
Network Working Group T. Showalter
Request for Comments: 3028 Mirapoint, Inc.
Category: Standards Track January 2001

 Sieve: A Mail Filtering Language

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This document describes a language for filtering e-mail messages at
 time of final delivery. It is designed to be implementable on either
 a mail client or mail server. It is meant to be extensible, simple,
 and independent of access protocol, mail architecture, and operating
 system. It is suitable for running on a mail server where users may
 not be allowed to execute arbitrary programs, such as on black box
 Internet Message Access Protocol (IMAP) servers, as it has no
 variables, loops, or ability to shell out to external programs.

Table of Contents

 1. Introduction ... 3
 1.1. Conventions Used in This Document 4
 1.2. Example mail messages 4
 2. Design ... 5
 2.1. Form of the Language 5
 2.2. Whitespace .. 5
 2.3. Comments .. 6
 2.4. Literal Data .. 6
 2.4.1. Numbers ... 6
 2.4.2. Strings ... 7
 2.4.2.1. String Lists .. 7
 2.4.2.2. Headers ... 8
 2.4.2.3. Addresses ... 8
 2.4.2.4. MIME Parts .. 9
 2.5. Tests ... 9
 2.5.1. Test Lists .. 9

Showalter Standards Track [Page 1]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 2.6. Arguments ... 9
 2.6.1. Positional Arguments 9
 2.6.2. Tagged Arguments 10
 2.6.3. Optional Arguments 10
 2.6.4. Types of Arguments 10
 2.7. String Comparison 11
 2.7.1. Match Type .. 11
 2.7.2. Comparisons Across Character Sets 12
 2.7.3. Comparators ... 12
 2.7.4. Comparisons Against Addresses 13
 2.8. Blocks .. 14
 2.9. Commands .. 14
 2.10. Evaluation .. 15
 2.10.1. Action Interaction 15
 2.10.2. Implicit Keep ... 15
 2.10.3. Message Uniqueness in a Mailbox 15
 2.10.4. Limits on Numbers of Actions 16
 2.10.5. Extensions and Optional Features 16
 2.10.6. Errors .. 17
 2.10.7. Limits on Execution 17
 3. Control Commands 17
 3.1. Control Structure If 18
 3.2. Control Structure Require 19
 3.3. Control Structure Stop 19
 4. Action Commands .. 19
 4.1. Action reject ... 20
 4.2. Action fileinto 20
 4.3. Action redirect 21
 4.4. Action keep ... 21
 4.5. Action discard .. 22
 5. Test Commands .. 22
 5.1. Test address .. 23
 5.2. Test allof .. 23
 5.3. Test anyof .. 24
 5.4. Test envelope ... 24
 5.5. Test exists ... 25
 5.6. Test false .. 25
 5.7. Test header ... 25
 5.8. Test not .. 26
 5.9. Test size ... 26
 5.10. Test true ... 26
 6. Extensibility .. 26
 6.1. Capability String 27
 6.2. IANA Considerations 28
 6.2.1. Template for Capability Registrations 28
 6.2.2. Initial Capability Registrations 28
 6.3. Capability Transport 29
 7. Transmission ... 29

Showalter Standards Track [Page 2]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 8. Parsing .. 30
 8.1. Lexical Tokens .. 30
 8.2. Grammar ... 31
 9. Extended Example 32
 10. Security Considerations 34
 11. Acknowledgments .. 34
 12. Author’s Address 34
 13. References ... 34
 14. Full Copyright Statement 36

1. Introduction

 This memo documents a language that can be used to create filters for
 electronic mail. It is not tied to any particular operating system or
 mail architecture. It requires the use of [IMAIL]-compliant
 messages, but should otherwise generalize to many systems.

 The language is powerful enough to be useful but limited in order to
 allow for a safe server-side filtering system. The intention is to
 make it impossible for users to do anything more complex (and
 dangerous) than write simple mail filters, along with facilitating
 the use of GUIs for filter creation and manipulation. The language is
 not Turing-complete: it provides no way to write a loop or a function
 and variables are not provided.

 Scripts written in Sieve are executed during final delivery, when the
 message is moved to the user-accessible mailbox. In systems where
 the MTA does final delivery, such as traditional Unix mail, it is
 reasonable to sort when the MTA deposits mail into the user’s
 mailbox.

 There are a number of reasons to use a filtering system. Mail
 traffic for most users has been increasing due to increased usage of
 e-mail, the emergence of unsolicited email as a form of advertising,
 and increased usage of mailing lists.

 Experience at Carnegie Mellon has shown that if a filtering system is
 made available to users, many will make use of it in order to file
 messages from specific users or mailing lists. However, many others
 did not make use of the Andrew system’s FLAMES filtering language
 [FLAMES] due to difficulty in setting it up.

 Because of the expectation that users will make use of filtering if
 it is offered and easy to use, this language has been made simple
 enough to allow many users to make use of it, but rich enough that it
 can be used productively. However, it is expected that GUI-based
 editors will be the preferred way of editing filters for a large
 number of users.

Showalter Standards Track [Page 3]

RFC 3028 Sieve: A Mail Filtering Language January 2001

1.1. Conventions Used in This Document

 In the sections of this document that discuss the requirements of
 various keywords and operators, the following conventions have been
 adopted.

 The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and
 "MAY" in this document are to be interpreted as defined in
 [KEYWORDS].

 Each section on a command (test, action, or control structure) has a
 line labeled "Syntax:". This line describes the syntax of the
 command, including its name and its arguments. Required arguments
 are listed inside angle brackets ("<" and ">"). Optional arguments
 are listed inside square brackets ("[" and "]"). Each argument is
 followed by its type, so "<key: string>" represents an argument
 called "key" that is a string. Literal strings are represented with
 double-quoted strings. Alternatives are separated with slashes, and
 parenthesis are used for grouping, similar to [ABNF].

 In the "Syntax" line, there are three special pieces of syntax that
 are frequently repeated, MATCH-TYPE, COMPARATOR, and ADDRESS-PART.
 These are discussed in sections 2.7.1, 2.7.3, and 2.7.4,
 respectively.

 The formal grammar for these commands in section 10 and is the
 authoritative reference on how to construct commands, but the formal
 grammar does not specify the order, semantics, number or types of
 arguments to commands, nor the legal command names. The intent is to
 allow for extension without changing the grammar.

1.2. Example mail messages

 The following mail messages will be used throughout this document in
 examples.

 Message A

 Date: Tue, 1 Apr 1997 09:06:31 -0800 (PST)
 From: coyote@desert.example.org
 To: roadrunner@acme.example.com
 Subject: I have a present for you

 Look, I’m sorry about the whole anvil thing, and I really
 didn’t mean to try and drop it on you from the top of the
 cliff. I want to try to make it up to you. I’ve got some
 great birdseed over here at my place--top of the line

Showalter Standards Track [Page 4]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 stuff--and if you come by, I’ll have it all wrapped up
 for you. I’m really sorry for all the problems I’ve caused
 for you over the years, but I know we can work this out.
 --
 Wile E. Coyote "Super Genius" coyote@desert.example.org

 Message B

 From: youcouldberich!@reply-by-postal-mail.invalid
 Sender: b1ff@de.res.example.com
 To: rube@landru.example.edu
 Date: Mon, 31 Mar 1997 18:26:10 -0800
 Subject: $$$ YOU, TOO, CAN BE A MILLIONAIRE! $$$

 YOU MAY HAVE ALREADY WON TEN MILLION DOLLARS, BUT I DOUBT
 IT! SO JUST POST THIS TO SIX HUNDRED NEWSGROUPS! IT WILL
 GUARANTEE THAT YOU GET AT LEAST FIVE RESPONSES WITH MONEY!
 MONEY! MONEY! COLD HARD CASH! YOU WILL RECEIVE OVER
 $20,000 IN LESS THAN TWO MONTHS! AND IT’S LEGAL!!!!!!!!!
 !!!!!!!!!!!!!!!!!!111111111!!!!!!!11111111111!!1 JUST
 SEND $5 IN SMALL, UNMARKED BILLS TO THE ADDRESSES BELOW!

2. Design

2.1. Form of the Language

 The language consists of a set of commands. Each command consists of
 a set of tokens delimited by whitespace. The command identifier is
 the first token and it is followed by zero or more argument tokens.
 Arguments may be literal data, tags, blocks of commands, or test
 commands.

 The language is represented in UTF-8, as specified in [UTF-8].

 Tokens in the ASCII range are considered case-insensitive.

2.2. Whitespace

 Whitespace is used to separate tokens. Whitespace is made up of
 tabs, newlines (CRLF, never just CR or LF), and the space character.
 The amount of whitespace used is not significant.

Showalter Standards Track [Page 5]

RFC 3028 Sieve: A Mail Filtering Language January 2001

2.3. Comments

 Two types of comments are offered. Comments are semantically
 equivalent to whitespace and can be used anyplace that whitespace is
 (with one exception in multi-line strings, as described in the
 grammar).

 Hash comments begin with a "#" character that is not contained within
 a string and continue until the next CRLF.

 Example: if size :over 100K { # this is a comment
 discard;
 }

 Bracketed comments begin with the token "/*" and end with "*/" outside
 of a string. Bracketed comments may span multiple lines. Bracketed
 comments do not nest.

 Example: if size :over 100K { /* this is a comment
 this is still a comment */ discard /* this is a comment
 */ ;
 }

2.4. Literal Data

 Literal data means data that is not executed, merely evaluated "as
 is", to be used as arguments to commands. Literal data is limited to
 numbers and strings.

2.4.1. Numbers

 Numbers are given as ordinary decimal numbers. However, those
 numbers that have a tendency to be fairly large, such as message
 sizes, MAY have a "K", "M", or "G" appended to indicate a multiple of
 a power of two. To be comparable with the power-of-two-based
 versions of SI units that computers frequently use, K specifies
 kibi-, or 1,024 (2^10) times the value of the number; M specifies
 mebi-, or 1,048,576 (2^20) times the value of the number; and G
 specifies tebi-, or 1,073,741,824 (2^30) times the value of the
 number [BINARY-SI].

 Implementations MUST provide 31 bits of magnitude in numbers, but MAY
 provide more.

 Only positive integers are permitted by this specification.

Showalter Standards Track [Page 6]

RFC 3028 Sieve: A Mail Filtering Language January 2001

2.4.2. Strings

 Scripts involve large numbers of strings as they are used for pattern
 matching, addresses, textual bodies, etc. Typically, short quoted
 strings suffice for most uses, but a more convenient form is provided
 for longer strings such as bodies of messages.

 A quoted string starts and ends with a single double quote (the <">
 character, ASCII 34). A backslash ("\", ASCII 92) inside of a quoted
 string is followed by either another backslash or a double quote.
 This two-character sequence represents a single backslash or double-
 quote within the string, respectively.

 No other characters should be escaped with a single backslash.

 An undefined escape sequence (such as "\a" in a context where "a" has
 no special meaning) is interpreted as if there were no backslash (in
 this case, "\a" is just "a").

 Non-printing characters such as tabs, CR and LF, and control
 characters are permitted in quoted strings. Quoted strings MAY span
 multiple lines. NUL (ASCII 0) is not allowed in strings.

 For entering larger amounts of text, such as an email message, a
 multi-line form is allowed. It starts with the keyword "text:",
 followed by a CRLF, and ends with the sequence of a CRLF, a single
 period, and another CRLF. In order to allow the message to contain
 lines with a single-dot, lines are dot-stuffed. That is, when
 composing a message body, an extra ‘.’ is added before each line
 which begins with a ‘.’. When the server interprets the script,
 these extra dots are removed. Note that a line that begins with a
 dot followed by a non-dot character is not interpreted dot-stuffed;
 that is, ".foo" is interpreted as ".foo". However, because this is
 potentially ambiguous, scripts SHOULD be properly dot-stuffed so such
 lines do not appear.

 Note that a hashed comment or whitespace may occur in between the
 "text:" and the CRLF, but not within the string itself. Bracketed
 comments are not allowed here.

2.4.2.1. String Lists

 When matching patterns, it is frequently convenient to match against
 groups of strings instead of single strings. For this reason, a list
 of strings is allowed in many tests, implying that if the test is
 true using any one of the strings, then the test is true.
 Implementations are encouraged to use short-circuit evaluation in
 these cases.

Showalter Standards Track [Page 7]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 For instance, the test ‘header :contains ["To", "Cc"]
 ["me@example.com", "me00@landru.example.edu"]’ is true if either the
 To header or Cc header of the input message contains either of the
 e-mail addresses "me@example.com" or "me00@landru.example.edu".

 Conversely, in any case where a list of strings is appropriate, a
 single string is allowed without being a member of a list: it is
 equivalent to a list with a single member. This means that the test
 ‘exists "To"’ is equivalent to the test ‘exists ["To"]’.

2.4.2.2. Headers

 Headers are a subset of strings. In the Internet Message
 Specification [IMAIL] [RFC1123], each header line is allowed to have
 whitespace nearly anywhere in the line, including after the field
 name and before the subsequent colon. Extra spaces between the
 header name and the ":" in a header field are ignored.

 A header name never contains a colon. The "From" header refers to a
 line beginning "From:" (or "From :", etc.). No header will match
 the string "From:" due to the trailing colon.

 Folding of long header lines (as described in [IMAIL] 3.4.8) is
 removed prior to interpretation of the data. The folding syntax (the
 CRLF that ends a line plus any leading whitespace at the beginning of
 the next line that indicates folding) are interpreted as if they were
 a single space.

2.4.2.3. Addresses

 A number of commands call for email addresses, which are also a
 subset of strings. When these addresses are used in outbound
 contexts, addresses must be compliant with [IMAIL], but are further
 constrained. Using the symbols defined in [IMAIL], section 6.1, the
 syntax of an address is:

 sieve-address = addr-spec ; simple address
 / phrase "<" addr-spec ">" ; name & addr-spec

 That is, routes and group syntax are not permitted. If multiple
 addresses are required, use a string list. Named groups are not used
 here.

 Implementations MUST ensure that the addresses are syntactically
 valid, but need not ensure that they actually identify an email
 recipient.

Showalter Standards Track [Page 8]

RFC 3028 Sieve: A Mail Filtering Language January 2001

2.4.2.4. MIME Parts

 In a few places, [MIME] body parts are represented as strings. These
 parts include MIME headers and the body. This provides a way of
 embedding typed data within a Sieve script so that, among other
 things, character sets other than UTF-8 can be used for output
 messages.

2.5. Tests

 Tests are given as arguments to commands in order to control their
 actions. In this document, tests are given to if/elsif/else to
 decide which block of code is run.

 Tests MUST NOT have side effects. That is, a test cannot affect the
 state of the filter or message. No tests in this specification have
 side effects, and side effects are forbidden in extension tests as
 well.

 The rationale for this is that tests with side effects impair
 readability and maintainability and are difficult to represent in a
 graphic interface for generating scripts. Side effects are confined
 to actions where they are clearer.

2.5.1. Test Lists

 Some tests ("allof" and "anyof", which implement logical "and" and
 logical "or", respectively) may require more than a single test as an
 argument. The test-list syntax element provides a way of grouping
 tests.

 Example: if anyof (not exists ["From", "Date"],
 header :contains "from" "fool@example.edu") {
 discard;
 }

2.6. Arguments

 In order to specify what to do, most commands take arguments. There
 are three types of arguments: positional, tagged, and optional.

2.6.1. Positional Arguments

 Positional arguments are given to a command which discerns their
 meaning based on their order. When a command takes positional
 arguments, all positional arguments must be supplied and must be in
 the order prescribed.

Showalter Standards Track [Page 9]

RFC 3028 Sieve: A Mail Filtering Language January 2001

2.6.2. Tagged Arguments

 This document provides for tagged arguments in the style of
 CommonLISP. These are also similar to flags given to commands in
 most command-line systems.

 A tagged argument is an argument for a command that begins with ":"
 followed by a tag naming the argument, such as ":contains". This
 argument means that zero or more of the next tokens have some
 particular meaning depending on the argument. These next tokens may
 be numbers or strings but they are never blocks.

 Tagged arguments are similar to positional arguments, except that
 instead of the meaning being derived from the command, it is derived
 from the tag.

 Tagged arguments must appear before positional arguments, but they
 may appear in any order with other tagged arguments. For simplicity
 of the specification, this is not expressed in the syntax definitions
 with commands, but they still may be reordered arbitrarily provided
 they appear before positional arguments. Tagged arguments may be
 mixed with optional arguments.

 To simplify this specification, tagged arguments SHOULD NOT take
 tagged arguments as arguments.

2.6.3. Optional Arguments

 Optional arguments are exactly like tagged arguments except that they
 may be left out, in which case a default value is implied. Because
 optional arguments tend to result in shorter scripts, they have been
 used far more than tagged arguments.

 One particularly noteworthy case is the ":comparator" argument, which
 allows the user to specify which [ACAP] comparator will be used to
 compare two strings, since different languages may impose different
 orderings on UTF-8 [UTF-8] characters.

2.6.4. Types of Arguments

 Abstractly, arguments may be literal data, tests, or blocks of
 commands. In this way, an "if" control structure is merely a command
 that happens to take a test and a block as arguments and may execute
 the block of code.

 However, this abstraction is ambiguous from a parsing standpoint.
 The grammar in section 9.2 presents a parsable version of this:
 Arguments are string-lists, numbers, and tags, which may be followed

Showalter Standards Track [Page 10]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 by a test or a test-list, which may be followed by a block of
 commands. No more than one test or test list, nor more than one
 block of commands, may be used, and commands that end with blocks of
 commands do not end with semicolons.

2.7. String Comparison

 When matching one string against another, there are a number of ways
 of performing the match operation. These are accomplished with three
 types of matches: an exact match, a substring match, and a wildcard
 glob-style match. These are described below.

 In order to provide for matches between character sets and case
 insensitivity, Sieve borrows ACAP’s comparator registry.

 However, when a string represents the name of a header, the
 comparator is never user-specified. Header comparisons are always
 done with the "i;ascii-casemap" operator, i.e., case-insensitive
 comparisons, because this is the way things are defined in the
 message specification [IMAIL].

2.7.1. Match Type

 There are three match types describing the matching used in this
 specification: ":is", ":contains", and ":matches". Match type
 arguments are supplied to those commands which allow them to specify
 what kind of match is to be performed.

 These are used as tagged arguments to tests that perform string
 comparison.

 The ":contains" match type describes a substring match. If the value
 argument contains the key argument as a substring, the match is true.
 For instance, the string "frobnitzm" contains "frob" and "nit", but
 not "fbm". The null key ("") is contained in all values.

 The ":is" match type describes an absolute match; if the contents of
 the first string are absolutely the same as the contents of the
 second string, they match. Only the string "frobnitzm" is the string
 "frobnitzm". The null key ":is" and only ":is" the null value.

 The ":matches" version specifies a wildcard match using the
 characters "*" and "?". "*" matches zero or more characters, and "?"
 matches a single character. "?" and "*" may be escaped as "\\?" and
 "*" in strings to match against themselves. The first backslash
 escapes the second backslash; together, they escape the "*". This is
 awkward, but it is commonplace in several programming languages that
 use globs and regular expressions.

Showalter Standards Track [Page 11]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 In order to specify what type of match is supposed to happen,
 commands that support matching take optional tagged arguments
 ":matches", ":is", and ":contains". Commands default to using ":is"
 matching if no match type argument is supplied. Note that these
 modifiers may interact with comparators; in particular, some
 comparators are not suitable for matching with ":contains" or
 ":matches". It is an error to use a comparator with ":contains" or
 ":matches" that is not compatible with it.

 It is an error to give more than one of these arguments to a given
 command.

 For convenience, the "MATCH-TYPE" syntax element is defined here as
 follows:

 Syntax: ":is" / ":contains" / ":matches"

2.7.2. Comparisons Across Character Sets

 All Sieve scripts are represented in UTF-8, but messages may involve
 a number of character sets. In order for comparisons to work across
 character sets, implementations SHOULD implement the following
 behavior:

 Implementations decode header charsets to UTF-8. Two strings are
 considered equal if their UTF-8 representations are identical.
 Implementations should decode charsets represented in the forms
 specified by [MIME] for both message headers and bodies.
 Implementations must be capable of decoding US-ASCII, ISO-8859-1,
 the ASCII subset of ISO-8859-* character sets, and UTF-8.

 If implementations fail to support the above behavior, they MUST
 conform to the following:

 No two strings can be considered equal if one contains octets
 greater than 127.

2.7.3. Comparators

 In order to allow for language-independent, case-independent matches,
 the match type may be coupled with a comparator name. Comparators
 are described for [ACAP]; a registry is defined for ACAP, and this
 specification uses that registry.

 ACAP defines multiple comparator types. Only equality types are used
 in this specification.

Showalter Standards Track [Page 12]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 All implementations MUST support the "i;octet" comparator (simply
 compares octets) and the "i;ascii-casemap" comparator (which treats
 uppercase and lowercase characters in the ASCII subset of UTF-8 as
 the same). If left unspecified, the default is "i;ascii-casemap".

 Some comparators may not be usable with substring matches; that is,
 they may only work with ":is". It is an error to try and use a
 comparator with ":matches" or ":contains" that is not compatible with
 it.

 A comparator is specified by the ":comparator" option with commands
 that support matching. This option is followed by a string providing
 the name of the comparator to be used. For convenience, the syntax
 of a comparator is abbreviated to "COMPARATOR", and (repeated in
 several tests) is as follows:

 Syntax: ":comparator" <comparator-name: string>

 So in this example,

 Example: if header :contains :comparator "i;octet" "Subject"
 "MAKE MONEY FAST" {
 discard;
 }

 would discard any message with subjects like "You can MAKE MONEY
 FAST", but not "You can Make Money Fast", since the comparator used
 is case-sensitive.

 Comparators other than i;octet and i;ascii-casemap must be declared
 with require, as they are extensions. If a comparator declared with
 require is not known, it is an error, and execution fails. If the
 comparator is not declared with require, it is also an error, even if
 the comparator is supported. (See 2.10.5.)

 Both ":matches" and ":contains" match types are compatible with the
 "i;octet" and "i;ascii-casemap" comparators and may be used with
 them.

 It is an error to give more than one of these arguments to a given
 command.

2.7.4. Comparisons Against Addresses

 Addresses are one of the most frequent things represented as strings.
 These are structured, and being able to compare against the local-
 part or the domain of an address is useful, so some tests that act

Showalter Standards Track [Page 13]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 exclusively on addresses take an additional optional argument that
 specifies what the test acts on.

 These optional arguments are ":localpart", ":domain", and ":all",
 which act on the local-part (left-side), the domain part (right-
 side), and the whole address.

 The kind of comparison done, such as whether or not the test done is
 case-insensitive, is specified as a comparator argument to the test.

 If an optional address-part is omitted, the default is ":all".

 It is an error to give more than one of these arguments to a given
 command.

 For convenience, the "ADDRESS-PART" syntax element is defined here as
 follows:

 Syntax: ":localpart" / ":domain" / ":all"

2.8. Blocks

 Blocks are sets of commands enclosed within curly braces. Blocks are
 supplied to commands so that the commands can implement control
 commands.

 A control structure is a command that happens to take a test and a
 block as one of its arguments; depending on the result of the test
 supplied as another argument, it runs the code in the block some
 number of times.

 With the commands supplied in this memo, there are no loops. The
 control structures supplied--if, elsif, and else--run a block either
 once or not at all. So there are two arguments, the test and the
 block.

2.9. Commands

 Sieve scripts are sequences of commands. Commands can take any of
 the tokens above as arguments, and arguments may be either tagged or
 positional arguments. Not all commands take all arguments.

 There are three kinds of commands: test commands, action commands,
 and control commands.

 The simplest is an action command. An action command is an
 identifier followed by zero or more arguments, terminated by a
 semicolon. Action commands do not take tests or blocks as arguments.

Showalter Standards Track [Page 14]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 A control command is similar, but it takes a test as an argument, and
 ends with a block instead of a semicolon.

 A test command is used as part of a control command. It is used to
 specify whether or not the block of code given to the control command
 is executed.

2.10. Evaluation

2.10.1. Action Interaction

 Some actions cannot be used with other actions because the result
 would be absurd. These restrictions are noted throughout this memo.

 Extension actions MUST state how they interact with actions defined
 in this specification.

2.10.2. Implicit Keep

 Previous experience with filtering systems suggests that cases tend
 to be missed in scripts. To prevent errors, Sieve has an "implicit
 keep".

 An implicit keep is a keep action (see 4.4) performed in absence of
 any action that cancels the implicit keep.

 An implicit keep is performed if a message is not written to a
 mailbox, redirected to a new address, or explicitly thrown out. That
 is, if a fileinto, a keep, a redirect, or a discard is performed, an
 implicit keep is not.

 Some actions may be defined to not cancel the implicit keep. These
 actions may not directly affect the delivery of a message, and are
 used for their side effects. None of the actions specified in this
 document meet that criteria, but extension actions will.

 For instance, with any of the short messages offered above, the
 following script produces no actions.

 Example: if size :over 500K { discard; }

 As a result, the implicit keep is taken.

2.10.3. Message Uniqueness in a Mailbox

 Implementations SHOULD NOT deliver a message to the same folder more
 than once, even if a script explicitly asks for a message to be
 written to a mailbox twice.

Showalter Standards Track [Page 15]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 The test for equality of two messages is implementation-defined.

 If a script asks for a message to be written to a mailbox twice, it
 MUST NOT be treated as an error.

2.10.4. Limits on Numbers of Actions

 Site policy MAY limit numbers of actions taken and MAY impose
 restrictions on which actions can be used together. In the event
 that a script hits a policy limit on the number of actions taken for
 a particular message, an error occurs.

 Implementations MUST prohibit more than one reject.

 Implementations MUST allow at least one keep or one fileinto. If
 fileinto is not implemented, implementations MUST allow at least one
 keep.

 Implementations SHOULD prohibit reject when used with other actions.

2.10.5. Extensions and Optional Features

 Because of the differing capabilities of many mail systems, several
 features of this specification are optional. Before any of these
 extensions can be executed, they must be declared with the "require"
 action.

 If an extension is not enabled with "require", implementations MUST
 treat it as if they did not support it at all.

 If a script does not understand an extension declared with require,
 the script must not be used at all. Implementations MUST NOT execute
 scripts which require unknown capability names.

 Note: The reason for this restriction is that prior experiences with
 languages such as LISP and Tcl suggest that this is a workable
 way of noting that a given script uses an extension.

 Experience with PostScript suggests that mechanisms that allow
 a script to work around missing extensions are not used in
 practice.

 Extensions which define actions MUST state how they interact with
 actions discussed in the base specification.

Showalter Standards Track [Page 16]

RFC 3028 Sieve: A Mail Filtering Language January 2001

2.10.6. Errors

 In any programming language, there are compile-time and run-time
 errors.

 Compile-time errors are ones in syntax that are detectable if a
 syntax check is done.

 Run-time errors are not detectable until the script is run. This
 includes transient failures like disk full conditions, but also
 includes issues like invalid combinations of actions.

 When an error occurs in a Sieve script, all processing stops.

 Implementations MAY choose to do a full parse, then evaluate the
 script, then do all actions. Implementations might even go so far as
 to ensure that execution is atomic (either all actions are executed
 or none are executed).

 Other implementations may choose to parse and run at the same time.
 Such implementations are simpler, but have issues with partial
 failure (some actions happen, others don’t).

 Implementations might even go so far as to ensure that scripts can
 never execute an invalid set of actions (e.g., reject + fileinto)
 before execution, although this could involve solving the Halting
 Problem.

 This specification allows any of these approaches. Solving the
 Halting Problem is considered extra credit.

 When an error happens, implementations MUST notify the user that an
 error occurred, which actions (if any) were taken, and do an implicit
 keep.

2.10.7. Limits on Execution

 Implementations may limit certain constructs. However, this
 specification places a lower bound on some of these limits.

 Implementations MUST support fifteen levels of nested blocks.

 Implementations MUST support fifteen levels of nested test lists.

3. Control Commands

 Control structures are needed to allow for multiple and conditional
 actions.

Showalter Standards Track [Page 17]

RFC 3028 Sieve: A Mail Filtering Language January 2001

3.1. Control Structure If

 There are three pieces to if: "if", "elsif", and "else". Each is
 actually a separate command in terms of the grammar. However, an
 elsif MUST only follow an if, and an else MUST follow only either an
 if or an elsif. An error occurs if these conditions are not met.

 Syntax: if <test1: test> <block1: block>

 Syntax: elsif <test2: test> <block2: block>

 Syntax: else <block>

 The semantics are similar to those of any of the many other
 programming languages these control commands appear in. When the
 interpreter sees an "if", it evaluates the test associated with it.
 If the test is true, it executes the block associated with it.

 If the test of the "if" is false, it evaluates the test of the first
 "elsif" (if any). If the test of "elsif" is true, it runs the
 elsif’s block. An elsif may be followed by an elsif, in which case,
 the interpreter repeats this process until it runs out of elsifs.

 When the interpreter runs out of elsifs, there may be an "else" case.
 If there is, and none of the if or elsif tests were true, the
 interpreter runs the else case.

 This provides a way of performing exactly one of the blocks in the
 chain.

 In the following example, both Message A and B are dropped.

 Example: require "fileinto";
 if header :contains "from" "coyote" {
 discard;
 } elsif header :contains ["subject"] ["$$$"] {
 discard;
 } else {
 fileinto "INBOX";
 }

 When the script below is run over message A, it redirects the message
 to acm@example.edu; message B, to postmaster@example.edu; any other
 message is redirected to field@example.edu.

Showalter Standards Track [Page 18]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 Example: if header :contains ["From"] ["coyote"] {
 redirect "acm@example.edu";
 } elsif header :contains "Subject" "$$$" {
 redirect "postmaster@example.edu";
 } else {
 redirect "field@example.edu";
 }

 Note that this definition prohibits the "... else if ..." sequence
 used by C. This is intentional, because this construct produces a
 shift-reduce conflict.

3.2. Control Structure Require

 Syntax: require <capabilities: string-list>

 The require action notes that a script makes use of a certain
 extension. Such a declaration is required to use the extension, as
 discussed in section 2.10.5. Multiple capabilities can be declared
 with a single require.

 The require command, if present, MUST be used before anything other
 than a require can be used. An error occurs if a require appears
 after a command other than require.

 Example: require ["fileinto", "reject"];

 Example: require "fileinto";
 require "vacation";

3.3. Control Structure Stop

 Syntax: stop

 The "stop" action ends all processing. If no actions have been
 executed, then the keep action is taken.

4. Action Commands

 This document supplies five actions that may be taken on a message:
 keep, fileinto, redirect, reject, and discard.

 Implementations MUST support the "keep", "discard", and "redirect"
 actions.

 Implementations SHOULD support "reject" and "fileinto".

Showalter Standards Track [Page 19]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 Implementations MAY limit the number of certain actions taken (see
 section 2.10.4).

4.1. Action reject

 Syntax: reject <reason: string>

 The optional "reject" action refuses delivery of a message by sending
 back an [MDN] to the sender. It resends the message to the sender,
 wrapping it in a "reject" form, noting that it was rejected by the
 recipient. In the following script, message A is rejected and
 returned to the sender.

 Example: if header :contains "from" "coyote@desert.example.org" {
 reject "I am not taking mail from you, and I don’t want
 your birdseed, either!";
 }

 A reject message MUST take the form of a failure MDN as specified by
 [MDN]. The human-readable portion of the message, the first
 component of the MDN, contains the human readable message describing
 the error, and it SHOULD contain additional text alerting the
 original sender that mail was refused by a filter. This part of the
 MDN might appear as follows:

 --
 Message was refused by recipient’s mail filtering program. Reason
 given was as follows:

 I am not taking mail from you, and I don’t want your birdseed,
 either!
 --

 The MDN action-value field as defined in the MDN specification MUST
 be "deleted" and MUST have the MDN-sent-automatically and automatic-
 action modes set.

 Because some implementations can not or will not implement the reject
 command, it is optional. The capability string to be used with the
 require command is "reject".

4.2. Action fileinto

 Syntax: fileinto <folder: string>

 The "fileinto" action delivers the message into the specified folder.
 Implementations SHOULD support fileinto, but in some environments
 this may be impossible.

Showalter Standards Track [Page 20]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 The capability string for use with the require command is "fileinto".

 In the following script, message A is filed into folder
 "INBOX.harassment".

 Example: require "fileinto";
 if header :contains ["from"] "coyote" {
 fileinto "INBOX.harassment";
 }

4.3. Action redirect

 Syntax: redirect <address: string>

 The "redirect" action is used to send the message to another user at
 a supplied address, as a mail forwarding feature does. The
 "redirect" action makes no changes to the message body or existing
 headers, but it may add new headers. The "redirect" modifies the
 envelope recipient.

 The redirect command performs an MTA-style "forward"--that is, what
 you get from a .forward file using sendmail under UNIX. The address
 on the SMTP envelope is replaced with the one on the redirect command
 and the message is sent back out. (This is not an MUA-style forward,
 which creates a new message with a different sender and message ID,
 wrapping the old message in a new one.)

 A simple script can be used for redirecting all mail:

 Example: redirect "bart@example.edu";

 Implementations SHOULD take measures to implement loop control,
 possibly including adding headers to the message or counting received
 headers. If an implementation detects a loop, it causes an error.

4.4. Action keep

 Syntax: keep

 The "keep" action is whatever action is taken in lieu of all other
 actions, if no filtering happens at all; generally, this simply means
 to file the message into the user’s main mailbox. This command
 provides a way to execute this action without needing to know the
 name of the user’s main mailbox, providing a way to call it without
 needing to understand the user’s setup, or the underlying mail
 system.

Showalter Standards Track [Page 21]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 For instance, in an implementation where the IMAP server is running
 scripts on behalf of the user at time of delivery, a keep command is
 equivalent to a fileinto "INBOX".

 Example: if size :under 1M { keep; } else { discard; }

 Note that the above script is identical to the one below.

 Example: if not size :under 1M { discard; }

4.5. Action discard

 Syntax: discard

 Discard is used to silently throw away the message. It does so by
 simply canceling the implicit keep. If discard is used with other
 actions, the other actions still happen. Discard is compatible with
 all other actions. (For instance fileinto+discard is equivalent to
 fileinto.)

 Discard MUST be silent; that is, it MUST NOT return a non-delivery
 notification of any kind ([DSN], [MDN], or otherwise).

 In the following script, any mail from "idiot@example.edu" is thrown
 out.

 Example: if header :contains ["from"] ["idiot@example.edu"] {
 discard;
 }

 While an important part of this language, "discard" has the potential
 to create serious problems for users: Students who leave themselves
 logged in to an unattended machine in a public computer lab may find
 their script changed to just "discard". In order to protect users in
 this situation (along with similar situations), implementations MAY
 keep messages destroyed by a script for an indefinite period, and MAY
 disallow scripts that throw out all mail.

5. Test Commands

 Tests are used in conditionals to decide which part(s) of the
 conditional to execute.

 Implementations MUST support these tests: "address", "allof",
 "anyof", "exists", "false", "header", "not", "size", and "true".

 Implementations SHOULD support the "envelope" test.

Showalter Standards Track [Page 22]

RFC 3028 Sieve: A Mail Filtering Language January 2001

5.1. Test address

 Syntax: address [ADDRESS-PART] [COMPARATOR] [MATCH-TYPE]
 <header-list: string-list> <key-list: string-list>

 The address test matches Internet addresses in structured headers
 that contain addresses. It returns true if any header contains any
 key in the specified part of the address, as modified by the
 comparator and the match keyword.

 Like envelope and header, this test returns true if any combination
 of the header-list and key-list arguments match.

 Internet email addresses [IMAIL] have the somewhat awkward
 characteristic that the local-part to the left of the at-sign is
 considered case sensitive, and the domain-part to the right of the
 at-sign is case insensitive. The "address" command does not deal
 with this itself, but provides the ADDRESS-PART argument for allowing
 users to deal with it.

 The address primitive never acts on the phrase part of an email
 address, nor on comments within that address. It also never acts on
 group names, although it does act on the addresses within the group
 construct.

 Implementations MUST restrict the address test to headers that
 contain addresses, but MUST include at least From, To, Cc, Bcc,
 Sender, Resent-From, Resent-To, and SHOULD include any other header
 that utilizes an "address-list" structured header body.

 Example: if address :is :all "from" "tim@example.com" {
 discard;

5.2. Test allof

 Syntax: allof <tests: test-list>

 The allof test performs a logical AND on the tests supplied to it.

 Example: allof (false, false) => false
 allof (false, true) => false
 allof (true, true) => true

 The allof test takes as its argument a test-list.

Showalter Standards Track [Page 23]

RFC 3028 Sieve: A Mail Filtering Language January 2001

5.3. Test anyof

 Syntax: anyof <tests: test-list>

 The anyof test performs a logical OR on the tests supplied to it.

 Example: anyof (false, false) => false
 anyof (false, true) => true
 anyof (true, true) => true

5.4. Test envelope

 Syntax: envelope [COMPARATOR] [ADDRESS-PART] [MATCH-TYPE]
 <envelope-part: string-list> <key-list: string-list>

 The "envelope" test is true if the specified part of the SMTP (or
 equivalent) envelope matches the specified key.

 If one of the envelope-part strings is (case insensitive) "from",
 then matching occurs against the FROM address used in the SMTP MAIL
 command.

 If one of the envelope-part strings is (case insensitive) "to", then
 matching occurs against the TO address used in the SMTP RCPT command
 that resulted in this message getting delivered to this user. Note
 that only the most recent TO is available, and only the one relevant
 to this user.

 The envelope-part is a string list and may contain more than one
 parameter, in which case all of the strings specified in the key-list
 are matched against all parts given in the envelope-part list.

 Like address and header, this test returns true if any combination of
 the envelope-part and key-list arguments is true.

 All tests against envelopes MUST drop source routes.

 If the SMTP transaction involved several RCPT commands, only the data
 from the RCPT command that caused delivery to this user is available
 in the "to" part of the envelope.

 If a protocol other than SMTP is used for message transport,
 implementations are expected to adapt this command appropriately.

 The envelope command is optional. Implementations SHOULD support it,
 but the necessary information may not be available in all cases.

Showalter Standards Track [Page 24]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 Example: require "envelope";
 if envelope :all :is "from" "tim@example.com" {
 discard;
 }

5.5. Test exists

 Syntax: exists <header-names: string-list>

 The "exists" test is true if the headers listed in the header-names
 argument exist within the message. All of the headers must exist or
 the test is false.

 The following example throws out mail that doesn’t have a From header
 and a Date header.

 Example: if not exists ["From","Date"] {
 discard;
 }

5.6. Test false

 Syntax: false

 The "false" test always evaluates to false.

5.7. Test header

 Syntax: header [COMPARATOR] [MATCH-TYPE]
 <header-names: string-list> <key-list: string-list>

 The "header" test evaluates to true if any header name matches any
 key. The type of match is specified by the optional match argument,
 which defaults to ":is" if not specified, as specified in section
 2.6.

 Like address and envelope, this test returns true if any combination
 of the string-list and key-list arguments match.

 If a header listed in the header-names argument exists, it contains
 the null key (""). However, if the named header is not present, it
 does not contain the null key. So if a message contained the header

 X-Caffeine: C8H10N4O2

Showalter Standards Track [Page 25]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 these tests on that header evaluate as follows:

 header :is ["X-Caffeine"] [""] => false
 header :contains ["X-Caffeine"] [""] => true

5.8. Test not

 Syntax: not <test>

 The "not" test takes some other test as an argument, and yields the
 opposite result. "not false" evaluates to "true" and "not true"
 evaluates to "false".

5.9. Test size

 Syntax: size <":over" / ":under"> <limit: number>

 The "size" test deals with the size of a message. It takes either a
 tagged argument of ":over" or ":under", followed by a number
 representing the size of the message.

 If the argument is ":over", and the size of the message is greater
 than the number provided, the test is true; otherwise, it is false.

 If the argument is ":under", and the size of the message is less than
 the number provided, the test is true; otherwise, it is false.

 Exactly one of ":over" or ":under" must be specified, and anything
 else is an error.

 The size of a message is defined to be the number of octets from the
 initial header until the last character in the message body.

 Note that for a message that is exactly 4,000 octets, the message is
 neither ":over" 4000 octets or ":under" 4000 octets.

5.10. Test true

 Syntax: true

 The "true" test always evaluates to true.

6. Extensibility

 New control structures, actions, and tests can be added to the
 language. Sites must make these features known to their users; this
 document does not define a way to discover the list of extensions
 supported by the server.

Showalter Standards Track [Page 26]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 Any extensions to this language MUST define a capability string that
 uniquely identifies that extension. If a new version of an extension
 changes the functionality of a previously defined extension, it MUST
 use a different name.

 In a situation where there is a submission protocol and an extension
 advertisement mechanism aware of the details of this language,
 scripts submitted can be checked against the mail server to prevent
 use of an extension that the server does not support.

 Extensions MUST state how they interact with constraints defined in
 section 2.10, e.g., whether they cancel the implicit keep, and which
 actions they are compatible and incompatible with.

6.1. Capability String

 Capability strings are typically short strings describing what
 capabilities are supported by the server.

 Capability strings beginning with "vnd." represent vendor-defined
 extensions. Such extensions are not defined by Internet standards or
 RFCs, but are still registered with IANA in order to prevent
 conflicts. Extensions starting with "vnd." SHOULD be followed by the
 name of the vendor and product, such as "vnd.acme.rocket-sled".

 The following capability strings are defined by this document:

 envelope The string "envelope" indicates that the implementation
 supports the "envelope" command.

 fileinto The string "fileinto" indicates that the implementation
 supports the "fileinto" command.

 reject The string "reject" indicates that the implementation
 supports the "reject" command.

 comparator- The string "comparator-elbonia" is provided if the
 implementation supports the "elbonia" comparator.
 Therefore, all implementations have at least the
 "comparator-i;octet" and "comparator-i;ascii-casemap"
 capabilities. However, these comparators may be used
 without being declared with require.

Showalter Standards Track [Page 27]

RFC 3028 Sieve: A Mail Filtering Language January 2001

6.2. IANA Considerations

 In order to provide a standard set of extensions, a registry is
 provided by IANA. Capability names may be registered on a first-
 come, first-served basis. Extensions designed for interoperable use
 SHOULD be defined as standards track or IESG approved experimental
 RFCs.

6.2.1. Template for Capability Registrations

 The following template is to be used for registering new Sieve
 extensions with IANA.

 To: iana@iana.org
 Subject: Registration of new Sieve extension

 Capability name:
 Capability keyword:
 Capability arguments:
 Standards Track/IESG-approved experimental RFC number:
 Person and email address to contact for further information:

6.2.2. Initial Capability Registrations

 The following are to be added to the IANA registry for Sieve
 extensions as the initial contents of the capability registry.

 Capability name: fileinto
 Capability keyword: fileinto
 Capability arguments: fileinto <folder: string>
 Standards Track/IESG-approved experimental RFC number:
 RFC 3028 (Sieve base spec)
 Person and email address to contact for further information:
 Tim Showalter
 tjs@mirapoint.com

 Capability name: reject
 Capability keyword: reject
 Capability arguments: reject <reason: string>
 Standards Track/IESG-approved experimental RFC number:
 RFC 3028 (Sieve base spec)
 Person and email address to contact for further information:
 Tim Showalter
 tjs@mirapoint.com

Showalter Standards Track [Page 28]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 Capability name: envelope
 Capability keyword: envelope
 Capability arguments:
 envelope [COMPARATOR] [ADDRESS-PART] [MATCH-TYPE]
 <envelope-part: string-list> <key-list: string-list>
 Standards Track/IESG-approved experimental RFC number:
 RFC 3028 (Sieve base spec)
 Person and email address to contact for further information:
 Tim Showalter
 tjs@mirapoint.com

 Capability name: comparator-*
 Capability keyword:
 comparator-* (anything starting with "comparator-")
 Capability arguments: (none)
 Standards Track/IESG-approved experimental RFC number:
 RFC 3028, Sieve, by reference of
 RFC 2244, Application Configuration Access Protocol
 Person and email address to contact for further information:
 Tim Showalter
 tjs@mirapoint.com

6.3. Capability Transport

 As the range of mail systems that this document is intended to apply
 to is quite varied, a method of advertising which capabilities an
 implementation supports is difficult due to the wide range of
 possible implementations. Such a mechanism, however, should have
 property that the implementation can advertise the complete set of
 extensions that it supports.

7. Transmission

 The MIME type for a Sieve script is "application/sieve".

 The registration of this type for RFC 2048 requirements is as
 follows:

 Subject: Registration of MIME media type application/sieve

 MIME media type name: application
 MIME subtype name: sieve
 Required parameters: none
 Optional parameters: none
 Encoding considerations: Most sieve scripts will be textual,
 written in UTF-8. When non-7bit characters are used,
 quoted-printable is appropriate for transport systems
 that require 7bit encoding.

Showalter Standards Track [Page 29]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 Security considerations: Discussed in section 10 of RFC 3028.
 Interoperability considerations: Discussed in section 2.10.5
 of RFC 3028.
 Published specification: RFC 3028.
 Applications which use this media type: sieve-enabled mail servers
 Additional information:
 Magic number(s):
 File extension(s): .siv
 Macintosh File Type Code(s):
 Person & email address to contact for further information:
 See the discussion list at ietf-mta-filters@imc.org.
 Intended usage:
 COMMON
 Author/Change controller:
 See Author information in RFC 3028.

8. Parsing

 The Sieve grammar is separated into tokens and a separate grammar as
 most programming languages are.

8.1. Lexical Tokens

 Sieve scripts are encoded in UTF-8. The following assumes a valid
 UTF-8 encoding; special characters in Sieve scripts are all ASCII.

 The following are tokens in Sieve:

 - identifiers
 - tags
 - numbers
 - quoted strings
 - multi-line strings
 - other separators

 Blanks, horizontal tabs, CRLFs, and comments ("white space") are
 ignored except as they separate tokens. Some white space is required
 to separate otherwise adjacent tokens and in specific places in the
 multi-line strings.

 The other separators are single individual characters, and are
 mentioned explicitly in the grammar.

 The lexical structure of sieve is defined in the following BNF (as
 described in [ABNF]):

Showalter Standards Track [Page 30]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 bracket-comment = "/*" *(CHAR-NOT-STAR / ("*" CHAR-NOT-SLASH)) "*/"
 ;; No */ allowed inside a comment.
 ;; (No * is allowed unless it is the last character,
 ;; or unless it is followed by a character that isn’t a
 ;; slash.)

 CHAR-NOT-DOT = (%x01-09 / %x0b-0c / %x0e-2d / %x2f-ff)
 ;; no dots, no CRLFs

 CHAR-NOT-CRLF = (%x01-09 / %x0b-0c / %x0e-ff)

 CHAR-NOT-SLASH = (%x00-57 / %x58-ff)

 CHAR-NOT-STAR = (%x00-51 / %x53-ff)

 comment = bracket-comment / hash-comment

 hash-comment = ("#" *CHAR-NOT-CRLF CRLF)

 identifier = (ALPHA / "_") *(ALPHA DIGIT "_")

 tag = ":" identifier

 number = 1*DIGIT [QUANTIFIER]

 QUANTIFIER = "K" / "M" / "G"

 quoted-string = DQUOTE *CHAR DQUOTE
 ;; in general, \ CHAR inside a string maps to CHAR
 ;; so \" maps to " and \\ maps to \
 ;; note that newlines and other characters are all allowed
 ;; strings

 multi-line = "text:" *(SP / HTAB) (hash-comment / CRLF)
 *(multi-line-literal / multi-line-dotstuff)
 "." CRLF
 multi-line-literal = [CHAR-NOT-DOT *CHAR-NOT-CRLF] CRLF
 multi-line-dotstuff = "." 1*CHAR-NOT-CRLF CRLF
 ;; A line containing only "." ends the multi-line.
 ;; Remove a leading ’.’ if followed by another ’.’.

 white-space = 1*(SP / CRLF / HTAB) / comment

8.2. Grammar

 The following is the grammar of Sieve after it has been lexically
 interpreted. No white space or comments appear below. The start
 symbol is "start".

Showalter Standards Track [Page 31]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 argument = string-list / number / tag

 arguments = *argument [test / test-list]

 block = "{" commands "}"

 command = identifier arguments (";" / block)

 commands = *command

 start = commands

 string = quoted-string / multi-line

 string-list = "[" string *("," string) "]" / string ;; if
 there is only a single string, the brackets are optional

 test = identifier arguments

 test-list = "(" test *("," test) ")"

9. Extended Example

 The following is an extended example of a Sieve script. Note that it
 does not make use of the implicit keep.

 #
 # Example Sieve Filter
 # Declare any optional features or extension used by the script
 #
 require ["fileinto", "reject"];

 #
 # Reject any large messages (note that the four leading dots get
 # "stuffed" to three)
 #
 if size :over 1M
 {
 reject text:
 Please do not send me large attachments.
 Put your file on a server and send me the URL.
 Thank you.
 Fred
 .
 ;
 stop;
 }
 #

Showalter Standards Track [Page 32]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 # Handle messages from known mailing lists
 # Move messages from IETF filter discussion list to filter folder
 #
 if header :is "Sender" "owner-ietf-mta-filters@imc.org"
 {
 fileinto "filter"; # move to "filter" folder
 }
 #
 # Keep all messages to or from people in my company
 #
 elsif address :domain :is ["From", "To"] "example.com"
 {
 keep; # keep in "In" folder
 }

 #
 # Try and catch unsolicited email. If a message is not to me,
 # or it contains a subject known to be spam, file it away.
 #
 elsif anyof (not address :all :contains
 ["To", "Cc", "Bcc"] "me@example.com",
 header :matches "subject"
 ["*make*money*fast*", "*university*dipl*mas*"])
 {
 # If message header does not contain my address,
 # it’s from a list.
 fileinto "spam"; # move to "spam" folder
 }
 else
 {
 # Move all other (non-company) mail to "personal"
 # folder.
 fileinto "personal";
 }

Showalter Standards Track [Page 33]

RFC 3028 Sieve: A Mail Filtering Language January 2001

10. Security Considerations

 Users must get their mail. It is imperative that whatever method
 implementations use to store the user-defined filtering scripts be
 secure.

 It is equally important that implementations sanity-check the user’s
 scripts, and not allow users to create on-demand mailbombs. For
 instance, an implementation that allows a user to reject or redirect
 multiple times to a single message might also allow a user to create
 a mailbomb triggered by mail from a specific user. Site- or
 implementation-defined limits on actions are useful for this.

 Several commands, such as "discard", "redirect", and "fileinto" allow
 for actions to be taken that are potentially very dangerous.

 Implementations SHOULD take measures to prevent languages from
 looping.

11. Acknowledgments

 I am very thankful to Chris Newman for his support and his ABNF
 syntax checker, to John Myers and Steve Hole for outlining the
 requirements for the original drafts, to Larry Greenfield for nagging
 me about the grammar and finally fixing it, to Greg Sereda for
 repeatedly fixing and providing examples, to Ned Freed for fixing
 everything else, to Rob Earhart for an early implementation and a
 great deal of help, and to Randall Gellens for endless amounts of
 proofreading. I am grateful to Carnegie Mellon University where most
 of the work on this document was done. I am also indebted to all of
 the readers of the ietf-mta-filters@imc.org mailing list.

12. Author’s Address

 Tim Showalter
 Mirapoint, Inc.
 909 Hermosa Court
 Sunnyvale, CA 94085

 EMail: tjs@mirapoint.com

13. References

 [ABNF] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

Showalter Standards Track [Page 34]

RFC 3028 Sieve: A Mail Filtering Language January 2001

 [ACAP] Newman, C. and J. G. Myers, "ACAP -- Application
 Configuration Access Protocol", RFC 2244, November 1997.

 [BINARY-SI] "Standard IEC 60027-2: Letter symbols to be used in
 electrical technology - Part 2: Telecommunications and
 electronics", January 1999.

 [DSN] Moore, K. and G. Vaudreuil, "An Extensible Message Format
 for Delivery Status Notifications", RFC 1894, January
 1996.

 [FLAMES] Borenstein, N, and C. Thyberg, "Power, Ease of Use, and
 Cooperative Work in a Practical Multimedia Message
 System", Int. J. of Man-Machine Studies, April, 1991.
 Reprinted in Computer-Supported Cooperative Work and
 Groupware, Saul Greenberg, editor, Harcourt Brace
 Jovanovich, 1991. Reprinted in Readings in Groupware and
 Computer-Supported Cooperative Work, Ronald Baecker,
 editor, Morgan Kaufmann, 1993.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [IMAP] Crispin, M., "Internet Message Access Protocol - version
 4rev1", RFC 2060, December 1996.

 [IMAIL] Crocker, D., "Standard for the Format of ARPA Internet
 Text Messages", STD 11, RFC 822, August 1982.

 [MIME] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [MDN] Fajman, R., "An Extensible Message Format for Message
 Disposition Notifications", RFC 2298, March 1998.

 [RFC1123] Braden, R., "Requirements for Internet Hosts --
 Application and Support", STD 3, RFC 1123, November 1989.

 [SMTP] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC
 821, August 1982.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of Unicode
 and ISO 10646", RFC 2044, October 1996.

Showalter Standards Track [Page 35]

RFC 3028 Sieve: A Mail Filtering Language January 2001

14. Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Showalter Standards Track [Page 36]

