
Network Working Group V. Ryan
Request for Comments: 2713 S. Seligman
Category: Informational R. Lee
 Sun Microsystems, Inc.
 October 1999

 Schema for Representing Java(tm) Objects in an LDAP Directory

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 This document defines the schema for representing Java(tm) objects in
 an LDAP directory [LDAPv3]. It defines schema elements to represent
 a Java serialized object [Serial], a Java marshalled object [RMI], a
 Java remote object [RMI], and a JNDI reference [JNDI].

1. Introduction

 This document assumes that the reader has a general knowledge of the
 Java programming language [Java]. For brevity we use the term "Java
 object" in place of "object in the Java programming language"
 throughout this text.

 Traditionally, LDAP directories have been used to store data. Users
 and programmers think of the directory as a hierarchy of directory
 entries, each containing a set of attributes. You look up an entry
 from the directory and extract the attribute(s) of interest. For
 example, you can look up a person’s telephone number from the
 directory. Alternatively, you can search the directory for entries
 with a particular set of attributes. For example, you can search for
 all persons in the directory with the surname "Smith".

 For applications written in the Java programming language, a kind of
 data that is typically shared are Java objects themselves. For such
 applications, it makes sense to be able to use the directory as a
 repository for Java objects. The directory provides a centrally
 administered, and possibly replicated, service for use by Java
 applications distributed across the network.

Ryan, et al. Informational [Page 1]

RFC 2713 Schema for Java Objects October 1999

 For example, an application server might use the directory for
 "registering" objects representing the services that it manages, so
 that a client can later search the directory to locate those services
 as it needs.

 The motivation for this document is to define a common way for
 applications to store and retrieve Java objects from the directory.
 Using this common schema, any Java application that needs to read or
 store Java objects in the directory can do so in an interoperable
 way.

2 Representation of Java Objects

 This document defines schema elements to represent three types of
 Java objects: a Java serialized object, a Java marshalled object,
 and a JNDI reference. A Java remote object is stored as either a Java
 marshalled object or a JNDI reference.

2.1 Common Representations

 A Java object is stored in the LDAP directory by using the object
 class javaObject. This is the base class from which other Java object
 related classes derive: javaSerializedObject, javaMarshalledObject,
 and javaNamingReference. javaObject is an abstract object class,
 which means that a javaObject cannot exist by itself in the
 directory; only auxiliary or structural subclasses of it can exist in
 the directory.

 The object class javaContainer represents a directory entry dedicated
 to storing a Java object. It is a structural object class. In cases
 where a subclass of javaObject is mixed in with another structural
 object class, javaContainer is not required.

 The definitions for the object classes javaObject and javaContainer
 are presented in Section 4.

 The javaObject class has one mandatory attribute (javaClassName) and
 four optional attributes (javaClassNames, javaCodebase, javaDoc,
 description). javaClassName is a single valued attribute that is
 used to store the fully qualified name of the object’s Java class
 (for example, "java.lang.String"). This may be the object’s most
 derived class’s name, but does not have to be; that of a superclass
 or interface in some cases might be most appropriate. This attribute
 is intended for storing the name of the object’s "distinguished"
 class, that is, the class or interface with which the object should
 be identified.

Ryan, et al. Informational [Page 2]

RFC 2713 Schema for Java Objects October 1999

 javaClassNames is a multivalued attribute that is used to store the
 fully qualified names of the object’s Java classes and interfaces
 (for example, "java.lang.Byte"). Like all multivalued attributes, the
 javaClassNames attribute’s values are unordered and so no one value
 is more "distinguished" than the others. This attribute is intended
 for storing an object’s class and interface names and those of its
 ancestor classes and interfaces, although the list of values does not
 have to be complete. If the javaClassNames attribute is present, it
 should include the value of javaClassName.

 For example, suppose an object is stored in the directory with a
 javaClassName attribute of "java.io.FilePermission", and a
 javaClassNames attribute of {"java.security.Permission",
 "java.io.FilePermission", "java.security.Guard",
 "java.io.Serializable"}. An application searching a directory for
 Java objects might use javaClassName to produce a summary of the
 names and types of Java objects in that directory. Another
 application might use the javaClassNames attribute to find, for
 example, all java.security.Permission objects.

 javaCodebase is a multivalued attribute that is used to store the
 location(s) of the object’s class definition. javaDoc is used to
 store a pointer (URL) to the Java documentation for the class.
 description is used to store a textual description of a Java object
 and is defined in [v3Schema]. The definitions of these attributes are
 presented in Section 3.

2.2 Serialized Objects

 To "serialize" an object means to convert its state into a byte
 stream in such a way that the byte stream can be converted back into
 a copy of the object. A Java object is "serializable" if its class
 or any of its superclasses implements either the java.io.Serializable
 interface or its subinterface java.io.Externalizable.
 "Deserialization" is the process of converting the serialized form of
 an object back into a copy of the object. When an object is
 serialized, the entire tree of objects rooted at the object is also
 serialized. When it is deserialized, the tree is reconstructed. For
 example, suppose a serializable Book object contains (a serializable
 field of) an array of Page objects. When a Book object is
 serialized, so is the array of Page objects.

 The Java platform specifies a default algorithm by which serializable
 objects are serialized. A Java class can also override this default
 serialization with its own algorithm. [Serial] describes object
 serialization in detail.

Ryan, et al. Informational [Page 3]

RFC 2713 Schema for Java Objects October 1999

 When an object is serialized, information that identifies its class
 is recorded in the serialized stream. However, the class’s definition
 ("class file") itself is not recorded. It is the responsibility of
 the system that is deserializing the object to determine the
 mechanism to use for locating and loading the associated class
 definitions. For example, the Java application might include in its
 classpath a JAR file containing the class definitions of the
 serialized object, or load the class definitions using information
 from the directory, as explained below.

2.2.1 Representation in the Directory

 A serialized object is represented in the directory by the attributes
 javaClassName, javaClassNames, javaCodebase, and javaSerializedData,
 as defined in Section 3. The mandatory attribute,
 javaSerializedData, contains the serialized form of the object.
 Although the serialized form already contains the class name, the
 mandatory javaClassName attribute also records the class name of the
 serialized object so that applications can determined class
 information without having to first deserialize the object. The
 optional javaClassNames attribute is used to record additional class
 information about the serialized object. The optional javaCodebase
 attribute is used to record the locations of the class definitions
 needed to deserialize the serialized object.

 A directory entry that contains a serialized object is represented by
 the object class javaSerializedObject, which is a subclass of
 javaObject. javaSerializedObject is an auxiliary object class, which
 means that it needs to be mixed in with a structural object class.
 javaSerializedObject’s definition is given in Section 4.

2.3 Marshalled Objects

 To "marshal" an object means to record its state and codebase(s) in
 such a way that when the marshalled object is "unmarshalled," a copy
 of the original object is obtained, possibly by automatically loading
 the class definitions of the object. You can marshal any object that
 is serializable or remote (that is, implements the java.rmi.Remote
 interface). Marshalling is like serialization, except marshalling
 also records codebases. Marshalling is different from serialization
 in that marshalling treats remote objects specially. If an object is
 a java.rmi.Remote object, marshalling records the remote object’s
 "stub" (see Section 2.5), instead of the remote object itself. Like
 serialization, when an object is marshalled, the entire tree of
 objects rooted at the object is marshalled. When it is unmarshalled,
 the tree is reconstructed.

Ryan, et al. Informational [Page 4]

RFC 2713 Schema for Java Objects October 1999

 A "marshalled" object is the represented by the
 java.rmi.MarshalledObject class. Here’s an example of how to create
 MarshalledObjects for serializable and remote objects:

 java.io.Serializable sobj = ...;
 java.rmi.MarshalledObject mobj1 =
 new java.rmi.MarshalledObject(sobj);

 java.rmi.Remote robj = ...;
 java.rmi.MarshalledObject mobj2 =
 new java.rmi.MarshalledObject(robj);

 Then, to retrieve the original objects from the MarshalledObjects, do
 as follows:

 java.io.Serializable sobj = (java.io.Serializable) mobj1.get();
 java.io.Remote rstub = (java.io.Remote) mobj2.get();

 MarshalledObject is available only on the Java 2 Platform, Standard
 Edition, v1.2, and higher releases.

2.3.1 Representation in the Directory

 A marshalled object is represented in the directory by the attributes
 javaClassName, javaClassNames, and javaSerializedData, as defined in
 Section 3. The mandatory attribute, javaSerializedData, contains the
 serialized form of the marshalled object (that is, the serialized
 form of a MarshalledObject instance). The mandatory javaClassName
 attribute records the distinguished class name of the object before
 it has been marshalled. The optional javaClassNames attribute is
 used to record additional class information about the object before
 it has been marshalled.

 A directory entry that contains a marshalled object is represented by
 the object class javaMarshalledObject, which is a subclass of
 javaObject. javaMarshalledObject is an auxiliary object class, which
 means that it needs to be mixed in with a structural object class.
 javaMarshalledObject’s definition is given in Section 4.

 As evident in this description, a javaMarshalledObject differs from a
 javaSerializedObject only in the interpretation of the javaClassName
 and javaClassNames attributes.

Ryan, et al. Informational [Page 5]

RFC 2713 Schema for Java Objects October 1999

2.4 JNDI References

 Java Naming and Directory Interface(tm) (JNDI) is a directory access
 API specified in the Java programming language [JNDI]. It provides
 an object-oriented view of the directory, allowing Java objects to be
 added to and retrieved from the directory without requiring the
 client to manage data representation issues.

 JNDI defines the notion of a "reference" for use when an object
 cannot be stored in the directory directly, or when it is
 inappropriate or undesirable to do so. An object with an associated
 reference is stored in the directory indirectly, by storing its
 reference instead.

2.4.1 Contents of a Reference

 A JNDI reference is a Java object of class javax.naming.Reference.
 It consists of class information about the object being referenced
 and an ordered list of addresses. An address is a Java object of
 class javax.naming.RefAddr. Each address contains information on how
 to construct the object.

 A common use for JNDI references is to represent connections to a
 network service such as a database, directory, or file system. Each
 address may then identify a "communications endpoint" for that
 service, containing information on how to contact the service.
 Multiple addresses may arise for various reasons, such as replication
 or the object offering interfaces over more than one communication
 mechanism.

 A reference also contains information to assist in the creation of an
 instance of the object to which the reference refers. It contains
 the Java class name of that object, and the class name and location
 of the object factory to be used to create the object. The
 procedures for creating an object given its reference and the reverse
 are described in [JNDI].

2.4.2 Representation in the Directory

 A JNDI reference is stored in the directory by using the attributes
 javaClassName, javaClassNames, javaCodebase, javaReferenceAddress,
 and javaFactory, defined in Section 3. These attributes store
 information corresponding to the contents of a reference described
 above. javaReferenceAddress is a multivalued optional attribute for
 storing reference addresses. javaFactory is the optional attribute
 for storing the object factory’s fully qualified class name. The
 mandatory javaClassName attribute is used to store the name of the
 distinguished class of the object. The optional javaClassNames

Ryan, et al. Informational [Page 6]

RFC 2713 Schema for Java Objects October 1999

 attribute is used to record additional class and interface names.
 The optional javaCodebase attribute is used to store the locations of
 the object factory’s and the object’s class definitions.

 A directory entry containing a JNDI reference is represented by the
 object class javaNamingReference, which is a subclass of javaObject.
 javaNamingReference is an auxiliary object class, which means that it
 needs to be mixed in with a structural object class.
 javaNamingReference’s definition is given in Section 4.

2.5 Remote Objects

 The Java Remote Method Invocation (RMI) system [RMI] is a mechanism
 that enables an object on one Java virtual machine to invoke methods
 on an object in another Java virtual machine. Any object whose
 methods can be invoked in this way must implement the java.rmi.Remote
 interface. When such an object is invoked, its arguments are
 marshalled and sent from the local virtual machine to the remote one,
 where the arguments are unmarshalled and used. When the method
 terminates, the results are marshalled from the remote machine and
 sent to the caller’s virtual machine.

 To make a remote object accessible to other virtual machines, a
 program typically registers it with the RMI registry. The program
 supplies to the RMI registry the string name of the remote object and
 the remote object itself. When a program wants to access a remote
 object, it supplies the object’s string name to the RMI registry on
 the same machine as the remote object. The RMI registry returns to
 the caller a reference (called "stub") to the remote object. When
 the program receives the stub for the remote object, it can invoke
 methods on the remote object (through the stub). A program can also
 obtain references to remote objects as a result of remote calls to
 other remote objects or from other naming services. For example, the
 program can look up a reference to a remote object from an LDAP
 server that supports the schema defined in this document.

 The string name accepted by the RMI registry has the syntax
 "rmi://hostname:port/remoteObjectName", where "hostname" and "port"
 identify the machine and port on which the RMI registry is running,
 respectively, and "remoteObjectName" is the string name of the remote
 object. "hostname", "port", and the prefix, "rmi:", are optional. If
 "hostname" is not specified, it defaults to the local host. If
 "port" is not specified, it defaults to 1099. If "remoteObjectName"
 is not specified, then the object being named is the RMI registry
 itself. See [RMI] for details.

Ryan, et al. Informational [Page 7]

RFC 2713 Schema for Java Objects October 1999

 RMI can be supported using different protocols: the Java Remote
 Method Protocol (JRMP) and the Internet Inter-ORB Protocol (IIOP).
 The JRMP is a specialized protocol designed for RMI; the IIOP is the
 standard protocol for communication between CORBA objects [CORBA].
 RMI over IIOP allows Java remote objects to communicate with CORBA
 objects which might be written in a non-Java programming language
 [RMI-IIOP].

2.5.1 Representation in the Directory

 Remote objects that use the IIOP are represented in the directory as
 CORBA object references [CORBA-LDAP]. Remote objects that use the
 JRMP are represented in the directory in one of two ways: as a
 marshalled object, or as a JNDI reference.

 A marshalled object records the codebases of the remote object’s stub
 and any serializable or remote objects that it references, and
 replaces remote objects with their stubs. To store a Remote object
 as a marshalled object (java.rmi.MarshalledObject), you first create
 a java.rmi.MarshalledObject instance for it.

 java.rmi.Remote robj = ...;
 java.rmi.MarshalledObject mobj =
 new java.rmi.MarshalledObject(robj);

 You can then store the MarshalledObject instance as a
 javaMarshalledObject. The javaClassName attribute should contain the
 fully qualified name of the distinguished class of the remote object.
 The javaClassNames attribute should contain the names of the classes
 and interfaces of the remote object. To read the remote object back
 from the directory, first deserialize the contents of the
 javaSerializedData to get a MarshalledObject (mobj), then retrieve it
 from the MarshalledObject as follows:

 java.rmi.Remote robj = (java.rmi.Remote)mobj.get();

 This returns the remote stub, which you can then use to invoke remote
 methods.

 MarshalledObject is available only on the Java 2 Platform, Standard
 Edition, v1.2 and higher releases. Therefore, a remote object stored
 as a MarshalledObject can only be read by clients using the the Java
 2 Platform, Standard Edition, v1.2 or higher releases.

Ryan, et al. Informational [Page 8]

RFC 2713 Schema for Java Objects October 1999

 To store a remote object as a JNDI reference, you first create a
 javax.naming.Reference object instance for it using the remote
 object’s string name as it has been, or will be, recorded with the
 RMI registry, with the additional restriction that the "rmi:" prefix
 must be present. Here’s an example:

 javax.naming.Reference ref = new javax.naming.Reference(
 obj.getClass().getName(),
 new javax.naming.StringRefAddr("URL",
 "rmi://rserver/AppRemoteObjectX"));

 You then store the javax.naming.Reference instance as a
 javaNamingReference. The advantage of using a JNDI reference is that
 this can be done without a reference to the remote object. In fact,
 the remote object does not have to exist at the time that this
 recording in the directory is made. The remote object needs to exist
 and be bound with the RMI registry when the object is looked up from
 the directory.

2.6 Serialized Objects Vs. Marshalled Objects Vs. References

 The object classes defined in this document store different aspects
 of the Java objects.

 A javaSerializedObject or a serializable object stored as a
 javaMarshalledObject represents the object itself, while a
 javaNamingReference or a remote object stored as a
 javaMarshalledObject represents a "pointer" to the object.

 When storing a serializable object in the directory, you have a
 choice of storing it as a javaSerializedObject or a
 javaMarshalledObject. The javaSerializedObject object class provides
 the basic way in which to store serializable objects. When you create
 an LDAP entry using the javaSerializableObject object class, you must
 explicitly set the javaCodebase attribute if you want readers of that
 entry to know where to load the class definitions of the object. When
 you create an LDAP entry using the javaMarshalledObject object class,
 you use the MarshalledObject class. The MarshalledObject class uses
 the RMI infrastructure available on the Java platform to automate how
 codebase information is gathered and recorded, thus freeing you from
 having to set the javaCodebase attribute. On the other hand, the
 javaCodebase attribute is human-readable and can be updated easily by
 using text-based tools without having to change other parts of the
 entry. This allows you, for instance, to move the class definitions
 to another location and then update the javaCodebase attribute to
 reflect the move without having to update the serialized object
 itself.

Ryan, et al. Informational [Page 9]

RFC 2713 Schema for Java Objects October 1999

 A javaNamingReference provides a way of recording address information
 about an object which itself is not directly stored in the directory.
 A remote object stored as a javaMarshalledObject also records address
 information (the object’s "stub") of an object which itself is not
 directory stored in the directory. In other words, you can think of
 these as compact representations of the information required to
 access the object.

 A javaNamingReference typically consists of a small number of human-
 readable strings. Standard text-based tools for directory
 administration may therefore be used to add, read, or modify
 reference entries -- if so desired -- quite easily. Serialized and
 marshalled objects are not intended to be read or manipulated
 directly by humans.

3 Attribute Type Definitions

 The following attribute types are defined in this document:

 javaClassName
 javaClassNames
 javaCodebase
 javaSerializedData
 javaFactory
 javaReferenceAddress
 javaDoc

3.1 javaClassName

 This attribute stores the fully qualified name of the Java object’s
 "distinguished" class or interface (for example, "java.lang.String").
 It is a single-valued attribute. This attribute’s syntax is ’
 Directory String’ and its case is significant.

 (1.3.6.1.4.1.42.2.27.4.1.6
 NAME ’javaClassName’
 DESC ’Fully qualified name of distinguished Java class or
 interface’
 EQUALITY caseExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
)

Ryan, et al. Informational [Page 10]

RFC 2713 Schema for Java Objects October 1999

3.2 javaCodebase

 This attribute stores the Java class definition’s locations. It
 specifies the locations from which to load the class definition for
 the class specified by the javaClassName attribute. Each value of
 the attribute contains an ordered list of URLs, separated by spaces.
 For example, a value of "url1 url2 url3" means that the three
 (possibly interdependent) URLs (url1, url2, and url3) form the
 codebase for loading in the Java class definition.

 If the javaCodebase attribute contains more than one value, each
 value is an independent codebase. That is, there is no relationship
 between the URLs in one value and those in another; each value can be
 viewed as an alternate source for loading the Java class definition.
 See [Java] for information regarding class loading.

 This attribute’s syntax is ’IA5 String’ and its case is significant.

 (1.3.6.1.4.1.42.2.27.4.1.7
 NAME ’javaCodebase’
 DESC ’URL(s) specifying the location of class definition’
 EQUALITY caseExactIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
)

3.3 javaClassNames

 This attribute stores the Java object’s fully qualified class or
 interface names (for example, "java.lang.String"). It is a
 multivalued attribute. When more than one value is present, each is
 the name of a class or interface, or ancestor class or interface, of
 this object.

 This attribute’s syntax is ’Directory String’ and its case is
 significant.

 (1.3.6.1.4.1.42.2.27.4.1.13
 NAME ’javaClassNames’
 DESC ’Fully qualified Java class or interface name’
 EQUALITY caseExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
)

Ryan, et al. Informational [Page 11]

RFC 2713 Schema for Java Objects October 1999

3.4 javaSerializedData

 This attribute stores the serialized form of a Java object. The
 serialized form is described in [Serial].

 This attribute’s syntax is ’Octet String’.

 (1.3.6.1.4.1.42.2.27.4.1.8
 NAME ’javaSerializedData
 DESC ’Serialized form of a Java object’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
 SINGLE-VALUE
)

3.5 javaFactory

 This attribute stores the fully qualified class name of the object
 factory (for example, "com.wiz.jndi.WizObjectFactory") that can be
 used to create an instance of the object identified by the
 javaClassName attribute.

 This attribute’s syntax is ’Directory String’ and its case is
 significant.

 (1.3.6.1.4.1.42.2.27.4.1.10
 NAME ’javaFactory’
 DESC ’Fully qualified Java class name of a JNDI object factory’
 EQUALITY caseExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
)

3.6 javaReferenceAddress

 This attribute represents the sequence of addresses of a JNDI
 reference. Each of its values represents one address, a Java object
 of type javax.naming.RefAddr. Its value is a concatenation of the
 address type and address contents, preceded by a sequence number (the
 order of addresses in a JNDI reference is significant). For example:

 #0#TypeA#ValA
 #1#TypeB#ValB
 #2#TypeC##rO0ABXNyABpq...

 In more detail, the value is encoded as follows:

Ryan, et al. Informational [Page 12]

RFC 2713 Schema for Java Objects October 1999

 The delimiter is the first character of the value. For readability
 the character ’#’ is recommended when it is not otherwise used
 anywhere in the value, but any character may be used subject to
 restrictions given below.

 The first delimiter is followed by the sequence number. The sequence
 number of an address is its position in the JNDI reference, with the
 first address being numbered 0. It is represented by its shortest
 string form, in decimal notation.

 The sequence number is followed by a delimiter, then by the address
 type, and then by another delimiter. If the address is of Java class
 javax.naming.StringRefAddr, then this delimiter is followed by the
 value of the address contents (which is a string). Otherwise, this
 delimiter is followed immediately by another delimiter, and then by
 the Base64 encoding of the serialized form of the entire address.

 The delimiter may be any character other than a digit or a character
 contained in the address type. In addition, if the address contents
 is a string, the delimiter may not be the first character of that
 string.

 This attribute’s syntax is ’Directory String’ and its case is
 significant. It can contain multiple values.

 (1.3.6.1.4.1.42.2.27.4.1.11
 NAME ’javaReferenceAddress’
 DESC ’Addresses associated with a JNDI Reference’
 EQUALITY caseExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
)

3.7 javaDoc

 This attribute stores a pointer to the Java documentation for the
 class. It’s value is a URL. For example, the following URL points to
 the specification of the java.lang.String class:
 http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html

 This attribute’s syntax is ’IA5 String’ and its case is significant.

 (1.3.6.1.4.1.42.2.27.4.1.12
 NAME ’javaDoc’
 DESC ’The Java documentation for the class’
 EQUALITY caseExactIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
)

Ryan, et al. Informational [Page 13]

RFC 2713 Schema for Java Objects October 1999

4 Object Class Definitions

 The following object classes are defined in this document:

 javaContainer
 javaObject
 javaSerializedObject
 javaMarshalledObject
 javaNamingReference

4.1 javaContainer

 This structural object class represents a container for a Java
 object.

 (1.3.6.1.4.1.42.2.27.4.2.1
 NAME ’javaContainer’
 DESC ’Container for a Java object’
 SUP top
 STRUCTURAL
 MUST (cn)
)

4.2 javaObject

 This abstract object class represents a Java object. A javaObject
 cannot exist in the directory; only auxiliary or structural
 subclasses of it can exist in the directory.

 (1.3.6.1.4.1.42.2.27.4.2.4
 NAME ’javaObject’
 DESC ’Java object representation’
 SUP top
 ABSTRACT
 MUST (javaClassName)
 MAY (javaClassNames $
 javaCodebase $
 javaDoc $
 description)
)

Ryan, et al. Informational [Page 14]

RFC 2713 Schema for Java Objects October 1999

4.3 javaSerializedObject

 This auxiliary object class represents a Java serialized object. It
 must be mixed in with a structural object class.

 (1.3.6.1.4.1.42.2.27.4.2.5
 NAME ’javaSerializedObject’
 DESC ’Java serialized object’
 SUP javaObject
 AUXILIARY
 MUST (javaSerializedData)
)

4.4 javaMarshalledObject

 This auxiliary object class represents a Java marshalled object. It
 must be mixed in with a structural object class.

 (1.3.6.1.4.1.42.2.27.4.2.8
 NAME ’javaMarshalledObject’
 DESC ’Java marshalled object’
 SUP javaObject
 AUXILIARY
 MUST (javaSerializedData)
)

4.5 javaNamingReference

 This auxiliary object class represents a JNDI reference. It must be
 mixed in with a structural object class.

 (1.3.6.1.4.1.42.2.27.4.2.7
 NAME ’javaNamingReference’
 DESC ’JNDI reference’
 SUP javaObject
 AUXILIARY
 MAY (javaReferenceAddress $
 javaFactory)
)

Ryan, et al. Informational [Page 15]

RFC 2713 Schema for Java Objects October 1999

5. Security Considerations

 Serializing an object and storing it into the directory enables (a
 copy of) the object to be examined and used outside the environment
 in which it was originally created. The directory entry containing
 the serialized object could be read and modified within the
 constraints imposed by the access control mechanisms of the
 directory. If an object contains sensitive information or
 information that could be misused outside of the context in which it
 was created, the object should not be stored in the directory. For
 more details on security issues relating to serialization in general,
 see [Serial].

6. Acknowledgements

 We would like to thank Joseph Fialli, Peter Jones, Roger Riggs, Bob
 Scheifler, and Ann Wollrath of Sun Microsystems for their comments
 and suggestions.

7. References

 [CORBA] The Object Management Group, "Common Object Request
 Broker Architecture Specification 2.0,"
 http://www.omg.org

 [CORBA-LDAP] Ryan, V., Lee, R. and S. Seligman, "Schema for
 Representing CORBA Object References in an LDAP
 Directory", RFC 2714, October 1999.

 [Java] Ken Arnold and James Gosling, "The Java(tm) Programming
 Language," Second Edition, ISBN 0-201-31006-6.

 [JNDI] Java Software, Sun Microsystems, Inc., "The Java(tm)
 Naming and Directory Interface (tm) Specification,"
 February 1998. http://java.sun.com/products/jndi/

 [LDAPv3] Wahl, M., Howes, T. and S. Kille, "Lightweight
 Directory Access Protocol (v3)", RFC 2251, December
 1997.

 [RMI] Java Software, Sun Microsystems, Inc., "Remote Method
 Invocation," November 1998.
 http://java.sun.com/products/jdk/1.2/docs/guide/rmi

Ryan, et al. Informational [Page 16]

RFC 2713 Schema for Java Objects October 1999

 [RMI-IIOP] IBM and Java Software, Sun Microsystems, Inc., "RMI over
 IIOP", June 1999.
 http://java.sun.com/products/rmi-iiop/

 [Serial] Java Software, Sun Microsystems, Inc., "Object
 Serialization Specification," November 1998.
 http://java.sun.com/products/jdk/1.2/docs/guide/
 serialization

 [v3Schema] Wahl, M., "A Summary of the X.500(96) User Schema for
 use with LDAPv3", RFC 2256, December 1997.

8. Authors’ Addresses

 Vincent Ryan
 Sun Microsystems, Inc.
 Mail Stop EDUB03
 901 San Antonio Road
 Palo Alto, CA 94303
 USA

 Phone: +353 1 819 9151
 EMail: vincent.ryan@ireland.sun.com

 Scott Seligman
 Sun Microsystems, Inc.
 Mail Stop UCUP02-209
 901 San Antonio Road
 Palo Alto, CA 94303
 USA

 Phone: +1 408 863 3222
 EMail: scott.seligman@eng.sun.com

 Rosanna Lee
 Sun Microsystems, Inc.
 Mail Stop UCUP02-206
 901 San Antonio Road
 Palo Alto, CA 94303
 USA

 Phone: +1 408 863 3221
 EMail: rosanna.lee@eng.sun.com

Ryan, et al. Informational [Page 17]

RFC 2713 Schema for Java Objects October 1999

Appendix - LDAP Schema

 -- Attribute types --

 (1.3.6.1.4.1.42.2.27.4.1.6
 NAME ’javaClassName’
 DESC ’Fully qualified name of distinguished Java class or interface’
 EQUALITY caseExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
)

 (1.3.6.1.4.1.42.2.27.4.1.7
 NAME ’javaCodebase’
 DESC ’URL(s) specifying the location of class definition’
 EQUALITY caseExactIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
)

 (1.3.6.1.4.1.42.2.27.4.1.8
 NAME ’javaSerializedData’
 DESC ’Serialized form of a Java object’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
 SINGLE-VALUE
)

 (1.3.6.1.4.1.42.2.27.4.1.10
 NAME ’javaFactory’
 DESC ’Fully qualified Java class name of a JNDI object factory’
 EQUALITY caseExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
)

 (1.3.6.1.4.1.42.2.27.4.1.11
 NAME ’javaReferenceAddress’
 DESC ’Addresses associated with a JNDI Reference’
 EQUALITY caseExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
)

 (1.3.6.1.4.1.42.2.27.4.1.12
 NAME ’javaDoc’
 DESC ’The Java documentation for the class’
 EQUALITY caseExactIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
)

Ryan, et al. Informational [Page 18]

RFC 2713 Schema for Java Objects October 1999

 (1.3.6.1.4.1.42.2.27.4.1.13
 NAME ’javaClassNames’
 DESC ’Fully qualified Java class or interface name’
 EQUALITY caseExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
)

 -- from RFC-2256 --

 (2.5.4.13
 NAME ’description’
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{1024}
)

 -- Object classes --

 (1.3.6.1.4.1.42.2.27.4.2.1
 NAME ’javaContainer’
 DESC ’Container for a Java object’
 SUP top
 STRUCTURAL
 MUST (cn)
)

 (1.3.6.1.4.1.42.2.27.4.2.4
 NAME ’javaObject’
 DESC ’Java object representation’
 SUP top
 ABSTRACT
 MUST (javaClassName)
 MAY (javaClassNames $ javaCodebase $ javaDoc $ description)
)

 (1.3.6.1.4.1.42.2.27.4.2.5
 NAME ’javaSerializedObject’
 DESC ’Java serialized object’
 SUP javaObject
 AUXILIARY
 MUST (javaSerializedData)
)

Ryan, et al. Informational [Page 19]

RFC 2713 Schema for Java Objects October 1999

 (1.3.6.1.4.1.42.2.27.4.2.7
 NAME ’javaNamingReference’
 DESC ’JNDI reference’
 SUP javaObject
 AUXILIARY
 MAY (javaReferenceAddress $ javaFactory)
)

 (1.3.6.1.4.1.42.2.27.4.2.8
 NAME ’javaMarshalledObject’
 DESC ’Java marshalled object’
 SUP javaObject
 AUXILIARY
 MUST (javaSerializedData)
)

 -- Matching rule from ISO X.520 --

 (2.5.13.5
 NAME ’caseExactMatch’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
)

Ryan, et al. Informational [Page 20]

RFC 2713 Schema for Java Objects October 1999

Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Ryan, et al. Informational [Page 21]

