
Network Working Group G. Zorn
Request for Comments: 3079 cisco Systems
Category: Informational March 2001

 Deriving Keys for use with Microsoft Point-to-Point Encryption (MPPE)

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 The Point-to-Point Protocol (PPP) provides a standard method for
 transporting multi-protocol datagrams over point-to-point links.

 The PPP Compression Control Protocol provides a method to negotiate
 and utilize compression protocols over PPP encapsulated links.

 Microsoft Point to Point Encryption (MPPE) is a means of representing
 PPP packets in an encrypted form. MPPE uses the RSA RC4 algorithm to
 provide data confidentiality. The length of the session key to be
 used for initializing encryption tables can be negotiated. MPPE
 currently supports 40-bit, 56-bit and 128-bit session keys. MPPE
 session keys are changed frequently; the exact frequency depends upon
 the options negotiated, but may be every packet. MPPE is negotiated
 within option 18 in the Compression Control Protocol.

 This document describes the method used to derive initial MPPE
 session keys from a variety of credential types. It is expected that
 this memo will be updated whenever Microsoft defines a new key
 derivation method for MPPE, since its primary purpose is to provide
 an open, easily accessible reference for third-parties wishing to
 interoperate with Microsoft products.

 MPPE itself (including the protocol used to negotiate its use, the
 details of the encryption method used and the algorithm used to
 change session keys during a session) is described in RFC 3078.

Zorn Informational [Page 1]

RFC 3079 MPPE Key Derivation March 2001

Table of Contents

 1. Specification of Requirements 2
 2. Deriving Session Keys from MS-CHAP Credentials 2
 2.1. Generating 40-bit Session Keys 3
 2.2. Generating 56-bit Session Keys 3
 2.3. Generating 128-bit Session Keys 4
 2.4. Key Derivation Functions 5
 2.5. Sample Key Derivations 6
 2.5.1. Sample 40-bit Key Derivation 6
 2.5.2. Sample 56-bit Key Derivation 6
 2.5.3. Sample 128-bit Key Derivation 7
 3. Deriving Session Keys from MS-CHAP-2 Credentials 7
 3.1. Generating 40-bit Session Keys 8
 3.2. Generating 56-bit Session Keys 9
 3.3. Generating 128-bit Session Keys10
 3.4. Key Derivation Functions11
 3.5. Sample Key Derivations13
 3.5.1. Sample 40-bit Key Derivation13
 3.5.2. Sample 56-bit Key Derivation14
 3.5.3. Sample 128-bit Key Derivation15
 4. Deriving MPPE Session Keys from TLS Session Keys16
 4.1. Generating 40-bit Session Keys16
 4.2. Generating 56-bit Session Keys17
 4.3. Generating 128-bit Session Keys17
 5. Security Considerations18
 5.1. MS-CHAP Credentials18
 5.2. EAP-TLS Credentials19
 6. References ..19
 7. Acknowledgements ..20
 8. Author’s Address ..20
 9. Full Copyright Statement21

1. Specification of Requirements

 In this document, the key words "MAY", "MUST, "MUST NOT", "optional",
 "recommended", "SHOULD", and "SHOULD NOT" are to be interpreted as
 described in [6].

2. Deriving Session Keys from MS-CHAP Credentials

 The Microsoft Challenge-Handshake Authentication Protocol (MS-CHAP-1)
 [2] is a Microsoft-proprietary PPP [1] authentication protocol,
 providing the functionality to which LAN-based users are accustomed
 while integrating the encryption and hashing algorithms used on
 Windows networks.

Zorn Informational [Page 2]

RFC 3079 MPPE Key Derivation March 2001

 The following sections detail the methods used to derive initial
 session keys (40-, 56- and 128-bit) from MS-CHAP-1 credentials.

 Implementation Note

 The initial session key in both directions is derived from the
 credentials of the peer that initiated the call and the challenge
 used (if any) is the challenge from the first authentication.
 This is true for both unilateral and bilateral authentication, as
 well as for each link in a multilink bundle. In the multi-chassis
 multilink case, implementations are responsible for ensuring that
 the correct keys are generated on all participating machines.

2.1. Generating 40-bit Session Keys

 MPPE uses a derivative of the peer’s LAN Manager password as the 40-
 bit session key used for initializing the RC4 encryption tables.

 The first step is to obfuscate the peer’s password using the
 LmPasswordHash() function (described in [2]). The first 8 octets of
 the result are used as the basis for the session key generated in the
 following way:

/*
* PasswordHash is the basis for the session key
* SessionKey is a copy of PasswordHash and is the generative session key
* 8 is the length (in octets) of the key to be generated.
*
*/
Get_Key(PasswordHash, SessionKey, 8)

/*
* The effective length of the key is reduced to 40 bits by
* replacing the first three bytes as follows:
*/
SessionKey[0] = 0xd1 ;
SessionKey[1] = 0x26 ;
SessionKey[2] = 0x9e ;

2.2. Generating 56-bit Session Keys

 MPPE uses a derivative of the peer’s LAN Manager password as the 56-
 bit session key used for initializing the RC4 encryption tables.

 The first step is to obfuscate the peer’s password using the
 LmPasswordHash() function (described in [2]). The first 8 octets of
 the result are used as the basis for the session key generated in the
 following way:

Zorn Informational [Page 3]

RFC 3079 MPPE Key Derivation March 2001

/*
* PasswordHash is the basis for the session key
* SessionKey is a copy of PasswordHash and is the generative session key
* 8 is the length (in octets) of the key to be generated.
*
*/
Get_Key(PasswordHash, SessionKey, 8)

/*
* The effective length of the key is reduced to 56 bits by
* replacing the first byte as follows:
*/
SessionKey[0] = 0xd1 ;

2.3. Generating 128-bit Session Keys

 MPPE uses a derivative of the peer’s Windows NT password as the 128-
 bit session key used for initializing encryption tables.

 The first step is to obfuscate the peer’s password using
 NtPasswordHash() function as described in [2]. The first 16 octets
 of the result are then hashed again using the MD4 algorithm. The
 first 16 octets of the second hash are used as the basis for the
 session key generated in the following way:

/*
* Challenge (as described in [9]) is sent by the PPP authenticator
* during authentication and is 8 octets long.
* NtPasswordHashHash is the basis for the session key.
* On return, InitialSessionKey contains the initial session
* key to be used.
*/
Get_Start_Key(Challenge, NtPasswordHashHash, InitialSessionKey)

/*
* CurrentSessionKey is a copy of InitialSessionKey
* and is the generative session key.
* Length (in octets) of the key to generate is 16.
*
*/
Get_Key(InitialSessionKey, CurrentSessionKey, 16)

Zorn Informational [Page 4]

RFC 3079 MPPE Key Derivation March 2001

2.4. Key Derivation Functions

 The following procedures are used to derive the session key.

/*
 * Pads used in key derivation
 */

SHApad1[40] =
 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

SHApad2[40] =
 {0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2,
 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2,
 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2,
 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2};

/*
 * SHAInit(), SHAUpdate() and SHAFinal() functions are an
 * implementation of Secure Hash Algorithm (SHA-1) [7]. These are
 * available in public domain or can be licensed from
 * RSA Data Security, Inc.
 *
 * 1) InitialSessionKey is 8 octets long for 56- and 40-bit
 * session keys, 16 octets long for 128 bit session keys.
 * 2) CurrentSessionKey is same as InitialSessionKey when this
 * routine is called for the first time for the session.
 */

Get_Key(
IN InitialSessionKey,
IN/OUT CurrentSessionKey
IN LengthOfDesiredKey)
{
 SHAInit(Context)
 SHAUpdate(Context, InitialSessionKey, LengthOfDesiredKey)
 SHAUpdate(Context, SHAPad1, 40)
 SHAUpdate(Context, CurrentSessionKey, LengthOfDesiredKey)
 SHAUpdate(Context, SHAPad2, 40)
 SHAFinal(Context, Digest)
 memcpy(CurrentSessionKey, Digest, LengthOfDesiredKey)
}

Get_Start_Key(
IN Challenge,

Zorn Informational [Page 5]

RFC 3079 MPPE Key Derivation March 2001

IN NtPasswordHashHash,
OUT InitialSessionKey)
{
 SHAInit(Context)
 SHAUpdate(Context, NtPasswordHashHash, 16)
 SHAUpdate(Context, NtPasswordHashHash, 16)
 SHAUpdate(Context, Challenge, 8)
 SHAFinal(Context, Digest)
 memcpy(InitialSessionKey, Digest, 16)
}

2.5. Sample Key Derivations

 The following sections illustrate 40-, 56- and 128-bit key
 derivations. All intermediate values are in hexadecimal.

2.5.1. Sample 40-bit Key Derivation

 Initial Values
 Password = "clientPass"

 Step 1: LmPasswordHash(Password, PasswordHash)
 PasswordHash = 76 a1 52 93 60 96 d7 83 0e 23 90 22 74 04 af d2

 Step 2: Copy PasswordHash to SessionKey
 SessionKey = 76 a1 52 93 60 96 d7 83 0e 23 90 22 74 04 af d2

 Step 3: GetKey(PasswordHash, SessionKey, 8)
 SessionKey = d8 08 01 53 8c ec 4a 08

 Step 4: Reduce the effective key length to 40 bits
 SessionKey = d1 26 9e 53 8c ec 4a 08

2.5.2. Sample 56-bit Key Derivation

 Initial Values
 Password = "clientPass"

 Step 1: LmPasswordHash(Password, PasswordHash)
 PasswordHash = 76 a1 52 93 60 96 d7 83 0e 23 90 22 74 04 af d2

 Step 2: Copy PasswordHash to SessionKey
 SessionKey = 76 a1 52 93 60 96 d7 83 0e 23 90 22 74 04 af d2

 Step 3: GetKey(PasswordHash, SessionKey, 8)
 SessionKey = d8 08 01 53 8c ec 4a 08

Zorn Informational [Page 6]

RFC 3079 MPPE Key Derivation March 2001

 Step 4: Reduce the effective key length to 56 bits
 SessionKey = d1 08 01 53 8c ec 4a 08

2.5.3. Sample 128-bit Key Derivation

Initial Values
 Password = "clientPass"
 Challenge = 10 2d b5 df 08 5d 30 41

Step 1: NtPasswordHash(Password, PasswordHash)
 PasswordHash = 44 eb ba 8d 53 12 b8 d6 11 47 44 11 f5 69 89 ae

Step 2: PasswordHashHash = MD4(PasswordHash)
 PasswordHashHash = 41 c0 0c 58 4b d2 d9 1c 40 17 a2 a1 2f a5 9f 3f

Step 3: GetStartKey(Challenge, PasswordHashHash, InitialSessionKey)
 InitialSessionKey = a8 94 78 50 cf c0 ac ca d1 78 9f b6 2d dc dd b0

Step 4: Copy InitialSessionKey to CurrentSessionKey
 CurrentSessionKey = a8 94 78 50 cf c0 ac c1 d1 78 9f b6 2d dc dd b0

Step 5: GetKey(InitialSessionKey, CurrentSessionKey, 16)
 CurrentSessionKey = 59 d1 59 bc 09 f7 6f 1d a2 a8 6a 28 ff ec 0b 1e

3. Deriving Session Keys from MS-CHAP-2 Credentials

 Version 2 of the Microsoft Challenge-Handshake Authentication
 Protocol (MS-CHAP-2) [8] is a Microsoft-proprietary PPP
 authentication protocol, providing the functionality to which LAN-
 based users are accustomed while integrating the encryption and
 hashing algorithms used on Windows networks.

 The following sections detail the methods used to derive initial
 session keys from MS-CHAP-2 credentials. 40-, 56- and 128-bit keys
 are all derived using the same algorithm from the authenticating
 peer’s Windows NT password. The only difference is in the length of
 the keys and their effective strength: 40- and 56-bit keys are 8
 octets in length, while 128-bit keys are 16 octets long. Separate
 keys are derived for the send and receive directions of the session.

 Implementation Note

 The initial session keys in both directions are derived from the
 credentials of the peer that initiated the call and the challenges
 used are those from the first authentication. This is true as
 well for each link in a multilink bundle. In the multi-chassis
 multilink case, implementations are responsible for ensuring that
 the correct keys are generated on all participating machines.

Zorn Informational [Page 7]

RFC 3079 MPPE Key Derivation March 2001

3.1. Generating 40-bit Session Keys

 When used in conjunction with MS-CHAP-2 authentication, the initial
 MPPE session keys are derived from the peer’s Windows NT password.

 The first step is to obfuscate the peer’s password using
 NtPasswordHash() function as described in [8].

 NtPasswordHash(Password, PasswordHash)

 The first 16 octets of the result are then hashed again using the MD4
 algorithm.

 PasswordHashHash = md4(PasswordHash)

 The first 16 octets of this second hash are used together with the
 NT- Response field from the MS-CHAP-2 Response packet [8] as the
 basis for the master session key:

 GetMasterKey(PasswordHashHash, NtResponse, MasterKey)

 Once the master key has been generated, it is used to derive two 40-
 bit session keys, one for sending and one for receiving:

 GetAsymmetricStartKey(MasterKey, MasterSendKey, 8, TRUE, TRUE)
 GetAsymmetricStartKey(MasterKey, MasterReceiveKey, 8, FALSE, TRUE)

 The master session keys are never used to encrypt or decrypt data;
 they are only used in the derivation of transient session keys. The
 initial transient session keys are obtained by calling the function
 GetNewKeyFromSHA() (described in [3]):

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 8, SendSessionKey)
GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 8,
 ReceiveSessionKey)

 Next, the effective strength of both keys is reduced by setting the
 first three octets to known constants:

 SendSessionKey[0] = ReceiveSessionKey[0] = 0xd1
 SendSessionKey[1] = ReceiveSessionKey[1] = 0x26
 SendSessionKey[2] = ReceiveSessionKey[2] = 0x9e

 Finally, the RC4 tables are initialized using the new session keys:

 rc4_key(SendRC4key, 8, SendSessionKey)
 rc4_key(ReceiveRC4key, 8, ReceiveSessionKey)

Zorn Informational [Page 8]

RFC 3079 MPPE Key Derivation March 2001

3.2. Generating 56-bit Session Keys

 When used in conjunction with MS-CHAP-2 authentication, the initial
 MPPE session keys are derived from the peer’s Windows NT password.

 The first step is to obfuscate the peer’s password using
 NtPasswordHash() function as described in [8].

 NtPasswordHash(Password, PasswordHash)

 The first 16 octets of the result are then hashed again using the MD4
 algorithm.

 PasswordHashHash = md4(PasswordHash)

 The first 16 octets of this second hash are used together with the
 NT-Response field from the MS-CHAP-2 Response packet [8] as the basis
 for the master session key:

 GetMasterKey(PasswordHashHash, NtResponse, MasterKey)

 Once the master key has been generated, it is used to derive two
 56-bit session keys, one for sending and one for receiving:

 GetAsymmetricStartKey(MasterKey, MasterSendKey, 8, TRUE, TRUE)
 GetAsymmetricStartKey(MasterKey, MasterReceiveKey, 8, FALSE, TRUE)

 The master session keys are never used to encrypt or decrypt data;
 they are only used in the derivation of transient session keys. The
 initial transient session keys are obtained by calling the function
 GetNewKeyFromSHA() (described in [3]):

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 8, SendSessionKey)
GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 8,
 ReceiveSessionKey)

 Next, the effective strength of both keys is reduced by setting the
 first octet to a known constant:

 SendSessionKey[0] = ReceiveSessionKey[0] = 0xd1

 Finally, the RC4 tables are initialized using the new session keys:

 rc4_key(SendRC4key, 8, SendSessionKey)
 rc4_key(ReceiveRC4key, 8, ReceiveSessionKey)

Zorn Informational [Page 9]

RFC 3079 MPPE Key Derivation March 2001

3.3. Generating 128-bit Session Keys

 When used in conjunction with MS-CHAP-2 authentication, the initial
 MPPE session keys are derived from the peer’s Windows NT password.

 The first step is to obfuscate the peer’s password using
 NtPasswordHash() function as described in [8].

 NtPasswordHash(Password, PasswordHash)

 The first 16 octets of the result are then hashed again using the MD4
 algorithm.

 PasswordHashHash = md4(PasswordHash)

 The first 16 octets of this second hash are used together with the
 NT-Response field from the MS-CHAP-2 Response packet [8] as the basis
 for the master session key:

 GetMasterKey(PasswordHashHash, NtResponse, MasterKey)

 Once the master key has been generated, it is used to derive two
 128-bit master session keys, one for sending and one for receiving:

GetAsymmetricStartKey(MasterKey, MasterSendKey, 16, TRUE, TRUE)
GetAsymmetricStartKey(MasterKey, MasterReceiveKey, 16, FALSE, TRUE)

 The master session keys are never used to encrypt or decrypt data;
 they are only used in the derivation of transient session keys. The
 initial transient session keys are obtained by calling the function
 GetNewKeyFromSHA() (described in [3]):

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 16, SendSessionKey)
GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 16,
 ReceiveSessionKey)

 Finally, the RC4 tables are initialized using the new session keys:

 rc4_key(SendRC4key, 16, SendSessionKey)
 rc4_key(ReceiveRC4key, 16, ReceiveSessionKey)

Zorn Informational [Page 10]

RFC 3079 MPPE Key Derivation March 2001

3.4. Key Derivation Functions

 The following procedures are used to derive the session key.

/*
 * Pads used in key derivation
 */

SHSpad1[40] =
 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

SHSpad2[40] =
 {0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2,
 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2,
 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2,
 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2, 0xf2};

/*
 * "Magic" constants used in key derivations
 */

Magic1[27] =
 {0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x74,
 0x68, 0x65, 0x20, 0x4d, 0x50, 0x50, 0x45, 0x20, 0x4d,
 0x61, 0x73, 0x74, 0x65, 0x72, 0x20, 0x4b, 0x65, 0x79};

Magic2[84] =
 {0x4f, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6c, 0x69,
 0x65, 0x6e, 0x74, 0x20, 0x73, 0x69, 0x64, 0x65, 0x2c, 0x20,
 0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68,
 0x65, 0x20, 0x73, 0x65, 0x6e, 0x64, 0x20, 0x6b, 0x65, 0x79,
 0x3b, 0x20, 0x6f, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73,
 0x65, 0x72, 0x76, 0x65, 0x72, 0x20, 0x73, 0x69, 0x64, 0x65,
 0x2c, 0x20, 0x69, 0x74, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68,
 0x65, 0x20, 0x72, 0x65, 0x63, 0x65, 0x69, 0x76, 0x65, 0x20,
 0x6b, 0x65, 0x79, 0x2e};

Magic3[84] =
 {0x4f, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6c, 0x69,
 0x65, 0x6e, 0x74, 0x20, 0x73, 0x69, 0x64, 0x65, 0x2c, 0x20,
 0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68,
 0x65, 0x20, 0x72, 0x65, 0x63, 0x65, 0x69, 0x76, 0x65, 0x20,
 0x6b, 0x65, 0x79, 0x3b, 0x20, 0x6f, 0x6e, 0x20, 0x74, 0x68,
 0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x20, 0x73,
 0x69, 0x64, 0x65, 0x2c, 0x20, 0x69, 0x74, 0x20, 0x69, 0x73,

Zorn Informational [Page 11]

RFC 3079 MPPE Key Derivation March 2001

 0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x6e, 0x64, 0x20,
 0x6b, 0x65, 0x79, 0x2e};

 GetMasterKey(
 IN 16-octet PasswordHashHash,
 IN 24-octet NTResponse,
 OUT 16-octet MasterKey)
 {
 20-octet Digest

 ZeroMemory(Digest, sizeof(Digest));

 /*
 * SHSInit(), SHSUpdate() and SHSFinal()
 * are an implementation of the Secure Hash Standard [7].
 */

 SHSInit(Context);
 SHSUpdate(Context, PasswordHashHash, 16);
 SHSUpdate(Context, NTResponse, 24);
 SHSUpdate(Context, Magic1, 27);
 SHSFinal(Context, Digest);

 MoveMemory(MasterKey, Digest, 16);
 }

 VOID
 GetAsymetricStartKey(
 IN 16-octet MasterKey,
 OUT 8-to-16 octet SessionKey,
 IN INTEGER SessionKeyLength,
 IN BOOLEAN IsSend,
 IN BOOLEAN IsServer)
 {

 20-octet Digest;

 ZeroMemory(Digest, 20);

 if (IsSend) {
 if (IsServer) {
 s = Magic3
 } else {
 s = Magic2
 }
 } else {
 if (IsServer) {

Zorn Informational [Page 12]

RFC 3079 MPPE Key Derivation March 2001

 s = Magic2
 } else {
 s = Magic3
 }
 }

 /*
 * SHSInit(), SHSUpdate() and SHSFinal()
 * are an implementation of the Secure Hash Standard [7].
 */

 SHSInit(Context);
 SHSUpdate(Context, MasterKey, 16);
 SHSUpdate(Context, SHSpad1, 40);
 SHSUpdate(Context, s, 84);
 SHSUpdate(Context, SHSpad2, 40);
 SHSFinal(Context, Digest);

 MoveMemory(SessionKey, Digest, SessionKeyLength);
 }

3.5. Sample Key Derivations

 The following sections illustrate 40-, 56- and 128-bit key
 derivations. All intermediate values are in hexadecimal.

3.5.1. Sample 40-bit Key Derivation

Initial Values
 UserName = "User"
 = 55 73 65 72

 Password = "clientPass"
 = 63 00 6C 00 69 00 65 00 6E 00
 74 00 50 00 61 00 73 00 73 00

 AuthenticatorChallenge = 5B 5D 7C 7D 7B 3F 2F 3E 3C 2C
 60 21 32 26 26 28
 PeerChallenge = 21 40 23 24 25 5E 26 2A 28 29 5F 2B 3A 33 7C 7E

 Challenge = D0 2E 43 86 BC E9 12 26

 NT-Response =
 82 30 9E CD 8D 70 8B 5E A0 8F AA 39 81 CD 83 54 42 33
 11 4A 3D 85 D6 DF

Step 1: NtPasswordHash(Password, PasswordHash)
 PasswordHash = 44 EB BA 8D 53 12 B8 D6 11 47 44 11 F5 69 89 AE

Zorn Informational [Page 13]

RFC 3079 MPPE Key Derivation March 2001

Step 2: PasswordHashHash = MD4(PasswordHash)
 PasswordHashHash = 41 C0 0C 58 4B D2 D9 1C 40 17 A2 A1 2F A5 9F 3F

Step 3: Derive the master key (GetMasterKey())
 MasterKey = FD EC E3 71 7A 8C 83 8C B3 88 E5 27 AE 3C DD 31

Step 4: Derive the master send session key (GetAsymmetricStartKey())
 SendStartKey40 = 8B 7C DC 14 9B 99 3A 1B

Step 5: Derive the initial send session key (GetNewKeyFromSHA())
 SendSessionKey40 = D1 26 9E C4 9F A6 2E 3E

Sample Encrypted Message
 rc4(SendSessionKey40, "test message") = 92 91 37 91 7E 58 03 D6
 68 D7 58 98

3.5.2. Sample 56-bit Key Derivation

Initial Values
 UserName = "User"
 = 55 73 65 72

 Password = "clientPass"
 = 63 00 6C 00 69 00 65 00 6E 00 74 00 50
 00 61 00 73 00 73 00

 AuthenticatorChallenge = 5B 5D 7C 7D 7B 3F 2F 3E 3C 2C
 60 21 32 26 26 28
 PeerChallenge = 21 40 23 24 25 5E 26 2A 28 29 5F 2B 3A 33 7C 7E

 Challenge = D0 2E 43 86 BC E9 12 26

 NT-Response =
 82 30 9E CD 8D 70 8B 5E A0 8F AA 39 81 CD 83 54 42 33
 11 4A 3D 85 D6 DF

Step 1: NtPasswordHash(Password, PasswordHash)
 PasswordHash = 44 EB BA 8D 53 12 B8 D6 11 47 44 11 F5 69 89 AE

Step 2: PasswordHashHash = MD4(PasswordHash)
 PasswordHashHash = 41 C0 0C 58 4B D2 D9 1C 40 17 A2 A1 2F A5 9F 3F

Step 3: Derive the master key (GetMasterKey())
 MasterKey = FD EC E3 71 7A 8C 83 8C B3 88 E5 27 AE 3C DD 31

Step 4: Derive the master send session key (GetAsymmetricStartKey())
 SendStartKey56 = 8B 7C DC 14 9B 99 3A 1B

Zorn Informational [Page 14]

RFC 3079 MPPE Key Derivation March 2001

Step 5: Derive the initial send session key (GetNewKeyFromSHA())
 SendSessionKey56 = D1 5C 00 C4 9F A6 2E 3E

Sample Encrypted Message
 rc4(SendSessionKey40, "test message") = 3F 10 68 33 FA 44 8D
 A8 42 BC 57 58

3.5.3. Sample 128-bit Key Derivation

Initial Values
 UserName = "User"
 = 55 73 65 72

 Password = "clientPass"
 = 63 00 6C 00 69 00 65 00 6E 00
 74 00 50 00 61 00 73 00 73 00

 AuthenticatorChallenge = 5B 5D 7C 7D 7B 3F 2F 3E 3C 2C
 60 21 32 26 26 28

 PeerChallenge = 21 40 23 24 25 5E 26 2A 28 29 5F 2B 3A 33 7C 7E

 Challenge = D0 2E 43 86 BC E9 12 26

 NT-Response =
 82 30 9E CD 8D 70 8B 5E A0 8F AA 39 81 CD 83 54 42 33
 11 4A 3D 85 D6 DF

Step 1: NtPasswordHash(Password, PasswordHash)
 PasswordHash = 44 EB BA 8D 53 12 B8 D6 11 47 44 11 F5 69 89 AE

Step 2: PasswordHashHash = MD4(PasswordHash)
 PasswordHashHash = 41 C0 0C 58 4B D2 D9 1C 40 17 A2 A1 2F A5 9F 3F

Step 2: Derive the master key (GetMasterKey())
 MasterKey = FD EC E3 71 7A 8C 83 8C B3 88 E5 27 AE 3C DD 31

Step 3: Derive the send master session key (GetAsymmetricStartKey())

 SendStartKey128 = 8B 7C DC 14 9B 99 3A 1B A1 18 CB 15 3F 56 DC CB

Step 4: Derive the initial send session key (GetNewKeyFromSHA())
 SendSessionKey128 = 40 5C B2 24 7A 79 56 E6 E2 11 00 7A E2 7B 22 D4

Sample Encrypted Message
 rc4(SendSessionKey128, "test message") = 81 84 83 17 DF 68
 84 62 72 FB 5A BE

Zorn Informational [Page 15]

RFC 3079 MPPE Key Derivation March 2001

4. Deriving MPPE Session Keys from TLS Session Keys

 The Extensible Authentication Protocol (EAP) [10] is a PPP extension
 that provides support for additional authentication methods within
 PPP. Transport Level Security (TLS) [11] provides for mutual
 authentication, integrity-protected ciphersuite negotiation and key
 exchange between two endpoints. EAP-TLS [12] is an EAP
 authentication type which allows the use of TLS within the PPP
 authentication framework. The following sections describe the
 methods used to derive initial session keys from TLS session keys.
 56-, 40- and 128-bit keys are derived using the same algorithm. The
 only difference is in the length of the keys and their effective
 strength: 56- and 40-bit keys are 8 octets in length, while 128-bit
 keys are 16 octets long. Separate keys are derived for the send and
 receive directions of the session.

4.1. Generating 40-bit Session Keys

 When MPPE is used in conjunction with EAP-TLS authentication, the TLS
 master secret is used as the master session key.

 The algorithm used to derive asymmetrical master session keys from
 the TLS master secret is described in [12]. The master session keys
 are never used to encrypt or decrypt data; they are only used in the
 derivation of transient session keys.

 Implementation Note

 If the asymmetrical master keys are less than 8 octets in length,
 they MUST be padded on the left with zeroes before being used to
 derive the initial transient session keys. Conversely, if the
 asymmetrical master keys are more than 8 octets in length, they
 must be truncated to 8 octets before being used to derive the
 initial transient session keys.

 The initial transient session keys are obtained by calling the
 function GetNewKeyFromSHA() (described in [3]):

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 8, SendSessionKey)
GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 8,
ReceiveSessionKey)

 Next, the effective strength of both keys is reduced by setting the
 first three octets to known constants:

 SendSessionKey[0] = ReceiveSessionKey[0] = 0xD1
 SendSessionKey[1] = ReceiveSessionKey[1] = 0x26
 SendSessionKey[2] = ReceiveSessionKey[2] = 0x9E

Zorn Informational [Page 16]

RFC 3079 MPPE Key Derivation March 2001

 Finally, the RC4 tables are initialized using the new session keys:

 rc4_key(SendRC4key, 8, SendSessionKey)
 rc4_key(ReceiveRC4key, 8, ReceiveSessionKey)

4.2. Generating 56-bit Session Keys

 When MPPE is used in conjunction with EAP-TLS authentication, the TLS
 master secret is used as the master session key.

 The algorithm used to derive asymmetrical master session keys from
 the TLS master secret is described in [12]. The master session keys
 are never used to encrypt or decrypt data; they are only used in the
 derivation of transient session keys.

 Implementation Note

 If the asymmetrical master keys are less than 8 octets in length,
 they MUST be padded on the left with zeroes before being used to
 derive the initial transient session keys. Conversely, if the
 asymmetrical master keys are more than 8 octets in length, they
 must be truncated to 8 octets before being used to derive the
 initial transient session keys.

 The initial transient session keys are obtained by calling the
 function GetNewKeyFromSHA() (described in [3]):

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 8, SendSessionKey)
GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 8,
ReceiveSessionKey)

 Next, the effective strength of both keys is reduced by setting the
 initial octet to a known constant:

 SendSessionKey[0] = ReceiveSessionKey[0] = 0xD1

 Finally, the RC4 tables are initialized using the new session keys:

 rc4_key(SendRC4key, 8, SendSessionKey)
 rc4_key(ReceiveRC4key, 8, ReceiveSessionKey)

4.3. Generating 128-bit Session Keys

 When MPPE is used in conjunction with EAP-TLS authentication, the TLS
 master secret is used as the master session key.

Zorn Informational [Page 17]

RFC 3079 MPPE Key Derivation March 2001

 The algorithm used to derive asymmetrical master session keys from
 the TLS master secret is described in [12]. Note that the send key
 on one side is the receive key on the other.

 The master session keys are never used to encrypt or decrypt data;
 they are only used in the derivation of transient session keys.

 Implementation Note

 If the asymmetrical master keys are less than 16 octets in length,
 they MUST be padded on the left with zeroes before being used to
 derive the initial transient session keys. Conversely, if the
 asymmetrical master keys are more than 16 octets in length, they
 must be truncated to 16 octets before being used to derive the
 initial transient session keys.

 The initial transient session keys are obtained by calling the
 function GetNewKeyFromSHA() (described in [3]):

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 16, SendSessionKey)
GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 16,
ReceiveSessionKey)

 Finally, the RC4 tables are initialized using the new session keys:

 rc4_key(SendRC4key, 16, SendSessionKey)
 rc4_key(ReceiveRC4key, 16, ReceiveSessionKey)

5. Security Considerations

5.1. MS-CHAP Credentials

 Because of the way in which 40-bit keys are derived from MS-CHAP-1
 credentials, the initial 40-bit session key will be identical in all
 sessions established under the same peer credentials. For this
 reason, and because RC4 with a 40-bit key length is believed to be a
 relatively weak cipher, peers SHOULD NOT use 40-bit keys derived from
 the LAN Manager password hash (as described above) if it can be
 avoided.

 Since the MPPE session keys are derived from user passwords (in the
 MS- CHAP-1 and MS-CHAP-2 cases), care should be taken to ensure the
 selection of strong passwords and passwords should be changed
 frequently.

Zorn Informational [Page 18]

RFC 3079 MPPE Key Derivation March 2001

5.2. EAP-TLS Credentials

 The strength of the session keys is dependent upon the security of
 the TLS protocol.

 The EAP server may be on a separate machine from the PPP
 authenticator; if this is the case, adequate care must be taken in
 the transmission of the EAP-TLS master keys to the authenticator.

6. References

 [1] Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51, RFC
 1661, July 1994.

 [2] Zorn, G. and S. Cobb, "Microsoft PPP CHAP Extensions", RFC 2433,
 October 1998.

 [3] Pall, G. and G. Zorn, "Microsoft Point-to-Point Encryption
 (MPPE) RFC 3078, March 2001.

 [4] RC4 is a proprietary encryption algorithm available under
 license from RSA Data Security Inc. For licensing information,
 contact:
 RSA Data Security, Inc.
 100 Marine Parkway
 Redwood City, CA 94065-1031

 [5] Pall, G., "Microsoft Point-to-Point Compression (MPPC)
 Protocol", RFC 2118, March 1997.

 [6] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [7] "Secure Hash Standard", Federal Information Processing Standards
 Publication 180-1, National Institute of Standards and
 Technology, April 1995.

 [8] Zorn, G., "Microsoft PPP CHAP Extensions, Version 2", RFC 2759,
 January 2000.

 [9] Simpson, W., "PPP Challenge Handshake Authentication Protocol
 (CHAP)", RFC 1994, August 1996.

 [10] Blunk, L. and J. Vollbrecht, "PPP Extensible Authentication
 Protocol (EAP)", RFC 2284, March 1998.

Zorn Informational [Page 19]

RFC 3079 MPPE Key Derivation March 2001

 [11] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
 2246, January 1999.

 [12] Aboba, B. and D. Simon, "PPP EAP TLS Authentication Protocol",
 RFC 2716, October 1999.

7. Acknowledgements

 Anthony Bell, Richard B. Ward, Terence Spies and Thomas Dimitri, all
 of Microsoft Corporation, significantly contributed to the design and
 development of MPPE.

 Additional thanks to Robert Friend, Joe Davies, Jody Terrill, Archie
 Cobbs, Mark Deuser, Vijay Baliga, Brad Robel-Forrest and Jeff Haag
 for useful feedback.

 The technical portions of this memo were completed while the author
 was employed by Microsoft Corporation.

8. Author’s Address

 Questions about this memo can also be directed to:

 Glen Zorn
 cisco Systems
 500 108th Avenue N.E.
 Suite 500
 Bellevue, Washington 98004
 USA

 Phone: +1 425 438 8218
 FAX: +1 425 438 1848
 EMail: gwz@cisco.com

Zorn Informational [Page 20]

RFC 3079 MPPE Key Derivation March 2001

9. Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Zorn Informational [Page 21]

