
Network Working Group D. Eastlake 3rd
Request for Comments: 2777 Motorola
Category: Informational February 2000

 Publicly Verifiable Nomcom Random Selection

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This document describes a method for making random selections in such
 a way that the unbiased nature of the choice is publicly verifiable.
 As an example, the selection of the voting members of the IETF
 Nominations Committee from the pool of eligible volunteers is used.
 Similar techniques would be applicable to other cases.

Acknowledgement

 Matt Crawford made major contributions to this document.

Table of Contents

 1. Introduction..2
 2. General Flow of a Publicly Verifiable Process...........2
 2.1 Determination of the Pool..............................2
 2.2 Publication of the Algorithm...........................2
 2.3 Publication of Selection...............................3
 3. Randomness..3
 3.1 Sources of Randomness..................................3
 3.2 Skew...4
 3.3 Entropy Needed...4
 4. A Suggested Precise Algorithm...........................5
 5. Fully Worked Example....................................6
 6. Security Considerations.................................7
 7. Reference Code...8
 Appendix: History of NomCom Member Selection..............14
 References..15
 Author’s Address..15
 Full Copyright Statement..................................16

Eastlake Informational [Page 1]

RFC 2777 Verifiable Random Selection February 2000

1. Introduction

 Under the IETF rules, each year 10 persons are randomly selected from
 among the eligible persons who volunteer to be the voting members of
 the nominations committee (NomCom) to nominate members of the
 Internet Engineering Steering Group (IESG) and the Internet
 Architecture Board (IAB) [RFC 2727]. The number of eligible
 volunteers in recent years has varied in the approximate range of 40
 to 60.

 It is highly desireable that the random selection of the voting
 NomCom be done in a unimpeachable fashion so that no reasonable
 charges of bias or favoritism can be brought. This is for the
 protection of the IETF from bias and protection of the administrator
 of the selection (currently, the appointed non-voting NomCom chair)
 from suspicion of bias.

 A method such that public information will enable any person to
 verify the randomness of the selection meets this criterion. This
 document gives an example of such a method.

2. General Flow of a Publicly Verifiable Process

 In general, a selection of NomCom members publicly verifiable as
 unbiased or similar selection could follow the three steps given
 below.

2.1 Determination of the Pool

 First, you need to determine the pool from which the selection is to
 be made.

 Volunteers are solicited by the appointed (non-voting) NomCom chair.
 Their names are then passed through the IETF Secretariat to check
 eligibility. (Current eligibility criteria relate to IETF meeting
 attendance, records of which are maintained by the Secretariat.) The
 full list of eligible volunteers is made public early enough that
 there is a reasonable time to resolve any disputes as to who should
 be in the pool, probably a week to ten days before the selection.

2.2 Publication of the Algorithm

 The exact algorithm to be used, including the public future sources
 of randomness, is made public. For example, the members of the final
 list of eligible volunteers are ordered by publicly numbering them,
 several public future sources of randomness such as government run

Eastlake Informational [Page 2]

RFC 2777 Verifiable Random Selection February 2000

 lotteries are specified, and an exact algorithm is specified whereby
 eligible volunteers are selected based on a strong hash function [RFC
 1750] of these future sources of randomness.

2.3 Publication of Selection

 When the prespecified sources of randomness produce their output,
 those values plus a summary of the execution of the algorithm for
 selection should be announced so that anyone can verify that the
 correct randomness source values were used and the algorithm properly
 executed. A cut off time for any complaint that the algorithm was
 run with the wrong inputs or not faithfully executed should be
 specified to finalize the output and provide a stable NomCom.

3. Randomness

 The crux of the unbiased nature of the selection is that it is based
 exactly on random information which will be revealed in the future
 and thus can not be known to the person specifying the algorithm by
 which that random information will be used to select the NomCom
 members. The random information must be such that it will be
 publicly revealed in a timely fashion.

 The random sources should not include anything that any reasonable
 person would believe to be under the control or influence of the IETF
 or its components, such as IETF meeting attendance statistics,
 numbers of documents issued, or the like.

3.1 Sources of Randomness

 Examples of good information to use are lottery winning numbers for
 specified runnings of specified lotteries. Particularly for
 government run lotteries, great care is usually taken to see that
 they produce random quantities. Even in the unlikely case one were
 to have been rigged, it would almost certainly be in connection with
 winning money in the lottery, not in connection with IETF use.

 Other possibilities are such things as the closing price of a stock
 on a particular day, daily balance in the US Treasury on a specified
 day, the volume of trading on the New York Stock exchange on a
 specified day, etc. (However, the reference code given below will not
 handle integers that are too large.) Sporting events can be used but
 only with care to specify exactly what quantities are being presumed
 random and what will be done if they are cancelled or delayed.

 It is important that the last source of randomness, chronologically,
 produce a substantial amount of the entropy needed. If most of the
 randomness has come from the earlier of the specified sources, and

Eastlake Informational [Page 3]

RFC 2777 Verifiable Random Selection February 2000

 someone has even limited influence on the final source, they might do
 an exhaustive analysis and exert such influence so as to bias the
 selection in the direction they wanted. Thus it is best for the last
 source to be an especially strong and unbiased source of a large
 amount of randomness such as a government run lottery.

 It is best not to use too many different sources. Every additional
 source increases the probability that it might be delayed or
 cancelled calling into play contingency plans or, worst of all,
 possibly creating a situation that was not anticipated. This would
 either require arbitrary judgement by the Nomcom chair, defeating the
 randomness of the selection, or a re-run with a new set of sources,
 causing much delay. Probably a good number of sources is three.

3.2 Skew

 Many of the sources of randomness suggested above produce data which
 is not uniformly distributed. This is certainly true of stock prices
 and horse race results, for example. However, use of a strong mixing
 function [RFC 1750] will extract the available entropy and produce a
 hash value whose bits, remainder modulo a small divisor, etc., are
 uniformly distributed.

3.3 Entropy Needed

 What we are doing is selection N items without replacement from a
 population of P items. The number of different ways to do this is as
 follows, where "!" represents the factorial function:

 P!

 N! * (P - N)!

 To do this in a completely random fashion requires as many random
 bits as the logarithm base 2 of that quantity. Some sample
 calculated approximate number of random bits for the selection of 10
 nomcom members from various pool sizes is given below:

 Random Selection of Ten Items From Pool

 Pool size 20 25 30 35 40 50 60 75 100
 Bits needed 18 22 25 28 30 34 37 40 44

 Using an inadequate number of bits means that not all of the possible
 selections would be available. For a substantially inadequate amount
 of entropy, there would be substantial correlations between the
 selection of two members of the pool, for example. However, as a
 practical matter, for pool sizes likely to be encountered in IETF

Eastlake Informational [Page 4]

RFC 2777 Verifiable Random Selection February 2000

 nomcom membership selection, 40 bits of entropy should always be
 adequate. Even if there is a large pool and theoretically more bits
 are needed for complete randomness, 40 bits of entropy will assure
 that the probability of selection of each pool member differs from
 that of other pool members, the correlation between the selection of
 any pair of pool members, etc., differs only insignificantly from
 that for completely random selection.

 An MD5 [RFC 1321] hash has 128 bits and therefore can produce no more
 than that number of bits of entropy. However, this is three times
 what is likely to ever been needed for IETF nomcom membership
 selection.

4. A Suggested Precise Algorithm

 It is important that a precise algorithm be given for mixing the
 random sources specified and making the selection based thereon.
 Sources suggested above each produce either a single positive number
 (i.e., closing price for a stock) or a small set of positive numbers
 (many lotteries provide 6 numbers in the range of 1 through 40 or the
 like, a sporting event could produce the scores of two teams, etc.).
 A sample precise algorithm is as follows:

 For each source producing multiple numeric values, represent each as
 a decimal number terminated by a period (or with a period separating
 the whole from the fractional part) and without leading zeroes
 (except for a single leading zero if the integer part is zero) or
 trailing zeroes after the period. Order them from smallest to the
 largest and concatenate them and follow the results by a "/". For
 each source producing a single number, simply represent it as above
 with a trailing "/". At this point you have a string for each
 source, say s1/, s2/, ... Concatenate these strings in a pre-
 specified order and represent each character as its ASCII code
 producing s1/s2/.../.

 You can then produce a sequence of random values derived from a
 strong mixing of these sources by calculating the MD5 hash [RFC 1321]
 of this string prefixed and suffixed with a zero byte for the first
 value, the string prefixed and suffixed by a 0x01 byte for the second
 value, etc. Treat each of these derived random values as a positive
 multiprecision integer. If there are P eligible volunteers, select
 the first voting member by dividing the first derived random value by
 P and using the remainder plus one as the position of the selectee in
 the ordered list or volunteers. Select the second voting member by
 dividing the second derived random value by P-1 and using the
 remainder plus one as the position of the selectee in the list with
 the first selectee eliminated. Etc.

Eastlake Informational [Page 5]

RFC 2777 Verifiable Random Selection February 2000

 It is recommended that alphanumeric random sources be avoided due to
 the greater difficulty in canonicalizing them in an independently
 repeatable fashion; however, if any are used, all white space,
 punctuation, and special characters should be removed and all letters
 set to upper case. This will leave only an unbroken sequence of
 letters A-Z and digits 0-9 which can be treated as a canonicalized
 number above and suffixed with a "/".

5. Fully Worked Example

 Assume the following ordered list of 25 eligible volunteers is
 published in advance of selection:

 1. John 11. Pollyanna 21. Pride
 2. Mary 12. Pendragon 22. Sloth
 3. Bashful 13. Pandora 23. Envy
 4. Dopey 14. Faith 24. Anger
 5. Sleepy 15. Hope 25. Kasczynski
 6. Grouchy 16. Charity
 7. Doc 17. Love
 8. Sneazy 18. Longsuffering
 9. Handsome 19. Chastity
 10. Cassandra 20. Smith

 Assume the following (fake example) ordered list of randomness
 sources:

 1. The People’s Democracy of Betastani State Lottery six winning
 numbers (ignoring the seventh "extra" number) for 1 October 1998.
 2. Numbers of the winning horses at Hialeia for all races for the
 first day on or after x September 1998 on which at least two
 races are run.
 3. The Republic of Alphaland State Lottery daily number for 1
 October 1998 treated as a single four digit integer.
 4. Closing price of Example Corporation stock on the Lunar Stock
 Exchange for the first business day after x September 1998 when
 it trades.

 Randomness publicly produced:

 Source 1: 9, 18, 26, 34, 41, 45
 Source 2: 2, 5, 12, 8, 10
 Source 3: 9319
 Source 4: 13 11/16

 Resulting key string:

 9.18.26.34.41.45./2.5.8.10.12./9319./13.6875/

Eastlake Informational [Page 6]

RFC 2777 Verifiable Random Selection February 2000

 The table below gives the hex of the MD5 of the above key string
 bracketed with a byte whose value is successively 0x00, 0x01, 0x02,
 through 0x09. The divisor for the number size of the remaining pool
 at each stage is given and the index of the selectee as per the
 original number of those in the pool.

 index hex value of MD5 div selected
 1 746612D0A75D2A2A39C0A957CF825F8D 25 -> 12 <-
 2 95E31A4429ED5AAF7377A15A8E10CD9D 24 -> 6 <-
 3 AFB2B3FD30E82AD6DC35B4D2F1CFC77A 23 -> 8 <-
 4 06821016C2A2EA14A6452F4A769ED1CC 22 -> 3 <-
 5 94DA30E11CA7F9D05C66D0FD3C75D6F7 21 -> 2 <-
 6 2FAE3964D5B1DEDD33FDA80F4B8EF45E 20 -> 24 <-
 7 F1E7AB6753A773EFE46393515FDA8AF8 19 -> 11 <-
 8 700B81738E07DECB4470879BEC6E0286 18 -> 19 <-
 9 1F23F8F8F8E5638A29D332BC418E0689 17 -> 15 <-
 10 61A789BA86BF412B550A5A05E821E0ED 16 -> 22 <-

 Resulting selection, in order selected:

 1. Pendragon (12) 6. Anger (24)
 2. Grouchy (6) 7. Pollyanna (11)
 3. Sneazy (8) 8. Chastity (19)
 4. Bashful (3) 9. Hope (15)
 5. Mary (2) 10. Sloth (22)

6. Security Considerations

 Careful choice of should be made of randomness inputs so that there
 is no reasonable suspicion that they are under the control of the
 administrator. Guidelines given above to use a small number of
 inputs with a substantial amount of entropy from the last shoud be
 followed. And equal care needs to be given that the algorithm
 selected is faithfully executed with the designated inputs values.
 Publication of the results and a week or so window for the community
 of interest to duplicate the calculations should give a reasonable
 assurance against implementation tampering.

 To maintain the unpredictable character of selections, should a
 member of the nomcom need to be replaced due to death, resignation,
 expulsion, etc., new publicly announced future random sources should
 be used for the selection of their replacement.

Eastlake Informational [Page 7]

RFC 2777 Verifiable Random Selection February 2000

7. Reference Code

 This code makes use of the MD5 reference code from [RFC 1321] ("RSA
 Data Security, Inc. MD5 Message-Digest Algorithm"). The portion of
 the code dealing with multiple floating point numbers was written by
 Matt Crawford.

 /**
 *
 * Reference code for
 * "Publicly Verifiable Nomcom Random Selection"
 * Donald E. Eastlake 3rd
 *
 **/
 #include <limits.h>
 #include <math.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 #include "global.h"
 #include "MD5.h"

 /* local prototypes */
 int longremainder (unsigned char divisor,
 unsigned char dividend[16]);
 int getinteger (char *string);
 double NPentropy (int N, int P);

 /* limited to 16 inputs of up to sixteen integers each */
 /**/

 main ()
 {
 int i, j, k, k2, err, keysize, pool, selection;
 unsigned char unch, uc16[16], remaining, *selected;
 long int temp, array[16];
 MD5_CTX ctx;
 char buffer[257], key [800], sarray[16][256];

 pool = getinteger ("Type size of pool:\n");
 if (pool > 255)

 {
 printf ("Pool too big.\n");
 exit (1);
 }

Eastlake Informational [Page 8]

RFC 2777 Verifiable Random Selection February 2000

 selected = (unsigned char *) malloc (pool);
 if (!selected)
 {
 printf ("Out of memory.\n");
 exit (1);
 }
 selection = getinteger ("Type number of items to be selected:\n");
 if (selection > pool)
 {
 printf ("Pool too small.\n");
 exit (1);
 }
 if (selection == pool)
 {
 printf ("All of the pool is selected.\n");
 exit (0);
 }
 err = printf ("Approximately %.1f bits of entropy needed.\n",
 NPentropy (selection, pool) + 0.1);
 if (err <= 0) exit (1);
 for (i = 0, keysize = 0; i < 16; ++i)
 {
 if (keysize > 500)
 {
 printf ("Too much input.\n");
 exit (1);
 }
 /* get the "random" inputs. echo back to user so the user may
 be able to tell if truncation or other glitches occur. */
 err = printf (
 "\nType #%d randomness or ’end’ followed by new line.\n"
 "Up to 16 integers or the word ’float’ followed by up\n"
 "to 16 x.y format reals.\n", i+1);
 if (err <= 0) exit (1);
 gets (buffer);
 j = sscanf (buffer,
 "%ld%ld%ld%ld%ld%ld%ld%ld%ld%ld%ld%ld%ld%ld%ld%ld",
 &array[0], &array[1], &array[2], &array[3],
 &array[4], &array[5], &array[6], &array[7],
 &array[8], &array[9], &array[10], &array[11],
 &array[12], &array[13], &array[14], &array[15]);
 if (j == EOF)
 exit (j);
 if (!j)
 if (buffer[0] == ’e’)
 break;

 else

Eastlake Informational [Page 9]

RFC 2777 Verifiable Random Selection February 2000

 { /* floating point code by Matt Crawford */
 j = sscanf (buffer,
 "float %ld.%[0-9]%ld.%[0-9]%ld.%[0-9]%ld.%[0-9]"
 "%ld.%[0-9]%ld.%[0-9]%ld.%[0-9]%ld.%[0-9]"
 "%ld.%[0-9]%ld.%[0-9]%ld.%[0-9]%ld.%[0-9]"
 "%ld.%[0-9]%ld.%[0-9]%ld.%[0-9]%ld.%[0-9]",
 &array[0], sarray[0], &array[1], sarray[1],
 &array[2], sarray[2], &array[3], sarray[3],
 &array[4], sarray[4], &array[5], sarray[5],
 &array[6], sarray[6], &array[7], sarray[7],
 &array[8], sarray[8], &array[9], sarray[9],
 &array[10], sarray[10], &array[11], sarray[11],
 &array[12], sarray[12], &array[13], sarray[13],
 &array[14], sarray[14], &array[15], sarray[15]);
 if (j == 0 || j & 1)
 printf ("Bad format.");
 else {
 for (k = 0, j /= 2; k < j; k++)
 {
 /* strip trailing zeros */
 for (k2=strlen(sarray[k]); sarray[k][--k2]==’0’;)
 sarray[k][k2] = ’\0’;
 err = printf ("%ld.%s\n", array[k], sarray[k]);
 if (err <= 0) exit (1);
 keysize += sprintf (&key[keysize], "%ld.%s",
 array[k], sarray[k]);
 }
 keysize += sprintf (&key[keysize], "/");
 }
 }
 else
 { /* sort values, not a very efficient algorithm */
 for (k2 = 0; k2 < j - 1; ++k2)
 for (k = 0; k < j - 1; ++k)
 if (array[k] > array[k+1])
 {
 temp = array[k];
 array[k] = array[k+1];
 array[k+1] = temp;
 }
 for (k = 0; k < j; ++k)
 { /* print for user check */
 err = printf ("%ld ", array[k]);
 if (err <= 0) exit (1);
 keysize += sprintf (&key[keysize], "%ld.", array[k]);
 }
 keysize += sprintf (&key[keysize], "/");
 }

Eastlake Informational [Page 10]

RFC 2777 Verifiable Random Selection February 2000

 } /* end for i */

 /* have obtained all the input, now produce the output */
 err = printf ("Key is:\n %s\n", key);
 if (err <= 0) exit (1);
 for (i = 0; i < pool; ++i)
 selected [i] = i + 1;
 printf ("index hex value of MD5 div selected\n");
 for (unch = 0, remaining = pool;
 unch < selection;
 ++unch, --remaining)
 {
 MD5Init (&ctx);
 MD5Update (&ctx, &unch, 1);
 MD5Update (&ctx, (unsigned char *)key, keysize);
 MD5Update (&ctx, &unch, 1);
 MD5Final (uc16, &ctx);
 k = longremainder (remaining, uc16);
 /* printf ("Remaining = %d, remainder = %d.\n", remaining, k); */
 for (j = 0; j < pool; ++j)
 if (selected[j])
 if (--k < 0)
 {
 printf ("%2d "
 "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X "
 "%2d -> %2d <-\n",
 unch+1, uc16[0],uc16[1],uc16[2],uc16[3],uc16[4],uc16[5],uc16[6],
 uc16[7],uc16[8],uc16[9],uc16[10],uc16[11],uc16[12],uc16[13],uc16[14],
 uc16[15], remaining, selected[j]);
 selected[j] = 0;
 break;
 }
 }
 printf ("\nDone, type any character to exit.\n");
 getchar ();
 return 0;
 }

 /* prompt for an integer input */
 /**/
 int getinteger (char *string)
 {
 int i, j;
 char tin[257];

 while (1)
 {
 printf (string);

Eastlake Informational [Page 11]

RFC 2777 Verifiable Random Selection February 2000

 printf ("(or ’exit’ to exit) ");
 gets (tin);
 j = sscanf (tin, "%d", &i);
 if ((j == EOF)

 || (!j && ((tin[0] == ’e’) || (tin[0] == ’E’)))
)
 exit (j);
 if (j == 1)
 return i;
 } /* end while */
 }

 /* get remainder of dividing a 16 byte unsigned int
 by a small positive number */
 /**/
 int longremainder (unsigned char divisor,
 unsigned char dividend[16])
 {
 int i;
 long int kruft;

 if (!divisor)
 return -1;
 for (i = 0, kruft = 0; i < 16; ++i)
 {
 kruft = (kruft << 8) + dividend[i];
 kruft %= divisor;
 }
 return kruft;
 } /* end longremainder */

 /* calculate how many bits of entropy it takes to select N from P */
 /**/
 /* P!
 log (-----------------)
 2 N! * (P - N)!
 */

 double NPentropy (int N, int P)
 {
 int i;
 double result = 0.0;

 if ((N < 1) /* not selecting anything? */
 || (N >= P) /* selecting all of pool or more? */
)
 return 1.0; /* degenerate case */

Eastlake Informational [Page 12]

RFC 2777 Verifiable Random Selection February 2000

 for (i = P; i > (P - N); --i)
 result += log (i);
 for (i = N; i > 1; --i)
 result -= log (i);
 /* divide by [log (base e) of 2] to convert to bits */
 result /= 0.69315;

 return result;
 } /* end NPentropy */

Eastlake Informational [Page 13]

RFC 2777 Verifiable Random Selection February 2000

Appendix: History of NomCom Member Selection

 For reference purposes, here is a list of the IETF Nominations
 Committee member selection techniques and chairs so far:

 YEAR CHAIR SELECTION METHOD

 1993/1994 Jeff Case Clergy
 1994/1995 Fred Baker Clergy
 1995/1996 Guy Almes Clergy
 1996/1997 Geoff Huston Spouse
 1997/1998 Mike St.Johns Algorithm
 1998/1999 Donald Eastlake 3rd This Algorithm
 1999/2000 Avri Doria This Alogrithm

 Clergy = Names were written on pieces of paper, placed in a
 receptacle, and a member of the clergy picked the Nomcom members.

 Spouse = Same as Clergy except chair’s spouse made the selection.

 Algorithm = Algorithmic selection based on the same concepts as
 documented herein.

 This Algorithm = Algorithmic selection using the algorithm and
 reference code (but not the fake example sources of randomness)
 described herein.

Eastlake Informational [Page 14]

RFC 2777 Verifiable Random Selection February 2000

References

 RFC 1321 Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 RFC 1750 Eastlake, D., 3rd, Crocker, S. and J. Schiller, "Randomness
 Recommendations for Security", RFC 1750, December 1994.

 RFC 2727 Galvin, J., "IAB and IESG Selection, Confirmation, and
 Recall Process: Operation of the Nominating and Recall
 Committees", BCP 10, RFC 2727, February 2000.

Author’s Address

 Donald E. Eastlake, 3rd
 Motorola
 65 Shindegan Hill Road, RR #1
 Carmel, NY 10512 USA

 Phone: +1-914-276-2668 (h)
 +1-508-261-5434 (w)
 Fax: +1-508-261-4447 (w)
 EMail: Donald.Eastlake@motorola.com

Eastlake Informational [Page 15]

RFC 2777 Verifiable Random Selection February 2000

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Eastlake Informational [Page 16]

