Net wor k Wor ki ng Group V. Ryan
Request for Comments: 2713 S. Seligman
Cat egory: I nfornmational R Lee
Sun M crosystens, |Inc.

Cct ober 1999

Schema for Representing Java(tn) Objects in an LDAP Directory
Status of this Meno

This menmo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyri ght Notice
Copyright (C The Internet Society (1999). Al Rights Reserved.
Abst ract

Thi s docunent defines the schema for representing Java(tn) objects in
an LDAP directory [LDAPv3]. It defines schema el enents to represent

a Java serialized object [Serial], a Java nmarshalled object [RM], a
Java renmpote object [RM], and a JNDI reference [JNDI].

1. Introduction

Thi s docunent assunes that the reader has a general know edge of the
Java progranmm ng | anguage [Java]. For brevity we use the term "Java
object"” in place of "object in the Java progranm ng | anguage"

t hroughout this text.

Traditionally, LDAP directories have been used to store data. Users
and programrers think of the directory as a hierarchy of directory
entries, each containing a set of attributes. You |ook up an entry
fromthe directory and extract the attribute(s) of interest. For
exanpl e, you can | ook up a person’s tel ephone nunber fromthe
directory. Alternatively, you can search the directory for entries
with a particular set of attributes. For exanple, you can search for
all persons in the directory with the surnane "Smth".

For applications witten in the Java programm ng | anguage, a ki nd of
data that is typically shared are Java objects thensel ves. For such
applications, it nakes sense to be able to use the directory as a
repository for Java objects. The directory provides a centrally

adm ni stered, and possibly replicated, service for use by Java
applications distributed across the network.

Ryan, et al. | nf or mati onal [Page 1]

RFC 2713 Schema for Java bjects Cct ober 1999

For exanple, an application server mght use the directory for

"regi stering" objects representing the services that it nanages, so
that a client can later search the directory to | ocate those services
as it needs.

The notivation for this docunment is to define a comopn way for
applications to store and retrieve Java objects fromthe directory.
Using this conmon schema, any Java application that needs to read or
store Java objects in the directory can do so in an interoperable
way.

2 Representation of Java Objects

Thi s docunent defines schema el enents to represent three types of
Java objects: a Java serialized object, a Java narshall ed object,
and a JNDI reference. A Java renpte object is stored as either a Java
mar shal | ed object or a JNDI reference.

2.1 Comopn Representations

A Java object is stored in the LDAP directory by using the object
class javaObject. This is the base class fromwhich other Java object
rel ated cl asses derive: javaSerializedObject, javaMarshall edObject,
and javaNam ngReference. javaObject is an abstract object class,

whi ch neans that a javaCbject cannot exist by itself in the
directory; only auxiliary or structural subclasses of it can exist in
the directory.

The obj ect class javaContainer represents a directory entry dedi cated
to storing a Java object. It is a structural object class. In cases
where a subclass of javaObject is mxed in with another structura

obj ect class, javaContainer is not required.

The definitions for the object classes javaObject and javaContai ner
are presented in Section 4.

The javaObj ect class has one mandatory attribute (javaCd assNane) and
four optional attributes (javaCd assNanes, javaCodebase, javaDoc,

description). javaC assName is a single valued attribute that is
used to store the fully qualified nane of the object’s Java cl ass
(for exanmple, "java.lang.String"). This may be the object’s nost

derived class’s name, but does not have to be; that of a superclass
or interface in some cases mght be nobst appropriate. This attribute
is intended for storing the name of the object’s "distingui shed"
class, that is, the class or interface with which the object should
be identified.

Ryan, et al. I nf or mati onal [Page 2]

RFC 2713 Schema for Java bjects Cct ober 1999

javaCl assNanmes is a nultivalued attribute that is used to store the
fully qualified names of the object’s Java classes and interfaces
(for example, "java.lang.Byte"). Like all multivalued attributes, the
javaC assNames attribute’'s values are unordered and so no one val ue
is more "distinguished" than the others. This attribute is intended
for storing an object’s class and interface nanes and those of its
ancestor classes and interfaces, although the |ist of values does not
have to be conplete. |If the javaC assNanes attribute is present, it
shoul d i nclude the val ue of javaCd assNarne.

For exanpl e, suppose an object is stored in the directory with a
javaCl assNane attribute of "java.io.FilePermssion", and a

javaCl assNanmes attribute of {"java.security. Pernission",
"java.io.FilePerm ssion", "java.security. Guard"

"java.io. Serializable"}. An application searching a directory for
Java objects mght use javaC assName to produce a summary of the
nanes and types of Java objects in that directory. Another
application mght use the javaCd assNanes attribute to find, for
exanpl e, all java.security.Perm ssion objects.

j avaCodebase is a nultivalued attribute that is used to store the

| ocation(s) of the object’s class definition. javaDoc is used to
store a pointer (URL) to the Java documentation for the class.
description is used to store a textual description of a Java object
and is defined in [v3Schema]. The definitions of these attributes are
presented in Section 3.

2.2 Serialized bjects

To "serialize" an object nmeans to convert its state into a byte
streamin such a way that the byte stream can be converted back into
a copy of the object. A Java object is "serializable" if its class
or any of its superclasses inplements either the java.io. Serializable
interface or its subinterface java.io.Externalizable.
"Deserialization" is the process of converting the serialized form of
an object back into a copy of the object. Wen an object is
serialized, the entire tree of objects rooted at the object is also
serialized. Wien it is deserialized, the tree is reconstructed. For
exanpl e, suppose a serializable Book object contains (a serializable
field of) an array of Page objects. Wen a Book object is
serialized, so is the array of Page objects.

The Java platformspecifies a default algorithm by which serializable
objects are serialized. A Java class can also override this default
serialization with its own algorithm [Serial] describes object
serialization in detail

Ryan, et al. I nf or mati onal [Page 3]

RFC 2713 Schema for Java bjects Cct ober 1999

When an object is serialized, information that identifies its class
is recorded in the serialized stream However, the class’s definition
("class file") itself is not recorded. It is the responsibility of
the systemthat is deserializing the object to determ ne the

mechani smto use for locating and | oading the associated cl ass
definitions. For exanple, the Java application mght include inits
classpath a JAR file containing the class definitions of the
serialized object, or load the class definitions using information
fromthe directory, as explai ned bel ow

2.2.1 Representation in the Directory

A serialized object is represented in the directory by the attributes
j avaC assNane, javad assNanes, javaCodebase, and javaSerializedData,
as defined in Section 3. The nmandatory attribute,
javaSerializedData, contains the serialized formof the object.

Al t hough the serialized form already contains the class nane, the
mandat ory javaC assNane attribute also records the class nane of the
serialized object so that applications can deternined class

i nformati on without having to first deserialize the object. The
optional javaC assNanes attribute is used to record additional class
i nformati on about the serialized object. The optional javaCodebase
attribute is used to record the locations of the class definitions
needed to deserialize the serialized object.

A directory entry that contains a serialized object is represented by
the object class javaSerializedObject, which is a subclass of
javaCbject. javaSerializedOnhject is an auxiliary object class, which
means that it needs to be mxed in with a structural object class.
javaSerializedOhject’s definition is given in Section 4.

2.3 Marshall ed Objects

To "marshal" an object nmeans to record its state and codebase(s) in
such a way that when the marshall ed object is "unmarshalled,” a copy
of the original object is obtained, possibly by automatically |oading
the class definitions of the object. You can marshal any object that
is serializable or renote (that is, inplenents the java.rni.Renote
interface). Marshalling is |ike serialization, except marshalling

al so records codebases. Marshalling is different fromserialization
in that marshalling treats renpote objects specially. If an object is
a java.rm .Renpte object, marshalling records the renpte object’s
"stub" (see Section 2.5), instead of the renpte object itself. Like
serialization, when an object is marshalled, the entire tree of
objects rooted at the object is marshalled. Wen it is unmarshall ed,
the tree is reconstructed.

Ryan, et al. I nf or mati onal [Page 4]

RFC 2713 Schema for Java bjects Cct ober 1999

A "marshal | ed" object is the represented by the
java.rm . Marshal | edOhject class. Here's an exanple of how to create
Mar shal | edCbj ects for serializable and renpte objects:

Java io.Serializable sobj = ...;
java.rm . NhrshalledCbJect ﬁDle =
new java. rm . Marshal | edObj ect (sobj);

java.rm . Renmote robj =
java.rm . NhrshalledCbJect nDbJZ =
new java.rm . Marshal | edObj ect (robj);

Then, to retrieve the original objects fromthe Marshall edObjects, do
as follows:

java.io. Serializable sobj = (java.io. Serializable) nmobj1l.get();
java.io.Renote rstub = (java.io. Renote) nobj2.get();

Mar shal | edObj ect is available only on the Java 2 Platform Standard
Edition, vl1.2, and hi gher rel eases.

2.3.1 Representation in the Directory

A marshall ed object is represented in the directory by the attributes
j avaC assNanme, javaC assNanes, and javaSerializedData, as defined in
Section 3. The mandatory attribute, javaSerializedData, contains the
serialized formof the marshalled object (that is, the serialized
formof a Marshall edObject instance). The mandatory javaCd assName
attribute records the distinguished class name of the object before
it has been marshalled. The optional javaC assNanes attribute is
used to record additional class information about the object before
it has been nmarshall ed.

A directory entry that contains a nmarshalled object is represented by
the object class javaMarshal |l edObject, which is a subclass of

javaCbj ect. javaMarshall edChject is an auxiliary object class, which
neans that it needs to be nixed in with a structural object class.

j avaMar shal | edOhject’s definition is given in Section 4.

As evident in this description, a javaMarshall edObject differs froma

javaSerializedObhject only in the interpretation of the javad assName
and javaC assNanes attri butes.

Ryan, et al. I nf or mati onal [Page 5]

RFC 2713 Schema for Java bjects Cct ober 1999

2.4 JNDI References

Java Naming and Directory Interface(tm) (JNDI) is a directory access
APl specified in the Java programm ng | anguage [JNDI]. It provides
an object-oriented view of the directory, allow ng Java objects to be
added to and retrieved fromthe directory without requiring the
client to manage data representation issues.

JNDI defines the notion of a "reference" for use when an object
cannot be stored in the directory directly, or when it is

i nappropriate or undesirable to do so. An object with an associ ated
reference is stored in the directory indirectly, by storing its

ref erence instead.

2.4.1 Contents of a Reference

A JNDI reference is a Java object of class javax.nam ng. Ref erence.

It consists of class information about the object being referenced
and an ordered |ist of addresses. An address is a Java object of

cl ass javax. nam ng. Ref Addr. Each address contains information on how
to construct the object.

A common use for JNDI references is to represent connections to a
network service such as a database, directory, or file system Each
address may then identify a "comruni cati ons endpoint" for that
service, containing informati on on how to contact the service.

Mul tiple addresses may arise for various reasons, such as replication
or the object offering interfaces over nmore than one comunication
mechani sm

A reference also contains information to assist in the creation of an
i nstance of the object to which the reference refers. It contains
the Java cl ass name of that object, and the class nanme and | ocation
of the object factory to be used to create the object. The
procedures for creating an object given its reference and the reverse
are described in [JNDI].

2.4.2 Representation in the Directory

A JNDI reference is stored in the directory by using the attributes
j avaC assName, javaC assNanes, javaCodebase, javaReferenceAddress,
and javaFactory, defined in Section 3. These attributes store

i nformation corresponding to the contents of a reference described
above. javaReferenceAddress is a nultivalued optional attribute for
storing reference addresses. javaFactory is the optional attribute
for storing the object factory's fully qualified class nane. The
mandat ory javaCl assNane attribute is used to store the nane of the
di stingui shed class of the object. The optional javaC assNanmes

Ryan, et al. I nf or mati onal [Page 6]

RFC 2713 Schema for Java bjects Cct ober 1999

attribute is used to record additional class and interface nanes.
The optional javaCodebase attribute is used to store the |ocations of
the object factory’s and the object’s class definitions.

A directory entry containing a JNDI reference is represented by the
obj ect class javaNam ngReference, which is a subclass of javaObject.
j avaNam ngRef erence is an auxiliary object class, which neans that it
needs to be mixed in with a structural object class.

j avaNam ngRef erence’s definition is given in Section 4.

2.5 Renmpte (bjects

The Java Renote Method I nvocation (RM) system[RM] is a nmechanism
that enabl es an object on one Java virtual machine to i nvoke nethods
on an object in another Java virtual machine. Any object whose

met hods can be invoked in this way nmust inplement the java.rni.Renote
interface. When such an object is invoked, its argunents are
marshal |l ed and sent fromthe |ocal virtual nmachine to the renpte one,
where the argunments are unnarshall ed and used. Wen the nethod

term nates, the results are nmarshalled fromthe renmote machi ne and
sent to the caller’s virtual machine.

To make a renpte object accessible to other virtual machines, a
programtypically registers it with the RM registry. The program
supplies to the RM registry the string nane of the renpte object and
the renpte object itself. Wen a programwants to access a renote
object, it supplies the object’s string nanme to the RM registry on
the sane machine as the renote object. The RM registry returns to
the caller a reference (called "stub") to the rempte object. When
the programreceives the stub for the renmbte object, it can invoke
net hods on the renote object (through the stub). A programcan also
obtain references to rennte objects as a result of renote calls to

ot her renote objects or fromother namng services. For exanple, the
program can |l ook up a reference to a renote object froman LDAP
server that supports the schema defined in this docunent.

The string name accepted by the RM registry has the syntax

“rm ://host nanme: port/renot eCbj ect Nane", where "hostnanme" and "port"
identify the machine and port on which the RM registry is running,
respectively, and "renoteCbjectName" is the string name of the renote
object. "hostnane", "port", and the prefix, "rm:", are optional. If
"hostnane" is not specified, it defaults to the local host. |If
"port" is not specified, it defaults to 1099. |If "renoteObjectNane"
is not specified, then the object being named is the RM registry
itself. See [RM] for details.

Ryan, et al. I nf or mati onal [Page 7]

RFC 2713 Schema for Java bjects Cct ober 1999

RM can be supported using different protocols: the Java Renpte

Met hod Protocol (JRWP) and the Internet Inter-ORB Protocol (11OP).
The JRWP is a specialized protocol designed for RM; the I1OP is the
standard protocol for comruni cation between CORBA objects [CORBA].
RM over 110P allows Java renpote objects to comunicate with CORBA
obj ects which mght be witten in a non-Java progranm ng | anguage
[RM-110P].

2.5.1 Representation in the Directory

Renote objects that use the I1OP are represented in the directory as
CORBA obj ect references [CORBA-LDAP]. Renote objects that use the
JRMP are represented in the directory in one of two ways: as a

mar shal | ed object, or as a JNDI reference.

A marshal | ed object records the codebases of the renmpte object’s stub
and any serializable or rempte objects that it references, and

repl aces renpte objects with their stubs. To store a Renote object
as a marshal |l ed object (java.rm . MarshalledObject), you first create
a java.rm . Mrshal |l edOoject instance for it.

java.rm .Rempte robj = ...
java.rm . Marshal | edOoj ect nobj =
new java. rm . Marshal | edObj ect (robj);

You can then store the Marshal | edObject instance as a

j avaMar shal | edObj ect. The javaC assNanme attribute should contain the
fully qualified name of the distinguished class of the renote object.
The javaC assNames attribute shoul d contain the nanes of the classes
and interfaces of the renote object. To read the renpte object back
fromthe directory, first deserialize the contents of the
javaSerializedData to get a Marshall edObject (nmobj), then retrieve it
fromthe Marshal | edObject as foll ows:

java.rm .Remote robj = (java.rm . Renote)nobj.get();

This returns the renpte stub, which you can then use to invoke renote
met hods.

Mar shal | edObj ect is available only on the Java 2 Platform Standard
Edition, v1.2 and higher rel eases. Therefore, a renpte object stored
as a Marshal | edObj ect can only be read by clients using the the Java
2 Platform Standard Edition, v1.2 or higher rel eases.

Ryan, et al. I nf or mati onal [Page 8]

RFC 2713 Schema for Java bjects Cct ober 1999

To store a renote object as a JNDI reference, you first create a

j avax. nam ng. Ref erence object instance for it using the renpte
object’s string name as it has been, or will be, recorded with the
RM registry, with the additional restriction that the "rm:" prefix
must be present. Here’'s an exanpl e:

j avax. nam ng. Ref erence ref = new javax. nam ng. Ref er ence(
obj . get d ass(). get Nane(),
new j avax. nam ng. Stri ngRef Addr (" URL",
“rm://rserver/ AppRenot eCbj ect X"));

You then store the javax.nam ng. Reference instance as a

j avaNam ngRef erence. The advantage of using a JNDI reference is that
this can be done without a reference to the renote object. In fact,
the renote object does not have to exist at the tine that this
recording in the directory is made. The renote object needs to exist
and be bound with the RM registry when the object is | ooked up from
the directory.

2.6 Serialized Ohjects Vs. Marshalled Objects Vs. References

The obj ect classes defined in this docurment store different aspects
of the Java objects.

A javaSeriali zedObject or a serializable object stored as a
j avaMar shal | edbj ect represents the object itself, while a
j avaNam ngRef erence or a renote object stored as a

j avaMar shal | edObj ect represents a "pointer” to the object.

When storing a serializable object in the directory, you have a
choice of storing it as a javaSerializedObject or a

j avaMar shal | edObj ect. The javaSerializedObj ect object class provides
the basic way in which to store serializable objects. Wen you create
an LDAP entry using the javaSerializabl eCbj ect object class, you nust
explicitly set the javaCodebase attribute if you want readers of that
entry to know where to load the class definitions of the object. Wen
you create an LDAP entry using the javahMarshal | edObj ect object class,
you use the Marshal | edOoject class. The Marshall edObject class uses
the RM infrastructure avail able on the Java platformto automate how
codebase information is gathered and recorded, thus freeing you from
having to set the javaCodebase attribute. On the other hand, the

j avaCodebase attribute is human-readabl e and can be updated easily by
using text-based tools wi thout having to change other parts of the
entry. This allows you, for instance, to nove the class definitions
to another location and then update the javaCodebase attribute to
reflect the nmove without having to update the serialized object
itself.

Ryan, et al. I nf or mati onal [Page 9]

RFC 2713 Schema for Java bjects Cct ober 1999

A javaNam ngRef erence provides a way of recordi ng address infornmation
about an object which itself is not directly stored in the directory.
A renpte object stored as a javaMarshal |l edObj ect al so records address
information (the object’s "stub") of an object which itself is not
directory stored in the directory. 1In other words, you can think of
these as conpact representations of the infornmation required to
access the object.

A javaNami ngReference typically consists of a small nunber of human-
readabl e strings. Standard text-based tools for directory

adm ni stration may therefore be used to add, read, or nodify
reference entries -- if so desired -- quite easily. Serialized and
mar shal | ed objects are not intended to be read or mani pul at ed
directly by humans.

3 Attribute Type Definitions
The following attribute types are defined in this docunent:

j avaCd assNane

j avaCl assNanes

j avaCodebase
javaSeri al i zedDat a

j avaFactory

j avaRef er enceAddr ess
j avaboc

3.1 javad assNane

This attribute stores the fully qualified nanme of the Java object’s
"di stinguished" class or interface (for exanple, "java.lang.String").
It is a single-valued attribute. This attribute’'s syntax is
Directory String’ and its case is significant.

(1.3.6.1.4.1.42.2.27.4.1.6
NAME ' j avaC assNane’
DESC 'Ful ly qualified name of distinguished Java cl ass or
i nterface’
EQUALI TY caseExact Mat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
S| NGLE- VALUE

Ryan, et al. I nf or mati onal [Page 10]

RFC 2713 Schema for Java bjects Cct ober 1999

3.2 javaCodebase

This attribute stores the Java class definition's locations. It
specifies the locations fromwhich to load the class definition for
the class specified by the javad assName attribute. Each val ue of
the attribute contains an ordered |list of URLs, separated by spaces.
For exanple, a value of "urll url2 url3" neans that the three

(possi bly interdependent) URLs (urll, url2, and url3) formthe
codebase for loading in the Java class definition

If the javaCodebase attribute contains nore than one val ue, each

val ue i s an i ndependent codebase. That is, there is no relationship
between the URLs in one value and those in another; each value can be
viewed as an alternate source for |oading the Java class definition
See [Java] for information regarding class | oading.

This attribute’s syntax is "I A5 String’ and its case is significant.

(1.3.6.1.4.1.42.2.27.4.1.7
NAME ' j avaCodebase’
DESC ' URL(s) specifying the location of class definition
EQUALI TY caseExact | ASMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 26

)

3.3 javad assNanes

This attribute stores the Java object’s fully qualified class or
interface names (for example, "java.lang.String"). It is a

nmul tivalued attribute. Wen nore than one value is present, each is
the name of a class or interface, or ancestor class or interface, of
this object.

This attribute’'s syntax is "Directory String’ and its case is
significant.

(1.3.6.1.4.1.42.2.27.4.1.13
NAME ' j avad assNanes’
DESC ' Fully qualified Java class or interface nane’
EQUALI TY caseExact Mat ch
SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 15

Ryan, et al. I nf or mati onal [Page 11]

RFC 2713 Schema for Java bjects Cct ober 1999

3.4 javaSerializedData

This attribute stores the serialized formof a Java object. The
serialized formis described in [Serial].

This attribute’s syntax is 'Cctet String’

(1.3.6.1.4.1.42.2.27.4.1.8
NAME ' javaSeri al i zedDat a
DESC ' Serialized formof a Java object’
SYNTAX 1.3.6.1.4.1.1466. 115. 121. 1. 40
SI NGLE- VALUE

)

3.5 javaFactory

This attribute stores the fully qualified class name of the object
factory (for exanple, "comw z.jndi.WzQObjectFactory") that can be
used to create an instance of the object identified by the

javaCl assName attri bute.

This attribute’'s syntax is "Directory String’ and its case is
significant.

(1.3.6.1.4.1.42.2.27.4.1.10
NAME ' j avaFactory’
DESC 'Fully qualified Java class name of a JNDI object factory’
EQUALI TY caseExact Mat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 15
S| NGLE- VALUE

)

3.6 javaRef erenceAddress

This attribute represents the sequence of addresses of a JND
reference. Each of its values represents one address, a Java object
of type javax.naming.RefAddr. Its value is a concatenation of the
address type and address contents, preceded by a sequence nunber (the
order of addresses in a JNDI reference is significant). For exanple:

#0#TypeA#Val A
#1#TypeB#Val B
#2#TypeCi#r QOABXNy ABpq. .

In nore detail, the value is encoded as foll ows:

Ryan, et al. I nf or mati onal [Page 12]

RFC 2713 Schema for Java bjects Cct ober 1999

The delimter is the first character of the value. For readability
the character '# is recommended when it is not otherw se used
anywhere in the value, but any character nmay be used subject to
restrictions given bel ow

The first delimter is followed by the sequence nunber. The sequence
nunber of an address is its position in the JND reference, with the
first address being nunmbered 0. It is represented by its shortest
string form in decimal notation

The sequence number is followed by a delimter, then by the address
type, and then by another delimter. |f the address is of Java cl ass
j avax. nam ng. Stri ngRef Addr, then this delimter is followed by the
val ue of the address contents (which is a string). Oherwise, this
delimter is followed i medi ately by another deliniter, and then by
the Base64 encoding of the serialized formof the entire address.

The delimter nmay be any character other than a digit or a character

contained in the address type. |In addition, if the address contents
is astring, the delimter may not be the first character of that
string.

This attribute’s syntax is "Directory String’ and its case is
significant. It can contain multiple val ues.

(1.3.6.1.4.1.42.2.27.4.1.11
NAME ' j avaRef er enceAddr ess’
DESC ' Addresses associated with a JNDI Reference
EQUALI TY caseExact Mat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 15

)
3.7 javabDoc

This attribute stores a pointer to the Java docunentation for the
class. It's value is a URL. For exanple, the following URL points to
the specification of the java.lang. String cl ass:

http://java. sun. coni products/jdk/ 1.2/ docs/api/javallang/ String. htn

This attribute’s syntax is "I A5 String’ and its case is significant.

(1.3.6.1.4.1.42.2.27.4.1.12
NAME ' j avaDoc
DESC ' The Java docunentation for the class’
EQUALI TY caseExact | A5vat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 26

Ryan, et al. I nf or mati onal [Page 13]

RFC 2713 Schema for Java bjects Cct ober 1999

4 nject Class Definitions
The foll owi ng object classes are defined in this docunent:

j avaCont ai ner

j avaQbj ect
javaSeri al i zedhj ect
j avaMar shal | edhj ect
j avaNami ngRef er ence

4.1 javaCont ai ner

This structural object class represents a container for a Java
obj ect.

(1.3.6.1.4.1.42.2.27.4.2.1
NAME ' j avaCont ai ner’
DESC ' Contai ner for a Java object’
SUP top
STRUCTURAL
MUST (cn)
)

4.2 javaObj ect

Thi s abstract object class represents a Java object. A javahject
cannot exist in the directory; only auxiliary or structura
subcl asses of it can exist in the directory.

(1.3.6.1.4.1.42.2.27.4.2. 4
NAME ' j avaQbj ect’
DESC ' Java object representation
SUP top
ABSTRACT
MJST (javaC assNane)
MAY (javaC assNanes $
j avaCodebase $
javaDoc $
description)

Ryan, et al. I nf or mati onal [Page 14]

RFC 2713 Schema for Java bjects Cct ober 1999

4.3 javaSerializednj ect

This auxiliary object class represents a Java serialized object. It
must be mixed in with a structural object class.

(1.3.6.1.4.1.42.2.27.4.2.5
NAME ' j avaSeri al i zedObj ect’
DESC ' Java serialized object’
SUP j ava(hj ect
AUXI LI ARY
MJST (javaSerializedData)

)
4.4 javaMarshal | edObj ect

This auxiliary object class represents a Java marshalled object. It
must be mixed in with a structural object class.

(1 1.3.6.1.4.1.42.2.27.4.2.8
NAME ' j avaMar shal | edObj ect’
DESC ' Java marshal | ed object’
SUP j ava(hj ect
AUXI LI ARY
MUST (javaSerializedData)

)

4.5 javaNanm ngRef erence

This auxiliary object class represents a JNDI reference. It nust be
mxed in with a structural object class.

(1.3.6.1.4.1.42.2.27.4.2.7
NAME ' j avaNam ngRef er ence’
DESC ' JNDI reference’

SUP j ava(hj ect

AUXI LI ARY

MAY (javaRef erenceAddress $
j avaFactory)

Ryan, et al. I nf or mati onal [Page 15]

RFC 2713 Schema for Java bjects Cct ober 1999

5. Security Considerations

Serializing an object and storing it into the directory enables (a
copy of) the object to be exam ned and used outside the environment
in which it was originally created. The directory entry containing
the serialized object could be read and nodified within the
constraints inposed by the access control nechani sns of the
directory. |If an object contains sensitive information or
information that could be nisused outside of the context in which it
was created, the object should not be stored in the directory. For
nore details on security issues relating to serialization in general
see [Serial].

6. Acknow edgenents

We would like to thank Joseph Fialli, Peter Jones, Roger Riggs, Bob
Scheifler, and Ann Wl lrath of Sun Mcrosystens for their coments
and suggestions.

7. References

[CORBA] The Obj ect Managenent Group, "Common Cbj ect Request
Broker Architecture Specification 2.0,"
http://ww. ong. org

[CORBA- LDAP] Ryan, V., Lee, R and S. Seligman, "Schema for
Representi ng CORBA hj ect References in an LDAP
Directory", RFC 2714, Cctober 1999.

[Java] Ken Arnold and Janmes Gosling, "The Java(tm Progranmm ng
Language, " Second Edition, |SBN 0-201-31006-6.

[INDI] Java Software, Sun M crosystens, Inc., "The Java(tm
Nam ng and Directory Interface (tm Specification,”
February 1998. http://java. sun. coni products/jndi/

[LDAPv3] Wahl, M, Howes, T. and S. Kille, "Lightweight
Directory Access Protocol (v3)", RFC 2251, Decenber
1997.

[RM] Java Software, Sun M crosystens, Inc., "Renote Method

I nvocation," Novenber 1998.
http://java. sun. conl products/jdk/ 1.2/ docs/ gui de/rm

Ryan, et al. I nf or mati onal [Page 16]

RFC 27

[RM - 11 OP]

[Se

[v3Schema]

8. Aut

Vi ncent Ryan

13

rial]

hors’

Schema for Java bjects Cct ober 1999

| BM and Java Software, Sun M crosystens, Inc., "RM over
[1OP", June 1999.
http://java. sun. coni products/rm-iiop/

Java Software, Sun M crosystens, Inc., "Object
Serialization Specification,” Novenber 1998.
http://java. sun. coni products/jdk/ 1. 2/ docs/ gui de/
serialization

Wahl, M, "A Summary of the X 500(96) User Schena for
use with LDAPv3", RFC 2256, Decenber 1997.

Addr esses

Sun M crosystens, Inc.

Va

St op EDUBO3

901 San Antoni o Road

Palo Alto,

USA

Pho
EMva

ne:
il:

CA 94303

+353 1 819 9151
vi ncent.ryan@r el and. sun. com

Scott Seligman

Sun M crosystens, |Inc.
| Stop UCUPO2-209
901 San Antoni o Road

Ma

Palo Alto,

USA

Pho
Eva

Rosanna Lee

CA 94303

ne: +1 408 863 3222
il: scott.seligmn@ng. sun.com

Sun M crosystens, |nc.
| Stop UCUP0O2-206
901 San Antoni o Road

Ma

Palo Al to,

USA

Pho
EMVh

Ryan,

CA 94303

ne: +1 408 863 3221
il: rosanna.l ee@ng. sun. com

et al.

I nf or mati onal [Page 17]

RFC 2713 Schema for Java bjects Cct ober 1999

Appendi x - LDAP Schema
-- Attribute types --

(1.3.6.1.4.1.42.2.27.4.1.6
NAME ' j avaC assNane’
DESC 'Fully qualified name of distinguished Java class or interface’
EQUALI TY caseExact Mat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 15
S| NGLE- VALUE

(1.3.6.1.4.1.42.2.27.4.1.7
NAME ' j avaCodebase’
DESC ' URL(s) specifying the location of class definition’
EQUALI TY caseExact | A5SMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 26

(1.3.6.1.4.1.42.2.27.4.1.8
NAME ' javaSeri al i zedDat a’
DESC ' Serialized formof a Java object’
SYNTAX 1.3.6.1.4.1.1466. 115. 121. 1. 40
SI NGLE- VALUE

(1.3.6.1.4.1.42.2.27.4.1.10
NAME ' j avaFact ory’
DESC 'Fully qualified Java class name of a JNDI object factory’
EQUALI TY caseExact Mat ch
SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 15
SI NGLE- VALUE

(1.3.6.1.4.1.42.2.27.4.1.11
NAME ' j avaRef er enceAddr ess’
DESC ' Addr esses associated with a JNDI Reference’
EQUALI TY caseExact Mat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

(1.3.6.1.4.1.42.2.27.4.1.12
NAME ' j avaDoc’
DESC ' The Java docunentation for the class’
EQUALI TY caseExact | A5vat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 26

Ryan, et al. I nf or mati onal [Page 18]

RFC

(

2713 Schema for Java bjects

1.3.6.1.4.1.42.2.27.4.1.13

NAME ' j avad assNanes’

DESC ' Fully qualified Java class or interface nane’
EQUALI TY caseExact Mat ch

SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 15

from RFC- 2256 - -

2.5.4.13

NAME ' descri ption

EQUALI TY casel gnoreMat ch

SUBSTR casel gnor eSubstri ngsiMat ch

SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 15{1024}

nj ect cl asses --

1.3.6.1.4.1.42.2.27.4.2.1

NAME ' j avaCont ai ner’

DESC ' Contai ner for a Java object’
SUP top

STRUCTURAL

MUST (cn)

1.3.6.1.4.1.42.2.27.4.2. 4

NAME ' j ava(bj ect’

DESC ' Java object representation
SUP top

ABSTRACT

MUST (javaC assNane)

Cct ober 1999

MAY (javaC assNanes $ javaCodebase $ javaDoc $ description)

1.3.6.1.4.1.42.2.27.4.2.5
NAME ' j avaSeri al i zedObj ect’
DESC ' Java serialized object’
SUP j ava(hj ect

AUXI LI ARY

MJST (javaSerializedData)

Ryan, et al. I nf or mati ona

[Page 19]

RFC 2713 Schema for Java bjects Cct ober 1999

(1.3.6.1.4.1.42.2.27.4.2.7
NAME ' j avaNam ngRef er ence’
DESC ' JNDI reference’
SUP j ava(hj ect
AUXI LI ARY
MAY (javaReferenceAddress $ javaFactory)

)

(1.3.6.1.4.1.42.2.27.4.2.8
NAME ' j avaMar shal | edObj ect’
DESC ' Java marshal | ed object’
SUP j ava(hj ect
AUXI LI ARY
MUST (javaSerializedData)

-- Matching rule fromI SO X. 520 --
(2.5.138.5

NAME ' caseExact Mat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 15

)

Ryan, et al. I nf or mati onal [Page 20]

RFC 2713 Schema for Java bjects Cct ober 1999

Ful | Copyright Statenent
Copyright (C The Internet Society (1999). Al Rights Reserved.

Thi s docunent and translations of it may be copied and furnished to
ot hers, and derivative works that conment on or otherwi se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |anguages ot her than
Engl i sh.

The Iimted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORVATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Ryan, et al. I nf or mati onal [Page 21]

