
 encoding ’\ff’. Subsequent characters are the escaped values for the
 original bytes in the opaque. The escape convention is relatively
 simple. An escape consists of a backslash followed by the two
 hexadecimal digits encoding the byte. An example is ’\2c’ for the
 byte 0x2c. Clients handle opaque processing themselves, since the
 algorithm is relatively simple and uniform.

4.7.3. Client Side Syntax Checking

 Client side API implementations may do syntax checking of scope
 names, naming authority names, and service type names, but are not
 required to do so. Since the C API is designed to be a thin layer
 over the protocol, some low memory SA implementations may find
 extensive syntax checking on the client side to be burdensome. If
 syntax checking uncovers an error in a parameter, the
 SLP_PARAMETER_BAD error must be returned. If any parameter is NULL
 and is required to be nonNULL, SLP_PARAMETER_BAD is returned.

4.7.4. System Properties

 The system properties established in the configuration file are
 accessible through the SLPGetProperty() and SLPSetProperty()
 functions. The SLPSetProperty() function only modifies properties in
 the running process, not in the configuration file. Properties are
 global to the process, affecting all threads and all handles created
 with SLPOpen. Errors are checked when the property is used and, as
 with parsing the configuration file, are logged. Program execution
 continues without interruption by substituting the default for the
 erroneous parameter. With the exception of net.slp.locale,
 net.slp.typeHint, and net.slp.maxResults, clients of the API should
 rarely be required to override these properties, since they reflect
 properties of the SLP network that are not of concern to individual
 agents. If changes are required, system administrators should modify
 the configuration file.

Kempf & Guttman Informational [Page 50]

RFC 2614 Service Location API June 1999

4.7.5. Memory Management

 The only API functions returning memory specifically requiring
 deallocation on the part of the client are SLPParseSrvURL(),
 SLPFindScopes(), SLPEscape(), and SLPUnescape(). This memory should
 be freed using SLPFree() when no longer needed. Character strings
 returned via the SLPGetProperty() function should NOT be freed, they
 are owned by the SLP library.

 Memory passed to callbacks belongs to the library and MUST NOT be
 retained by the client code. Otherwise, crashes are possible.
 Clients are required to copy data out of the callback parameters. No
 other use of the parameter memory in callback parameters is allowed.

4.7.6. Asynchronous and Incremental Return Semantics

 If a handle parameter to an API function was opened asynchronously,
 API function calls on the handle check the other parameters, open the
 appropriate operation and return immediately. In an error occurs in
 the process of starting the operation, an error code is returned. If
 the handle parameter was opened synchronously, the API function call
 blocks until all results are available, and returns only after the
 results are reported through the callback function. The return code
 indicates whether any errors occurred both starting and during the
 operation.

 The callback function is called whenever the API library has results
 to report. The callback code is required to check the error code
 parameter before looking at the other parameters. If the error code
 is not SLP_OK, the other parameters may be invalid. The API library
 has the option of terminating any outstanding operation on which an
 error occurs. The callback code can similarly indicate that the
 operation should be terminated by passing back SLP_FALSE. Callback
 functions are not permitted to recursively call into the API on the
 same SLPHandle. If an attempt is made to recursively call into the
 API, the API function returns SLP_HANDLE_IN_USE. Prohibiting
 recursive callbacks on the same handle simplifies implementation of
 thread safe code, since locks held on the handle will not be in place
 during a second outcall on the handle. On the other hand, it means
 that handle creation should be fairly lightweight so a client program
 can easily support multiple outstanding calls.

 The total number of results received can be controlled by setting the
 net.slp.maxResults parameter.

 On the last call to a callback, whether asynchronous or synchronous,
 the status code passed to the callback has value SLP_LAST_CALL. There
 are four reasons why the call can terminate:

Kempf & Guttman Informational [Page 51]

RFC 2614 Service Location API June 1999

 DA reply received

 A reply from a DA has been received and therefore nothing more
 is expected.

 Multicast terminated

 The multicast convergence time has elapsed and the API library
 multicast code is giving up.

 Multicast null results

 Nothing new has been received during multicast for a while and
 the API library multicast code is giving up on that (as an
 optimization).

 Maximum results

 The user has set the net.slp.maxResults property and that
 number of replies has been collected and returned

4.8. Example

 This example illustrates how to discover a mailbox.

 A POP3 server registers itself with the SLP framework. The
 attributes it registers are "USER", a list of all users whose mail is
 available through the POP3 server.

 The POP3 server code is the following:

 SLPHandle slph;
 SLPRegReport errCallback = POPRegErrCallback;

 /* Create an English SLPHandle, asynchronous processing. */

 SLPError err = SLPOpen("en", SLP_TRUE, &slph);

 if(err != SLP_OK) {

 /* Deal with error. */

 }

 /* Create the service: URL and attribute parameters. */

 const char* surl = "service:pop3://mail.netsurf.de"; /* the URL */

Kempf & Guttman Informational [Page 52]

RFC 2614 Service Location API June 1999

 const char *pcAttrs = "(user=zaphod,trillian,roger,marvin)"

 /* Perform the registration. */

 err = SLPReg(slph,
 surl,
 SLP_LIFETIME_DEFAULT,
 ppcAttrs,
 errCallback,
 NULL);

 if (err != SLP_OK) {

 /*Deal with error.*/

 }

 The errCallback reports any errors:

 void
 POPRegErrCallback(SLPHandle hSLP,
 SLPError errCode,
 unsigned short usLifetime,
 void* pvCookie) {

 if(errCode != SLP_OK) {

 /* Report error through a dialog, message, etc. */

 }

 /*Use lifetime interval to update periodically. */

 }

 The POP3 client locates the server for the user with the following
 code:

 /*
 * The client calls SLPOpen(), exactly as above.
 */

 const char *pcSrvType = "service:pop3"; /* the service type */
 const char *pcScopeList = "default"; /* the scope */
 const char *pcFilter = "(user=roger)"; /* the search filter */
 SLPSrvURLCallback srvCallback = /* the callback */
 POPSrvURLCallback;

Kempf & Guttman Informational [Page 53]

RFC 2614 Service Location API June 1999

 err = SLPFindSrvs(slph,
 pcSrvType, pcScopeList, pcFilter,
 srvCallback, NULL);

 if(err != SLP_OK) {

 /* Deal with error. */

 }

 Within the callback, the client code can use the returned POP
 service:

 SLPBoolean
 POPSrvURLCallback(SLPHandle hSLP,
 const char* pcSrvURL,
 unsigned short sLifetime,
 SLPError errCode,
 void* pvCookie) {

 if(errCode != SLP_OK) {

 /* Deal with error. */

 }

 SLPSrvURL* pSrvURL;

 errCode = SLPParseSrvURL(pcSrvURL, &pSrvURL);

 if (err != SLP_OK) {

 /* Deal with error. */

 } else {

 /* get the server’s address */

 struct hostent *phe = gethostbyname(pSrvURL.s_pcHost);

 /* use hostname in pSrvURL to connect to the POP3 server
 * . . .
 */

 SLPFreeSrvURL((void*)pSrvURL); /* Free the pSrvURL storage */
 }

 return SLP_FALSE; /* Done! */

Kempf & Guttman Informational [Page 54]

RFC 2614 Service Location API June 1999

 }

 A client that wanted to discover all the users receiving mail at the
 server uses with the following query:

 /*
 * The client calls SLPOpen(), exactly as above. We assume the
 * service: URL was retrieved into surl.
 */

 const char *pcScopeList = "default"; /* the scope */
 const char *pcAttrFilter = "use"; /* the attribute filter */
 SLPAttrCallback attrCallBack = /* the callback */
 POPUsersCallback

 err =
 SLPFindAttrs(slph,
 surl,
 pcScopeList, pcAttrFilter,
 attrCallBack, NULL);

 if(err != SLP_OK) {

 /* Deal with error. */

 }

 The callback processes the attributes:

 SLPBoolean
 POPUsersCallback(const char* pcAttrList,
 SLPError errCode,
 void* pvCookie) {

 if(errCode != SLP_OK) {

 /* Deal with error. */

 } else {

 /* Parse attributes. */

 }

 return SLP_FALSE; /* Done! */

 }

Kempf & Guttman Informational [Page 55]

RFC 2614 Service Location API June 1999

5. Java Language Binding

5.1. Introduction

 The Java API is designed to model the various SLP entities in classes
 and objects. APIs are provided for SA, UA, and service type template
 access capabilities. The ServiceLocationManager class contains
 methods that return instances of objects implementing SA and UA
 capability. Each of these is modeled in an interface. The Locator
 interface provides UA capability and the Advertiser interface
 provides SA capability. The TemplateRegistry abstract class contains
 methods that return objects for template introspection and attribute
 type checking. The ServiceURL, ServiceType, and
 ServiceLocationAttribute classes model the basic SLP concepts. A
 concrete subclass instance of TemplateRegistry is returned by a class
 method.

 All SLP classes and interfaces are located within a single package.
 The package name should begin with the name of the implementation and
 conclude with the suffix "slp". Thus, the name for a hypothetical
 implementation from the University of Michigan would look like:

 edu.umich.slp

 This follows the Java convention of prepending the top level DNS
 domain name for the organization implementing the package onto the
 organization’s name and using that as the package prefix.

5.2. Exceptions and Errors

 Most parameters to API methods are required to be non-null. The API
 description indicates if a null parameter is acceptable, or if other
 restrictions constrain a parameter. When parameters are checked for
 validity (such as not being null) or their syntax is checked, an
 error results in the RuntimeException subclass
 IllegalArgumentException being thrown. Clients of the API are
 reminded that IllegalArgumentException, derived from
 RuntimeException, is unchecked by the compiler. Clients should thus
 be careful to include try/catch blocks for it if the relevant
 parameters could be erroneous.

 Standard Java practice is to encode every exceptional condition as a
 separate subclass of Exception. Because of the relatively high cost
 in code size of Exception subclasses, the API contains only a single
 Exception subclass with different conditions being determined by an
 integer error code property. A subset, appropriate to Java, of the
 error codes described in Section 3 are available as constants on the
 ServiceLocationException class. The subset excludes error codes such

Kempf & Guttman Informational [Page 56]

RFC 2614 Service Location API June 1999

 as MEMORY_ALLOC_FAILED.

5.2.1. Class ServiceLocationException

5.2.1.1. Synopsis

 public class ServiceLocationException
 extends Exception

5.2.1.2. Description

 The ServiceLocationException class is thrown by all methods when
 exceptional conditions occur in the SLP framework. The error code
 property determines the exact nature of the condition, and an
 optional message may provide more information.

5.2.1.3. Fields

 public static final short LANGUAGE_NOT_SUPPORTED = 1
 public static final short PARSE_ERROR = 2
 public static final short INVALID_REGISTRATION = 3
 public static final short SCOPE_NOT_SUPPORTED = 4
 public static final short AUTHENTICATION_ABSENT = 6
 public static final short AUTHENTICATION_FAILED = 7
 public static final short INVALID_UPDATE = 13
 public static final short REFRESH_REJECTED = 15
 public static final short NOT_IMPLEMENTED = 16
 public static final short NETWORK_INIT_FAILED 17
 public static final short NETWORK_TIMED_OUT = 18
 public static final short NETWORK_ERROR = 19
 public static final short INTERNAL_SYSTEM_ERROR = 20
 public static final short TYPE_ERROR = 21
 public static final short BUFFER_OVERFLOW = 22

5.2.1.4. Instance Methods

 public short getErrorCode()

 Return the error code. The error code takes on one of the static
 field values.

Kempf & Guttman Informational [Page 57]

RFC 2614 Service Location API June 1999

5.3. Basic Data Structures

5.3.1. Interface ServiceLocationEnumeration

 public interface ServiceLocationEnumeration
 extends Enumeration

5.3.1.1. Description

 The ServiceLocationEnumeration class is the return type for all
 Locator SLP operations. The Java API library may implement this
 class to block until results are available from the SLP operation, so
 that the client can achieve asynchronous operation by retrieving
 results from the enumeration in a separate thread. Clients use the
 superclass nextElement() method if they are unconcerned with SLP
 exceptions.

5.3.1.2. Instance Methods

 public abstract Object next() throws ServiceLocationException

 Return the next value or block until it becomes available.

 Throws:

 ServiceLocationException

 Thrown if the SLP operation encounters an error.

 NoSuchElementException

 If there are no more elements to return.

5.3.2. Class ServiceLocationAttribute

5.3.2.1. Synopsis

 public class ServiceLocationAttribute
 extends Object implements Serializable

Kempf & Guttman Informational [Page 58]

RFC 2614 Service Location API June 1999

5.3.2.2. Description

 The ServiceLocationAttribute class models SLP attributes. Instances
 of this class are returned by Locator.findAttributes() and are
 communicated along with register/deregister requests.

5.3.2.3. Constructors

 public ServiceLocationAttribute(String id,Vector values)

 Construct a service location attribute. Errors in the id or values
 vector result in an IllegalArgumentException.

 Parameters:

 id

 The attribute name. The String can consist of any Unicode
 character.

 values

 A Vector of one or more attribute values. Vector contents
 must be uniform in type and one of Integer, String, Boolean,
 or byte[]. If the attribute is a keyword attribute, then the
 parameter should be null. String values can consist of any
 Unicode character.

5.3.2.4. Class Methods

 public static String escapeId(String id)

 Returns an escaped version of the id parameter, suitable for
 inclusion in a query. Any reserved characters as specified in [7]
 are escaped using UTF-8 encoding. If any characters in the tag are
 illegal, throws IllegalArgumentException.

 Parameters:

 id

 The attribute id to escape. ServiceLocationException is thrown
 if any characters are illegal for an attribute tag.

Kempf & Guttman Informational [Page 59]

RFC 2614 Service Location API June 1999

 public static String escapeValue(Object value)

 Returns a String containing the escaped value parameter as a string,
 suitable for inclusion in a query. If the parameter is a string,
 any reserved characters as specified in [7] are escaped using UTF-8
 encoding. If the parameter is a byte array, then the escaped string
 begins with the nonUTF-8 sequence ‘\ff‘ and the rest of the string
 consists of the escaped bytes, which is the encoding for opaques.
 If the value parameter is a Boolean or Integer, then the returned
 string contains the object converted into a string. If the value
 is any type other than String, Integer, Boolean or byte[], an
 IllegalArgumentException is thrown.

 Parameters:

 value

 The attribute value to be converted into a string and escaped.

5.3.2.5. Instance Methods

 public Vector getValues()

 Returns a cloned vector of attribute values, or null if the attribute
 is a keyword attribute. If the attribute is single-valued, then the
 vector contains only one object.

 public String getId()

 Returns the attribute’s name.

 public boolean equals(Object o)

 Overrides Object.equals(). Two attributes are equal if their
 identifiers are equal and their value vectors contain the same number
 of equal values as determined by the Object equals() method. Values
 having byte[] type are equal if the contents of all byte arrays in
 both attribute vectors match. Note that the SLP string matching
 algorithm [7] MUST NOT be used for comparing attribute identifiers or
 string values.

Kempf & Guttman Informational [Page 60]

RFC 2614 Service Location API June 1999

 public String toString()

 Overrides Object.toString(). The string returned contains a
 formatted representation of the attribute, giving the attribute’s
 id, values, and the Java type of the values. The returned string is
 suitable for debugging purposes, but is not in SLP wire format.

 public int hashCode()

 Overrides Object.hashCode(). Hashes on the attribute’s identifier.

5.3.3. Class ServiceType

5.3.3.1. Synopsis

 public class ServiceType extends Object implements Serializable

5.3.3.2. Description

 The ServiceType object models the SLP service type. It parses a
 string based service type specifier into its various components, and
 contains property accessors to return the components. URL schemes,
 protocol service types, and abstract service types are all handled.

5.3.3.3. Constructors

 public ServiceType(String type)

 Construct a service type object from the service type specifier.
 Throws IllegalArgumentException if the type name is syntactically
 incorrect.

 Parameters:

 type

 The service type name as a String. If the service type is from
 a service: URL, the "service:" prefix must be intact.

Kempf & Guttman Informational [Page 61]

RFC 2614 Service Location API June 1999

5.3.3.4. Methods

 public boolean isServiceURL()

 Returns true if the type name contains the "service:" prefix.

 public boolean isAbstractType()

 Returns true if the type name is for an abstract type.

 public boolean isNADefault()

 Returns true if the naming authority is the default, i.e. is the
 empty string.

 public String getConcreteTypeName()

 Returns the concrete type name in an abstract type, or the empty
 string if the service type is not abstract. For example, if the type
 name is "service:printing:ipp", the method returns "ipp". If the
 type name is "service:ftp", the method returns "".

 public String getPrincipleTypeName()

 Returns the abstract type name for an abstract type, the protocol
 name in a protocol type, or the URL scheme for a generic URL. For
 example, in the abstract type name "service:printing:ipp", the method
 returns "printing". In the protocol type name "service:ftp", the
 method returns "ftp".

 public String getAbstractTypeName()

 If the type is an abstract type, returns the fully formatted abstract
 type name including the "service:" and naming authority but without
 the concrete type name or intervening colon. If not an abstract
 type, returns the empty string. For example, in the abstract type
 name "service:printing:ipp", the method returns "service:printing".

Kempf & Guttman Informational [Page 62]

RFC 2614 Service Location API June 1999

 public String getNamingAuthority()

 Return the naming authority name, or the empty string if the naming
 authority is the default.

 public boolean equals(Object obj)

 Overrides Object.equals(). The two objects are equal if they are
 both ServiceType objects and the components of both are equal.

 public String toString()

 Returns the fully formatted type name, including the "service:" if
 the type was originally from a service: URL.

 public int hashCode()

 Overrides Object.hashCode(). Hashes on the string value of the
 "service" prefix, naming authority, if any, abstract and concrete
 type names for abstract types, protocol type name for protocol types,
 and URL scheme for generic URLs.

5.3.4. Class ServiceURL

5.3.4.1. Synopsis

 public class ServiceURL extends Object implements Serializable

5.3.4.2. Description

 The ServiceURL object models the advertised SLP service URL. It can
 be either a service: URL or a regular URL. These objects are
 returned from service lookup requests, and describe the registered
 services. This class should be a subclass of java.net.URL but can’t
 since that class is final.

Kempf & Guttman Informational [Page 63]

RFC 2614 Service Location API June 1999

5.3.4.3. Class Variables

 public static final int NO_PORT = 0

 Indicates that no port information is required or was returned for
 this URL.

 public static final int LIFETIME_NONE = 0

 Indicates that the URL has a zero lifetime. This value is never
 returned from the API, but can be used to create a ServiceURL object
 to deregister, delete attributes, or find attributes.

 public static final int LIFETIME_DEFAULT = 10800

 The default URL lifetime (3 hours) in seconds.

 public static final int LIFETIME_MAXIMUM = 65535

 The maximum URL lifetime (about 18 hours) in seconds.

 public static final int LIFETIME_PERMANENT = -1

 Indicates that the API implementation should continuously re-register
 the URL until the application exits.

5.3.4.4. Constructors

 public ServiceURL(String URL,int lifetime)

 Construct a service URL object having the specified lifetime.

Kempf & Guttman Informational [Page 64]

RFC 2614 Service Location API June 1999

 Parameters:

 URL

 The URL as a string. Must be either a service: URL or a valid
 generic URL according to RFC 2396 [2].

 lifetime

 The service advertisement lifetime in seconds. This value may
 be between LIFETIME_NONE and LIFETIME_MAXIMUM.

5.3.4.5. Methods

 public ServiceType getServiceType()

 Returns the service type object representing the service type name of
 the URL.

 public final void setServiceType(ServiceType type)
 throws ServiceLocationException

 Set the service type name to the object. Ignored if the URL is a
 service: URL.

 Parameters:

 type

 The service type object.

 public String getTransport()

 Get the network layer transport identifier. If the transport is IP,
 an empty string, "", is returned.

 public String getHost()

Kempf & Guttman Informational [Page 65]

RFC 2614 Service Location API June 1999

 Returns the host identifier. For IP, this will be the machine name
 or IP address.

 public int getPort()

 Returns the port number, if any. For non-IP transports, always
 returns NO_PORT.

 public String getURLPath()

 Returns the URL path description, if any.

 public int getLifetime()

 Returns the service advertisement lifetime. This will be a positive
 int between LIFETIME_NONE and LIFETIME_MAXIMUM.

 public boolean equals(Object obj)

 Compares the object to the ServiceURL and returns true if the two are
 the same. Two ServiceURL objects are equal if their current service
 types match and they have the same host, port, transport, and URL
 path.

 public String toString()

 Returns a formatted string with the URL. Overrides Object.toString().
 The returned URL has the original service type or URL scheme, not the
 current service type.

 public int hashCode()

 Overrides Object.hashCode(). Hashes on the current service type,
 transport, host, port, and URL part.

Kempf & Guttman Informational [Page 66]

RFC 2614 Service Location API June 1999

5.4. SLP Access Interfaces

5.4.1. Interface Advertiser

5.4.1.1. Synopsis

 public interface Advertiser

5.4.1.2. Description

 The Advertiser is the SA interface, allowing clients to register new
 service instances with SLP, to change the attributes of existing
 services, and to deregister service instances. New registrations and
 modifications of attributes are made in the language locale with
 which the Advertiser was created, deregistrations of service
 instances are made for all locales.

5.4.1.3. Instance Methods

 public abstract Locale getLocale()

 Return the language locale with which this object was created.

 public abstract void register(ServiceURL URL,
 Vector attributes)
 throws ServiceLocationException

 Register a new service with SLP having the given attributes.

 The API library is required to perform the operation in all
 scopes obtained through configuration.

 Parameters:

 URL

 The URL for the service.

 attributes

 A vector of ServiceLocationAttribute objects describing the
 service.

Kempf & Guttman Informational [Page 67]

RFC 2614 Service Location API June 1999

 public abstract void deregister(ServiceURL URL)
 throws ServiceLocationException

 Deregister a service from the SLP framework. This has the effect
 of deregistering the service from every language locale. The API
 library is required to perform the operation in all scopes obtained
 through configuration.

 Parameters:

 URL

 The URL for the service.

 public abstract void
 addAttributes(ServiceURL URL,
 Vector attributes)
 throws ServiceLocationException

 Update the registration by adding the given attributes. The API
 library is required to perform the operation in all scopes obtained
 through configuration.

 Parameters:

 URL

 The URL for the service.

 attributes

 A Vector of ServiceLocationAttribute objects to add to the
 existing registration. Use an empty vector to update the URL
 alone. May not be null.

 public abstract void
 deleteAttributes(ServiceURL URL,
 Vector attributeIds)
 throws ServiceLocationException

 Delete the attributes from a URL for the locale with which the
 Advertiser was created. The API library is required to perform the
 operation in all scopes obtained through configuration.

Kempf & Guttman Informational [Page 68]

RFC 2614 Service Location API June 1999

 Parameters:

 URL

 The URL for the service.

 attributeIds

 A vector of Strings indicating the ids of the attributes
 to remove. The strings may be attribute ids or they
 may be wildcard patterns to match ids. See [7] for the
 syntax of wildcard patterns. The strings may include SLP
 reserved characters, they will be escaped by the API before
 transmission. May not be the empty vector or null.

5.4.2. Interface Locator

5.4.2.1. Synopsis

 public interface Locator

5.4.2.2. Description

 The Locator is the UA interface, allowing clients to query the SLP
 framework about existing service types, services instances, and about
 the attributes of an existing service instance or service type.
 Queries for services and attributes are made in the locale with which
 the Locator was created, queries for service types are independent of
 locale.

5.4.2.3. Instance Methods

 public abstract Locale getLocale()

 Return the language locale with which this object was created.

 public abstract ServiceLocationEnumeration
 findServiceTypes(String namingAuthority,
 Vector scopes)
 throws ServiceLocationException

Kempf & Guttman Informational [Page 69]

RFC 2614 Service Location API June 1999

 Returns an enumeration of ServiceType objects giving known service
 types for the given scopes and given naming authority. If no service
 types are found, an empty enumeration is returned.

 Parameters:

 namingAuthority

 The naming authority. Use "" for the default naming authority
 and "*" for all naming authorities.

 scopes

 A Vector of scope names. The vector should be selected from
 the results of a findScopes() API invocation. Use "DEFAULT"
 for the default scope.

 public abstract ServiceLocationEnumeration
 findServices(ServiceType type,
 Vector scopes,
 String searchFilter)
 throws ServiceLocationException

 Returns a vector of ServiceURL objects for services matching the
 query, and having a matching type in the given scopes. If no
 services are found, an empty enumeration is returned.

 Parameters:

 type

 The SLP service type of the service.

 scopes

 A Vector of scope names. The vector should be selected from
 the results of a findScopes() API invocation. Use "DEFAULT"
 for the default scope.

 searchFilter

 An LDAPv3 [4] string encoded query. If the filter is empty,
 i.e. "", all services of the requested type in the specified
 scopes are returned. SLP reserved characters must be escaped
 in the query. Use ServiceLocationAttribute.escapeId() and
 ServiceLocationAttribute.escapeValue() to construct the query.

Kempf & Guttman Informational [Page 70]

RFC 2614 Service Location API June 1999

 public abstract ServiceLocationEnumeration
 findAttributes(ServiceURL URL,
 Vector scopes,
 Vector attributeIds)
 throws ServiceLocationException

 For the URL and scope, return a Vector of ServiceLocationAttribute
 objects whose ids match the String patterns in the attributeIds
 Vector. The request is made in the language locale of the Locator.
 If no attributes match, an empty enumeration is returned.

 Parameters:

 URL

 The URL for which the attributes are desired.

 scopes

 A Vector of scope names. The vector should be selected from
 the results of a findScopes() API invocation. Use "DEFAULT"
 for the default scope.

 attributeIds

 A Vector of String patterns identifying the desired attributes.
 An empty vector means return all attributes. As described
 in [7], the patterns may include wildcards to match substrings.
 The strings may include SLP reserved characters, they will be
 escaped by the API before transmission.

 public abstract ServiceLocationEnumeration
 findAttributes(ServiceType type,
 Vector scopes,
 Vector attributeIds)
 throws ServiceLocationException

 For the type and scope, return a Vector of all ServiceLocationAttribute
 objects whose ids match the String patterns in the attributeIds
 Vector regardless of the Locator’s locale. The request is made
 independent of language locale. If no attributes are found, an empty
 vector is returned.

Kempf & Guttman Informational [Page 71]

RFC 2614 Service Location API June 1999

 Parameters:

 serviceType

 The service type.

 scopes

 A Vector of scope names. The vector should be selected from
 the results of a findScopes() API invocation. Use "DEFAULT"
 for the default scope.

 attributeIds

 A Vector of String patterns identifying the desired
 attributes. An empty vector means return all attributes.
 As described in [7], the patterns may include wildcards to
 match all prefixes or suffixes. The patterns may include SLP
 reserved characters, they will be escaped by the API before
 transmission.

5.5. The Service Location Manager

5.5.1. Class ServiceLocationManager

5.5.1.1. Synopsis

 public class ServiceLocationManager
 extends Object

5.5.1.2. Description

 The ServiceLocationManager manages access to the service location
 framework. Clients obtain the Locator and Advertiser objects for UA
 and SA, and a Vector of known scope names from the
 ServiceLocationManager.

5.5.1.3. Class Methods

 public static int getRefreshInterval()
 throws ServiceLocationException

Kempf & Guttman Informational [Page 72]

RFC 2614 Service Location API June 1999

 Returns the maximum across all DAs of the min-refresh-interval
 attribute. This value satisfies the advertised refresh interval
 bounds for all DAs, and, if used by the SA, assures that no
 refresh registration will be rejected. If no DA advertises a
 min-refresh-interval attribute, a value of 0 is returned.

 public static Vector findScopes()
 throws ServiceLocationException

 Returns an Vector of strings with all available scope names. The
 list of scopes comes from a variety of sources, see Section 2.1 for
 the scope discovery algorithm. There is always at least one string
 in the Vector, the default scope, "DEFAULT".

 public static Locator
 getLocator(Locale locale)
 throws ServiceLocationException

 Return a Locator object for the given language Locale. If the
 implementation does not support UA functionality, returns null.

 Parameters:

 locale

 The language locale of the Locator. The default SLP locale is
 used if null.

 public static Advertiser
 getAdvertiser(Locale locale)
 throws ServiceLocationException

 Return an Advertiser object for the given language locale. If the
 implementation does not support SA functionality, returns null.

 Parameters:

 locale

 The language locale of the Advertiser. The default SLP locale
 is used if null.

Kempf & Guttman Informational [Page 73]

RFC 2614 Service Location API June 1999

5.6. Service Template Introspection

5.6.1. Abstract Class TemplateRegistry

5.6.1.1. Synopsis

 public abstract class TemplateRegistry

5.6.1.2. Description

 Subclasses of the TemplateRegistry abstract class provide access to
 service location templates [8]. Classes implementing
 TemplateRegistry perform a variety of functions. They manage the
 registration and access of service type template documents. They
 create attribute verifiers from service templates, for verification
 of attributes and introspection on template documents. Note that
 clients of the Advertiser are not required to verify attributes
 before registering (though they may get a TYPE_ERROR if the
 implementation supports type checking and there is a mismatch with
 the template).

5.6.1.3. Class Methods

 public static TemplateRegistry getTemplateRegistry();

 Returns the distinguished TemplateRegistry object for performing
 operations on and with service templates. Returns null if the
 implementation doesn’t support TemplateRegistry functionality.

5.6.1.4. Instance Methods

 public abstract void
 registerServiceTemplate(ServiceType type,
 String documentURL,
 Locale locale,
 String version)
 throws ServiceLocationException

 Register the service template with the template registry.

Kempf & Guttman Informational [Page 74]

RFC 2614 Service Location API June 1999

 Parameters:

 type

 The service type.

 documentURL

 A string containing the URL of the template document. May not
 be the empty string.

 locale

 A Locale object containing the language locale of the template.

 version

 The version number identifier of template document.

 public abstract void

 deregisterServiceTemplate(ServiceType type,
 Locale locale,
 String version)
 throws ServiceLocationException

 Deregister the template for the service type.

 Parameters:

 type

 The service type.

 locale

 A Locale object containing the language locale of the template.

 version

 A String containing the version number. Use null to indicate
 the latest version.

Kempf & Guttman Informational [Page 75]

RFC 2614 Service Location API June 1999

 public abstract
 String findTemplateURL(ServiceType type,
 Locale locale,
 String version)
 throws ServiceLocationException

 Returns the URL for the template document.

 Parameters:

 type

 The service type.

 locale

 A Locale object containing the language locale of the template.

 version

 A String containing the version number. Use null to indicate
 the latest version.

 public abstract
 ServiceLocationAttributeVerifier
 attributeVerifier(String documentURL)
 throws ServiceLocationException

 Reads the template document URL and returns an attribute verifier
 for the service type. The attribute verifier can be used for
 verifying that registration attributes match the template, and for
 introspection on the template definition.

 Parameters:

 documentURL

 A String containing the template document’s URL. May not be the
 empty string.

Kempf & Guttman Informational [Page 76]

RFC 2614 Service Location API June 1999

5.6.2. Interface ServiceLocationAttributeVerifier

5.6.2.1. Synopsis

 public interface ServiceLocationAttributeVerifier

5.6.2.2. Description

 The ServiceLocationAttributeVerifier provides access to service
 templates. Classes implementing this interface parse SLP template
 definitions, provide information on attribute definitions for service
 types, and verify whether a ServiceLocationAttribute object matches a
 template for a particular service type. Clients obtain
 ServiceLocationAttributeVerifier objects for specific SLP service
 types through the TemplateRegistry.

5.6.2.3. Instance Methods

 public abstract ServiceType getServiceType()

 Returns the SLP service type for which this is the verifier.

 public abstract Locale getLocale()

 Return the language locale of the template.

 public abstract String getVersion()

 Return the template version number identifier.

 public abstract String getURLSyntax()

 Return the URL syntax expression for the service: URL.

 public abstract String getDescription()

Kempf & Guttman Informational [Page 77]

RFC 2614 Service Location API June 1999

 Return the descriptive help text for the template.

 public abstract ServiceLocationAttributeDescriptor
 getAttributeDescriptor(String attrId)

 Return the ServiceLocationAttributeDescriptor for the attribute
 having the named id. If no such attribute exists in this template,
 return null. This method is primarily for GUI tools to display
 attribute information. Programmatic verification of attributes
 should use the verifyAttribute() method.

 public abstract Enumeration
 getAttributeDescriptors()

 Returns an Enumeration allowing introspection on the attribute
 definition in the service template. The Enumeration returns
 ServiceLocationAttributeDescriptor objects for the attributes.
 This method is primarily for GUI tools to display attribute
 information. Programmatic verification of attributes should use the
 verifyAttribute() method.

 public abstract void
 verifyAttribute(
 ServiceLocationAttribute attribute)
 throws ServiceLocationException

 Verify that the attribute matches the template definition. If the
 attribute doesn’t match, ServiceLocationException is thrown with the
 error code as ServiceLocationException.PARSE_ERROR.

 Parameters:

 attribute

 The ServiceLocationAttribute object to be verified.

 public abstract void
 verifyRegistration(
 Vector attributeVector)
 throws ServiceLocationException

Kempf & Guttman Informational [Page 78]

RFC 2614 Service Location API June 1999

 Verify that the Vector of ServiceLocationAttribute objects matches
 the template for this service type. The vector must contain all the
 required attributes, and all attributes must match their template
 definitions. If the attributes don’t match, ServiceLocationException
 is thrown with the error code as ServiceLocationException.PARSE_ERROR

 Parameters:

 attributeVector

 A Vector of ServiceLocationAttribute objects for the
 registration.

5.6.3. Interface ServiceLocationAttributeDescriptor

5.6.3.1. Synopsis

 public interface
 ServiceLocationAttributeDescriptor

5.6.3.2. Description

 The ServiceLocationAttributeDescriptor interface provides
 introspection on a template attribute definition. Classes
 implementing the ServiceLocationAttributeDescriptor interface return
 information on a particular service location attribute definition
 from the service template. This information is primarily for GUI
 tools. Programmatic attribute verification should be done through
 the ServiceLocationAttributeVerifier.

5.6.3.3. Instance Methods

 public abstract String getId()

 Return a String containing the attribute’s id.

 public abstract String getValueType()

 Return a String containing the fully package-qualified Java type of
 the attribute. SLP types are translated into Java types as follows:

Kempf & Guttman Informational [Page 79]

RFC 2614 Service Location API June 1999

 STRING

 "java.lang.String"

 INTEGER

 "java.lang.Integer"

 BOOLEAN

 "java.lang.Boolean"

 OPAQUE

 "[B" (i.e. array of byte, byte[])

 KEYWORD

 empty string, ""

 public abstract String getDescription()

 Return a String containing the attribute’s help text.

 public abstract Enumeration
 getAllowedValues()

 Return an Enumeration of allowed values for the attribute type.
 For keyword attributes returns null. For no allowed values (i.e.
 unrestricted) returns an empty Enumeration.

 public abstract Enumeration
 getDefaultValues()

 Return an Enumeration of default values for the attribute type.
 For keyword attributes returns null. For no allowed values (i.e.
 unrestricted) returns an empty Enumeration.

 public abstract boolean
 getRequiresExplicitMatch()

Kempf & Guttman Informational [Page 80]

RFC 2614 Service Location API June 1999

 Returns true if the "X"" flag is set, indicating that the attribute
 should be included in an any Locator.findServices() request search
 filter.

 public abstract boolean getIsMultivalued()

 Returns true if the "M" flag is set.

 public abstract boolean getIsOptional()

 Returns true if the "O"" flag is set.

 public abstract boolean getIsLiteral()

 Returns true if the "L" flag is set.

 public abstract boolean getIsKeyword()

 Returns true if the attribute is a keyword attribute.

5.7. Implementation Notes

5.7.1. Refreshing Registrations

 A special lifetime constant, ServiceURL.LIFETIME_PERMANENT, is used
 by clients to indicate that the URL should be automatically refreshed
 until the application exits. The API implementation should interpret
 this flag as indicating that the URL lifetime is
 ServiceURL.LIFETIME_MAXIMUM, and MUST arrange for automatic refresh
 to occur.

5.7.2. Parsing Alternate Transports in ServiceURL

 The ServiceURL class is designed to handle multiple transports. The
 standard API performs no additional processing on transports other
 than IP except to separate out the host identifier and the URL path.
 However, implementations are free to subclass ServiceURL and support
 additional methods that provide more detailed parsing of alternate
 transport information. For IP transport, the port number, if any, is

Kempf & Guttman Informational [Page 81]

RFC 2614 Service Location API June 1999

 returned from the getPort() method. For non-IP transports, the
 getPort() method returns NO_PORT.

5.7.3. String Attribute Values

 In general, translation between Java types for attribute values and
 the SLP on-the-wire string is straightforward. However, there are
 two corner cases. If the Java attribute value type is String and the
 value of the string has an on-the-wire representation that is
 inferred by SLP as an integer, the registered attribute value may not
 be what the API client intended. A similar problem could result if
 the Java attribute value is the string "true" or "false", in which
 case the on-the-wire representation is inferred to boolean. To
 handle these corner cases, the Java API prepends a space onto the
 string. So, for example, if the string attribute value is "123", the
 Java API transforms the value to "123 ", which will have an on-the-
 wire representation that is inferred by SLP to be string. Since
 appended and prepended spaces have no effect on query handling, this
 procedure should cause no problem with queries. API clients need to
 be aware, however, that the transformation is occurring.

5.7.4. Client Side Syntax Checking

 The syntax of scope names, service type names, naming authority
 names, and URLs is described in [7] and [8]. The various methods and
 classes taking String parameters for these entities SHOULD type check
 the parameters for syntax errors on the client side, and throw an
 IllegalArgumentException if an error occurs. In addition, character
 escaping SHOULD be implemented before network transmission for
 escapable characters in attribute ids and String values. This
 reduces the number of error messages transmitted. The
 ServiceLocationAttribute class provides methods for clients to obtain
 escaped attribute id and value strings to facilitate query
 construction.

5.7.5. Language Locale Handling

 The Locator and Advertiser interfaces are created with a Locale
 parameter. The language locale with which these objects are created
 is used in all SLP requests issued through the object. If the Locale
 parameter is null, the default SLP locale is used. The default SLP
 locale is determined by, first, checking the net.slp.locale System
 property. If that is unset, then the default SLP locale [7] is used,
 namely "en". Note that the default SLP locale may not be the same as
 the default Java locale.

Kempf & Guttman Informational [Page 82]

RFC 2614 Service Location API June 1999

5.7.6. Setting SLP System Properties

 SLP system properties that are originally set in the configuration
 file can be overridden programmatically in API clients by simply
 invoking the System.getProperties() operation to get a copy of the
 system properties, modifying or adding the SLP property in question,
 then using System.setProperties() to set the properties to the
 modified Property object. Program execution continues without
 interruption by substituting the default for the erroneous parameter.
 Errors are checked when the property is used and are logged.

 The SLP configuration file cannot be read with the
 java.util.Properties file reader because there are some syntactic
 differences. The SLP configuration file syntax defines a different
 escape convention for non-ASCII characters than the Java syntax.
 However, after the file has been read, the properties are stored and
 retrieved from java.util.Properties objects.

 Properties are global for a process, affecting all threads and all
 Locator and Advertiser objects obtained through the
 ServiceLocationManager. With the exception of the net.slp.locale,
 net.slp.typeHint, and net.slp.maxResults properties, clients should
 rarely be required to override these properties, since they reflect
 properties of the SLP network that are not of concern to individual
 agents. If changes are required, system administrators should modify
 the configuration file.

5.7.7. Multithreading

 Thread-safe operation is relatively easy to achieve in Java. By
 simply making each method in the classes implementing the Locator and
 Advertiser interfaces synchronized, and by synchronizing access to
 any shared data structures within the class, the Locator and
 Advertiser interfaces are made safe. Alternatively, finer grained
 synchronization is also possible within the classes implementing
 Advertiser and Locator.

5.7.8. Modular Implementations

 While, at first glance, the API may look rather heavyweight, the
 design has been carefully arranged so that modular implementations
 that provide only SA, only UA, or only service template access
 capability, or any combination of the three, are possible.

 Because the objects returned from the
 ServiceLocationManager.getLocator() and
 ServiceLocationManager.getAdvertiser() operations are interfaces, and
 because the objects returned through those interfaces are in the set

Kempf & Guttman Informational [Page 83]

RFC 2614 Service Location API June 1999

 of base data structures, an implementation is free to omit either UA
 or SA capability by simply returning null from the instance creation
 operation if the classes implementing the missing function cannot be
 dynamically linked. API clients are encouraged to check for such a
 contingency, and to signal an exception if it occurs. Similarly, the
 TemplateRegistry concrete subclass can simply be omitted from an
 implementation that only supports UA and/or SA clients, and the
 TemplateRegistry.getRegistry() method can return null. In this way,
 the API implementation can be tailored for the particular memory
 requirements at hand.

 In addition, if an implementation only supports the minimal subset of
 SLP [7], the unsupported Locator and Advertiser interface operations
 can throw an exception with ServiceLocationException.NOT_IMPLEMENTED
 as the error code. This supports better source portability between
 low and high memory platforms.

5.7.9. Asynchronous and Incremental Return Semantics

 The Java API contains no specific support for asynchronous operation.
 Incremental return is not needed for the Advertiser because service
 registrations can be broken up into pieces when large. Asynchronous
 return is also not needed because clients can always issue the
 Advertiser operation in a separate thread if the calling thread can’t
 block.

 The Locator can be implemented either synchronously or
 asynchronously. Since the return type for Locator calls is
 ServiceLocationEnumeration, a Java API implementation that supports
 asynchronous semantics can implement ServiceLocationEnumeration to
 dole results out as they come in, blocking when no results are
 available. If the client code needs to support other processing
 while the results are trickling in, the call into the enumeration to
 retrieve the results can be done in a separate thread.

 Unlike the C case, collation semantics for return of attributes when
 an attribute request by service type is made require that the API
 collate returned values so that only one attribute having a collation
 of all returned values appear to the API client. In practice, this
 may limit the amount of asynchronous processing possible with the
 findAttributes() method. This requirement is imposed because memory
 management is much easier in Java and so implementing collation as
 part of the API should not be as difficult as in C, and it saves the
 client from having to do the collation.

Kempf & Guttman Informational [Page 84]

RFC 2614 Service Location API June 1999

5.8. Example

 In this example, a printer server advertises its availability to
 clients. Additionally, the server advertises a service template for
 use by client software in validating service requests:

 //Get the Advertiser and TemplateRegistry.

 Advertiser adv = null;
 TemplateRegistry tr = null

 try {

 adv = ServiceLocationManager.getAdvertiser("en");

 tr = TemplateRegistry.getTemplateRegistry();

 } catch(ServiceLocationException ex) { } //Deal with error.

 if(adv == null) {

 //Serious error as printer can’t be registered
 // if the implementation doesn’t support SA
 // functionality.

 }

 //Get the printer’s attributes, from a file or
 // otherwise. We assume that the attributes
 // conform to the template, otherwise, we
 // could register the template here and verify
 // them.

 Vector attributes = getPrinterAttributes();

 //Create the service: URL for the printer.

 ServiceURL printerURL =
 new ServiceURL(
 "service:printer:lpr://printshop/color2",
 ServiceURL.LIFETIME_MAXIMUM);

 try {

 //Register the printer.

 adv.register(printerURL, attributes);

Kempf & Guttman Informational [Page 85]

RFC 2614 Service Location API June 1999

 //If the template registry is available,
 // register the printer’s template.

 if(tr != null) {
 tr.registerServiceTemplate(
 new ServiceType("service:printer:lpr"),
 "http://shop.arv/printer/printer-lpr.slp",
 new Locale("en",""),
 "1.0");

 }

 } catch(ServiceLocationException ex) { } //Deal with error.

 Suppose a client is looking for color printer. The following code is
 used to issue a request for printer advertisements:

 Locator loc = null;
 TemplateRegistry tr = null;

 try {

 loc = ServiceLocationManager.getLocator("en");

 } catch(ServiceLocationException ex) { } //Deal with error.

 if(loc == null) {

 //Serious error as client can’t be located
 // if the implementation doesn’t support
 // UA functionality.

 }

 //We want a color printer that does CMYK
 // and prints at least 600 dpi.

 String query = "(&(marker-type=CMYK)(resolution=600))";

 //Get scopes.

 Vector scopes = ServiceLocationManager.findScopes();

 Enumeration services;

 try {

Kempf & Guttman Informational [Page 86]

RFC 2614 Service Location API June 1999

 services =
 loc.findServices(new ServiceType("service:printer"),scopes,query);

 } catch { } //Deal with error.

 if (services.hasMoreElements()) {

 //Printers can now be used.
 ServiceURL surl = (ServiceURL) services.next();

 Socket sock = new Socket(surl.getHost, surl.getPort());

 // Use the Socket...

 }

6. Internationalization Considerations

6.1. service URL

 The service URL itself must be encoded using the rules set forth in
 [2]. The character set encoding is limited to specific ranges within
 the UTF-8 character set [3].

 The attribute information associated with the service URL must be
 expressed in UTF-8. See [8] for attribute internationalization
 guidelines.

6.2. Character Set Encoding

 Configuration and serialized registration files are encoded in the
 UTF-8 character set [3]. This is fully compatible with US-ASCII
 character values. C platforms that do not support UTF-8 are required
 to check the top bit of input bytes to determine whether the incoming
 character is multibyte. If it is, the character should be dealt with
 accordingly. This should require no additional implementation
 effort, since the SLP wire protocol requires that strings are encoded
 as UTF-8. C platforms without UTF-8 support need to supply their own
 support, if only in the form of multibyte string handling.

 At the API level, the character encoding is specified to be Unicode
 for Java and UTF-8 for C. Unicode is the default in Java. For C, the
 standard US-ASCII 8 bits per character, null terminated C strings are
 a subset of the UTF-8 character set, and so work in the API. Because
 the C API is very simple, the API library needs to do a minimum of
 processing on UTF-8 strings. The strings primarily just need to be
 reflected into the outgoing SLP messages, and reflected out of the

Kempf & Guttman Informational [Page 87]

RFC 2614 Service Location API June 1999

 API from incoming SLP messages.

6.3. Language Tagging

 All SLP requests and registrations are tagged to indicate in which
 language the strings included are encoded. This allows multiple
 languages to be supported. It also presents the possibility that
 error conditions result when a request is made in a language that is
 not supported. In this case, an error is only returned when there is
 data available, but not obtainable in the language requested.

 The dialect portion of the Language Tag is used on ’best effort’
 basis for matching strings by SLP. Dialects that match are preferred
 over those which don’t. Dialects that do not match will not prevent
 string matching or comparisons from occurring.

7. Security Considerations

 Security is handled within the API library and is not exposed to API
 clients except in the form of exceptions. The
 net.slp.securityEnabled, property determines whether an SA client’s
 messages are signed, but a UA client should be prepared for an
 authentication exception at any time, because it may contact a DA
 with authenticated advertisements.

 An adversary could delete valid service advertisements, provide false
 service information and deny UAs knowledge of existing services
 unless the mechanisms in SLP for authenticating SLP messages are
 used. These mechanisms allow DAAdverts, SAAdverts, Service URLs and
 Service Attributes to be verified using digital cryptography. For
 this reason, all SLP agents should be configured to use SLP SPIs.
 See [7] for a description of how this mechanism works.

8. Acknowledgements

 The authors would like to thank Don Provan for his pioneering work
 during the initial stages of API definition.

Kempf & Guttman Informational [Page 88]

RFC 2614 Service Location API June 1999

9. References

 [1] Bradner, S., "Key Words for Use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [2] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

 [3] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
 RFC 2279, January 1998.

 [4] Howes, T., "The String Representation of LDAP Search Filters",
 RFC 2254 December 1997.

 [5] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [6] Alvestrand, H., "Tags for the Identification of Languages",
 RFC 1766, March 1995.

 [7] Guttman, E., Perkins, C., Veizades, J. and M. Day, "Service
 Location Protocol, Version 2", RFC 2608, June 1999.

 [8] Guttman, E., Perkins, C. and J. Kempf, "Service Templates and
 Service: Schemes", RFC 2609, June 1999.

Kempf & Guttman Informational [Page 89]

RFC 2614 Service Location API June 1999

10. Authors’ Addresses

 Questions about this memo can be directed to:

 James Kempf
 Sun Microsystems
 901 San Antonio Rd.
 Palo Alto, CA, 94303
 USA

 Phone: +1 650 786 5890
 Fax: +1 650 786 6445
 EMail: james.kempf@sun.com

 Erik Guttman
 Sun Microsystems
 Bahnstr. 2
 74915 Waibstadt
 Germany

 Phone: +49 7263 911 701
 EMail: erik.guttman@sun.com

Kempf & Guttman Informational [Page 90]

RFC 2614 Service Location API June 1999

11. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Kempf & Guttman Informational [Page 91]

