
Network Working Group M. Handley
Request for Comments: 3448 S. Floyd
Category: Standards Track ICIR
 J. Padhye
 Microsoft
 J. Widmer
 University of Mannheim
 January 2003

 TCP Friendly Rate Control (TFRC):
 Protocol Specification

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document specifies TCP-Friendly Rate Control (TFRC). TFRC is a
 congestion control mechanism for unicast flows operating in a best-
 effort Internet environment. It is reasonably fair when competing
 for bandwidth with TCP flows, but has a much lower variation of
 throughput over time compared with TCP, making it more suitable for
 applications such as telephony or streaming media where a relatively
 smooth sending rate is of importance.

Table of Contents

 1. Introduction. 2
 2. Terminology . 3
 3. Protocol Mechanism. 3
 3.1. TCP Throughput Equation. 4
 3.2. Packet Contents. 6
 3.2.1. Data Packets. 6
 3.2.2. Feedback Packets. 7
 4. Data Sender Protocol. 7
 4.1. Measuring the Packet Size. 8
 4.2. Sender Initialization. 8

Handley, et. al. Standards Track [Page 1]

RFC 3448 TFRC: Protocol Specification January 2003

 4.3. Sender behavior when a feedback packet is
 received. 8
 4.4. Expiration of nofeedback timer 9
 4.5. Preventing Oscillations. 10
 4.6. Scheduling of Packet Transmissions 11
 5. Calculation of the Loss Event Rate (p). 12
 5.1. Detection of Lost or Marked Packets. 12
 5.2. Translation from Loss History to Loss Events . . . 13
 5.3. Inter-loss Event Interval. 14
 5.4. Average Loss Interval. 14
 5.5. History Discounting. 15
 6. Data Receiver Protocol. 17
 6.1. Receiver behavior when a data packet is
 received . 18
 6.2. Expiration of feedback timer 18
 6.3. Receiver initialization. 19
 6.3.1. Initializing the Loss History after the
 First Loss Event 19
 7. Sender-based Variants 20
 8. Implementation Issues 20
 9. Security Considerations 21
 10. IANA Considerations 22
 11. Acknowledgments . 22
 12. Non-Normative References. 22
 13. Authors’ Addresses. 23
 14. Full Copyright Statement. 24

1. Introduction

 This document specifies TCP-Friendly Rate Control (TFRC). TFRC is a
 congestion control mechanism designed for unicast flows operating in
 an Internet environment and competing with TCP traffic [2]. Instead
 of specifying a complete protocol, this document simply specifies a
 congestion control mechanism that could be used in a transport
 protocol such as RTP [7], in an application incorporating end-to-end
 congestion control at the application level, or in the context of
 endpoint congestion management [1]. This document does not discuss
 packet formats or reliability. Implementation-related issues are
 discussed only briefly, in Section 8.

 TFRC is designed to be reasonably fair when competing for bandwidth
 with TCP flows, where a flow is "reasonably fair" if its sending rate
 is generally within a factor of two of the sending rate of a TCP flow
 under the same conditions. However, TFRC has a much lower variation
 of throughput over time compared with TCP, which makes it more
 suitable for applications such as telephony or streaming media where
 a relatively smooth sending rate is of importance.

Handley, et. al. Standards Track [Page 2]

RFC 3448 TFRC: Protocol Specification January 2003

 The penalty of having smoother throughput than TCP while competing
 fairly for bandwidth is that TFRC responds slower than TCP to changes
 in available bandwidth. Thus TFRC should only be used when the
 application has a requirement for smooth throughput, in particular,
 avoiding TCP’s halving of the sending rate in response to a single
 packet drop. For applications that simply need to transfer as much
 data as possible in as short a time as possible we recommend using
 TCP, or if reliability is not required, using an Additive-Increase,
 Multiplicative-Decrease (AIMD) congestion control scheme with similar
 parameters to those used by TCP.

 TFRC is designed for applications that use a fixed packet size, and
 vary their sending rate in packets per second in response to
 congestion. Some audio applications require a fixed interval of time
 between packets and vary their packet size instead of their packet
 rate in response to congestion. The congestion control mechanism in
 this document cannot be used by those applications; TFRC-PS (for
 TFRC-PacketSize) is a variant of TFRC for applications that have a
 fixed sending rate but vary their packet size in response to
 congestion. TFRC-PS will be specified in a later document.

 TFRC is a receiver-based mechanism, with the calculation of the
 congestion control information (i.e., the loss event rate) in the
 data receiver rather in the data sender. This is well-suited to an
 application where the sender is a large server handling many
 concurrent connections, and the receiver has more memory and CPU
 cycles available for computation. In addition, a receiver-based
 mechanism is more suitable as a building block for multicast
 congestion control.

2. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 and indicate requirement levels for compliant TFRC implementations.

3. Protocol Mechanism

 For its congestion control mechanism, TFRC directly uses a throughput
 equation for the allowed sending rate as a function of the loss event
 rate and round-trip time. In order to compete fairly with TCP, TFRC
 uses the TCP throughput equation, which roughly describes TCP’s
 sending rate as a function of the loss event rate, round-trip time,
 and packet size. We define a loss event as one or more lost or
 marked packets from a window of data, where a marked packet refers to
 a congestion indication from Explicit Congestion Notification (ECN)
 [6].

Handley, et. al. Standards Track [Page 3]

RFC 3448 TFRC: Protocol Specification January 2003

 Generally speaking, TFRC’s congestion control mechanism works as
 follows:

 o The receiver measures the loss event rate and feeds this
 information back to the sender.

 o The sender also uses these feedback messages to measure the
 round-trip time (RTT).

 o The loss event rate and RTT are then fed into TFRC’s throughput
 equation, giving the acceptable transmit rate.

 o The sender then adjusts its transmit rate to match the calculated
 rate.

 The dynamics of TFRC are sensitive to how the measurements are
 performed and applied. We recommend specific mechanisms below to
 perform and apply these measurements. Other mechanisms are possible,
 but it is important to understand how the interactions between
 mechanisms affect the dynamics of TFRC.

3.1. TCP Throughput Equation

 Any realistic equation giving TCP throughput as a function of loss
 event rate and RTT should be suitable for use in TFRC. However, we
 note that the TCP throughput equation used must reflect TCP’s
 retransmit timeout behavior, as this dominates TCP throughput at
 higher loss rates. We also note that the assumptions implicit in the
 throughput equation about the loss event rate parameter have to be a
 reasonable match to how the loss rate or loss event rate is actually
 measured. While this match is not perfect for the throughput
 equation and loss rate measurement mechanisms given below, in
 practice the assumptions turn out to be close enough.

 The throughput equation we currently recommend for TFRC is a slightly
 simplified version of the throughput equation for Reno TCP from [4].
 Ideally we’d prefer a throughput equation based on SACK TCP, but no
 one has yet derived the throughput equation for SACK TCP, and from
 both simulations and experiments, the differences between the two
 equations are relatively minor.

 The throughput equation is:

 s
 X = --
 R*sqrt(2*b*p/3) + (t_RTO * (3*sqrt(3*b*p/8) * p * (1+32*p^2)))

Handley, et. al. Standards Track [Page 4]

RFC 3448 TFRC: Protocol Specification January 2003

 Where:

 X is the transmit rate in bytes/second.

 s is the packet size in bytes.

 R is the round trip time in seconds.

 p is the loss event rate, between 0 and 1.0, of the number of loss
 events as a fraction of the number of packets transmitted.

 t_RTO is the TCP retransmission timeout value in seconds.

 b is the number of packets acknowledged by a single TCP
 acknowledgement.

 We further simplify this by setting t_RTO = 4*R. A more accurate
 calculation of t_RTO is possible, but experiments with the current
 setting have resulted in reasonable fairness with existing TCP
 implementations [9]. Another possibility would be to set t_RTO =
 max(4R, one second), to match the recommended minimum of one second
 on the RTO [5].

 Many current TCP connections use delayed acknowledgements, sending an
 acknowledgement for every two data packets received, and thus have a
 sending rate modeled by b = 2. However, TCP is also allowed to send
 an acknowledgement for every data packet, and this would be modeled
 by b = 1. Because many TCP implementations do not use delayed
 acknowledgements, we recommend b = 1.

 In future, different TCP equations may be substituted for this
 equation. The requirement is that the throughput equation be a
 reasonable approximation of the sending rate of TCP for conformant
 TCP congestion control.

 The parameters s (packet size), p (loss event rate) and R (RTT) need
 to be measured or calculated by a TFRC implementation. The
 measurement of s is specified in Section 4.1, measurement of R is
 specified in Section 4.3, and measurement of p is specified in
 Section 5. In the rest of this document all data rates are measured
 in bytes/second.

Handley, et. al. Standards Track [Page 5]

RFC 3448 TFRC: Protocol Specification January 2003

3.2. Packet Contents

 Before specifying the sender and receiver functionality, we describe
 the contents of the data packets sent by the sender and feedback
 packets sent by the receiver. As TFRC will be used along with a
 transport protocol, we do not specify packet formats, as these depend
 on the details of the transport protocol used.

3.2.1. Data Packets

 Each data packet sent by the data sender contains the following
 information:

 o A sequence number. This number is incremented by one for each
 data packet transmitted. The field must be sufficiently large
 that it does not wrap causing two different packets with the same
 sequence number to be in the receiver’s recent packet history at
 the same time.

 o A timestamp indicating when the packet is sent. We denote by ts_i
 the timestamp of the packet with sequence number i. The
 resolution of the timestamp should typically be measured in
 milliseconds. This timestamp is used by the receiver to determine
 which losses belong to the same loss event. The timestamp is also
 echoed by the receiver to enable the sender to estimate the
 round-trip time, for senders that do not save timestamps of
 transmitted data packets. We note that as an alternative to a
 timestamp incremented in milliseconds, a "timestamp" that
 increments every quarter of a round-trip time would be sufficient
 for determining when losses belong to the same loss event, in the
 context of a protocol where this is understood by both sender and
 receiver, and where the sender saves the timestamps of transmitted
 data packets.

 o The sender’s current estimate of the round trip time. The
 estimate reported in packet i is denoted by R_i. The round-trip
 time estimate is used by the receiver, along with the timestamp,
 to determine when multiple losses belong to the same loss event.
 If the sender sends a coarse-grained "timestamp" that increments
 every quarter of a round-trip time, as discussed above, then the
 sender does not need to send its current estimate of the round
 trip time.

Handley, et. al. Standards Track [Page 6]

RFC 3448 TFRC: Protocol Specification January 2003

3.2.2. Feedback Packets

 Each feedback packet sent by the data receiver contains the following
 information:

 o The timestamp of the last data packet received. We denote this by
 t_recvdata. If the last packet received at the receiver has
 sequence number i, then t_recvdata = ts_i. This timestamp is used
 by the sender to estimate the round-trip time, and is only needed
 if the sender does not save timestamps of transmitted data
 packets.

 o The amount of time elapsed between the receipt of the last data
 packet at the receiver, and the generation of this feedback
 report. We denote this by t_delay.

 o The rate at which the receiver estimates that data was received
 since the last feedback report was sent. We denote this by
 X_recv.

 o The receiver’s current estimate of the loss event rate, p.

4. Data Sender Protocol

 The data sender sends a stream of data packets to the data receiver
 at a controlled rate. When a feedback packet is received from the
 data receiver, the data sender changes its sending rate, based on the
 information contained in the feedback report. If the sender does not
 receive a feedback report for two round trip times, it cuts its
 sending rate in half. This is achieved by means of a timer called
 the nofeedback timer.

 We specify the sender-side protocol in the following steps:

 o Measurement of the mean packet size being sent.

 o The sender behavior when a feedback packet is received.

 o The sender behavior when the nofeedback timer expires.

 o Oscillation prevention (optional)

 o Scheduling of transmission on non-realtime operating systems.

Handley, et. al. Standards Track [Page 7]

RFC 3448 TFRC: Protocol Specification January 2003

4.1. Measuring the Packet Size

 The parameter s (packet size) is normally known to an application.
 This may not be so in two cases:

 o The packet size naturally varies depending on the data. In this
 case, although the packet size varies, that variation is not
 coupled to the transmit rate. It should normally be safe to use
 an estimate of the mean packet size for s.

 o The application needs to change the packet size rather than the
 number of packets per second to perform congestion control. This
 would normally be the case with packet audio applications where a
 fixed interval of time needs to be represented by each packet.
 Such applications need to have a completely different way of
 measuring parameters.

 The second class of applications are discussed separately in a
 separate document on TFRC-PS. For the remainder of this section we
 assume the sender can estimate the packet size, and that congestion
 control is performed by adjusting the number of packets sent per
 second.

4.2. Sender Initialization

 To initialize the sender, the value of X is set to 1 packet/second
 and the nofeedback timer is set to expire after 2 seconds. The
 initial values for R (RTT) and t_RTO are undefined until they are set
 as described below. The initial value of tld, for the Time Last
 Doubled during slow-start, is set to -1.

4.3. Sender behavior when a feedback packet is received

 The sender knows its current sending rate, X, and maintains an
 estimate of the current round trip time, R, and an estimate of the
 timeout interval, t_RTO.

 When a feedback packet is received by the sender at time t_now, the
 following actions should be performed:

 1) Calculate a new round trip sample.
 R_sample = (t_now - t_recvdata) - t_delay.

Handley, et. al. Standards Track [Page 8]

RFC 3448 TFRC: Protocol Specification January 2003

 2) Update the round trip time estimate:

 If no feedback has been received before
 R = R_sample;
 Else
 R = q*R + (1-q)*R_sample;

 TFRC is not sensitive to the precise value for the filter constant q,
 but we recommend a default value of 0.9.

 3) Update the timeout interval:

 t_RTO = 4*R.

 4) Update the sending rate as follows:

 If (p > 0)
 Calculate X_calc using the TCP throughput equation.
 X = max(min(X_calc, 2*X_recv), s/t_mbi);
 Else
 If (t_now - tld >= R)
 X = max(min(2*X, 2*X_recv), s/R);
 tld = t_now;

 Note that if p == 0, then the sender is in slow-start phase, where
 it approximately doubles the sending rate each round-trip time
 until a loss occurs. The s/R term gives a minimum sending rate
 during slow-start of one packet per RTT. The parameter t_mbi is
 64 seconds, and represents the maximum inter-packet backoff
 interval in the persistent absence of feedback. Thus, when p > 0
 the sender sends at least one packet every 64 seconds.

 5) Reset the nofeedback timer to expire after max(4*R, 2*s/X)
 seconds.

4.4. Expiration of nofeedback timer

 If the nofeedback timer expires, the sender should perform the
 following actions:

 1) Cut the sending rate in half. If the sender has received feedback
 from the receiver, this is done by modifying the sender’s cached
 copy of X_recv (the receive rate). Because the sending rate is
 limited to at most twice X_recv, modifying X_recv limits the
 current sending rate, but allows the sender to slow-start,
 doubling its sending rate each RTT, if feedback messages resume
 reporting no losses.

Handley, et. al. Standards Track [Page 9]

RFC 3448 TFRC: Protocol Specification January 2003

 If (X_calc > 2*X_recv)
 X_recv = max(X_recv/2, s/(2*t_mbi));
 Else
 X_recv = X_calc/4;

 The term s/(2*t_mbi) limits the backoff to one packet every 64
 seconds in the case of persistent absence of feedback.

 2) The value of X must then be recalculated as described under point
 (4) above.

 If the nofeedback timer expires when the sender does not yet have
 an RTT sample, and has not yet received any feedback from the
 receiver, then step (1) can be skipped, and the sending rate cut
 in half directly:

 X = max(X/2, s/t_mbi)

 3) Restart the nofeedback timer to expire after max(4*R, 2*s/X)
 seconds.

 Note that when the sender stops sending, the receiver will stop
 sending feedback. This will cause the nofeedback timer to start to
 expire and decrease X_recv. If the sender subsequently starts to
 send again, X_recv will limit the transmit rate, and a normal
 slowstart phase will occur until the transmit rate reaches X_calc.

 If the sender has been idle since this nofeedback timer was set and
 X_recv is less than four packets per round-trip time, then X_recv
 should not be halved in response to the timer expiration. This
 ensures that the allowed sending rate is never reduced to less than
 two packets per round-trip time as a result of an idle period.

4.5. Preventing Oscillations

 To prevent oscillatory behavior in environments with a low degree of
 statistical multiplexing it is useful to modify sender’s transmit
 rate to provide congestion avoidance behavior by reducing the
 transmit rate as the queuing delay (and hence RTT) increases. To do
 this the sender maintains an estimate of the long-term RTT and
 modifies its sending rate depending on how the most recent sample of
 the RTT differs from this value. The long-term sample is R_sqmean,
 and is set as follows:

 If no feedback has been received before
 R_sqmean = sqrt(R_sample);
 Else
 R_sqmean = q2*R_sqmean + (1-q2)*sqrt(R_sample);

Handley, et. al. Standards Track [Page 10]

RFC 3448 TFRC: Protocol Specification January 2003

 Thus R_sqmean gives the exponentially weighted moving average of the
 square root of the RTT samples. The constant q2 should be set
 similarly to q, and we recommend a value of 0.9 as the default.

 The sender obtains the base transmit rate, X, from the throughput
 function. It then calculates a modified instantaneous transmit rate
 X_inst, as follows:

 X_inst = X * R_sqmean / sqrt(R_sample);

 When sqrt(R_sample) is greater than R_sqmean then the queue is
 typically increasing and so the transmit rate needs to be decreased
 for stable operation.

 Note: This modification is not always strictly required, especially
 if the degree of statistical multiplexing in the network is high.
 However, we recommend that it is done because it does make TFRC
 behave better in environments with a low level of statistical
 multiplexing. If it is not done, we recommend using a very low value
 of q, such that q is close to or exactly zero.

4.6. Scheduling of Packet Transmissions

 As TFRC is rate-based, and as operating systems typically cannot
 schedule events precisely, it is necessary to be opportunistic about
 sending data packets so that the correct average rate is maintained
 despite the course-grain or irregular scheduling of the operating
 system. Thus a typical sending loop will calculate the correct
 inter-packet interval, t_ipi, as follows:

 t_ipi = s/X_inst;

 When a sender first starts sending at time t_0, it calculates t_ipi,
 and calculates a nominal send time t_1 = t_0 + t_ipi for packet 1.
 When the application becomes idle, it checks the current time, t_now,
 and then requests re-scheduling after (t_ipi - (t_now - t_0))
 seconds. When the application is re-scheduled, it checks the current
 time, t_now, again. If (t_now > t_1 - delta) then packet 1 is sent.

 Now a new t_ipi may be calculated, and used to calculate a nominal
 send time t_2 for packet 2: t2 = t_1 + t_ipi. The process then
 repeats, with each successive packet’s send time being calculated
 from the nominal send time of the previous packet.

 In some cases, when the nominal send time, t_i, of the next packet is
 calculated, it may already be the case that t_now > t_i - delta. In
 such a case the packet should be sent immediately. Thus if the
 operating system has coarse timer granularity and the transmit rate

Handley, et. al. Standards Track [Page 11]

RFC 3448 TFRC: Protocol Specification January 2003

 is high, then TFRC may send short bursts of several packets separated
 by intervals of the OS timer granularity.

 The parameter delta is to allow a degree of flexibility in the send
 time of a packet. If the operating system has a scheduling timer
 granularity of t_gran seconds, then delta would typically be set to:

 delta = min(t_ipi/2, t_gran/2);

 t_gran is 10ms on many Unix systems. If t_gran is not known, a value
 of 10ms can be safely assumed.

5. Calculation of the Loss Event Rate (p)

 Obtaining an accurate and stable measurement of the loss event rate
 is of primary importance for TFRC. Loss rate measurement is
 performed at the receiver, based on the detection of lost or marked
 packets from the sequence numbers of arriving packets. We describe
 this process before describing the rest of the receiver protocol.

5.1. Detection of Lost or Marked Packets

 TFRC assumes that all packets contain a sequence number that is
 incremented by one for each packet that is sent. For the purposes of
 this specification, we require that if a lost packet is
 retransmitted, the retransmission is given a new sequence number that
 is the latest in the transmission sequence, and not the same sequence
 number as the packet that was lost. If a transport protocol has the
 requirement that it must retransmit with the original sequence
 number, then the transport protocol designer must figure out how to
 distinguish delayed from retransmitted packets and how to detect lost
 retransmissions.

 The receiver maintains a data structure that keeps track of which
 packets have arrived and which are missing. For the purposes of
 specification, we assume that the data structure consists of a list
 of packets that have arrived along with the receiver timestamp when
 each packet was received. In practice this data structure will
 normally be stored in a more compact representation, but this is
 implementation-specific.

 The loss of a packet is detected by the arrival of at least three
 packets with a higher sequence number than the lost packet. The
 requirement for three subsequent packets is the same as with TCP, and
 is to make TFRC more robust in the presence of reordering. In
 contrast to TCP, if a packet arrives late (after 3 subsequent packets
 arrived) in TFRC, the late packet can fill the hole in TFRC’s
 reception record, and the receiver can recalculate the loss event

Handley, et. al. Standards Track [Page 12]

RFC 3448 TFRC: Protocol Specification January 2003

 rate. Future versions of TFRC might make the requirement for three
 subsequent packets adaptive based on experienced packet reordering,
 but we do not specify such a mechanism here.

 For an ECN-capable connection, a marked packet is detected as a
 congestion event as soon as it arrives, without having to wait for
 the arrival of subsequent packets.

5.2. Translation from Loss History to Loss Events

 TFRC requires that the loss fraction be robust to several consecutive
 packets lost where those packets are part of the same loss event.
 This is similar to TCP, which (typically) only performs one halving
 of the congestion window during any single RTT. Thus the receiver
 needs to map the packet loss history into a loss event record, where
 a loss event is one or more packets lost in an RTT. To perform this
 mapping, the receiver needs to know the RTT to use, and this is
 supplied periodically by the sender, typically as control information
 piggy-backed onto a data packet. TFRC is not sensitive to how the
 RTT measurement sent to the receiver is made, but we recommend using
 the sender’s calculated RTT, R, (see Section 4.3) for this purpose.

 To determine whether a lost or marked packet should start a new loss
 event, or be counted as part of an existing loss event, we need to
 compare the sequence numbers and timestamps of the packets that
 arrived at the receiver. For a marked packet S_new, its reception
 time T_new can be noted directly. For a lost packet, we can
 interpolate to infer the nominal "arrival time". Assume:

 S_loss is the sequence number of a lost packet.

 S_before is the sequence number of the last packet to arrive with
 sequence number before S_loss.

 S_after is the sequence number of the first packet to arrive with
 sequence number after S_loss.

 T_before is the reception time of S_before.

 T_after is the reception time of S_after.

 Note that T_before can either be before or after T_after due to
 reordering.

Handley, et. al. Standards Track [Page 13]

RFC 3448 TFRC: Protocol Specification January 2003

 For a lost packet S_loss, we can interpolate its nominal "arrival
 time" at the receiver from the arrival times of S_before and S_after.
 Thus:

 T_loss = T_before + ((T_after - T_before)
 * (S_loss - S_before)/(S_after - S_before));

 Note that if the sequence space wrapped between S_before and S_after,
 then the sequence numbers must be modified to take this into account
 before performing this calculation. If the largest possible sequence
 number is S_max, and S_before > S_after, then modifying each sequence
 number S by S’ = (S + (S_max + 1)/2) mod (S_max + 1) would normally
 be sufficient.

 If the lost packet S_old was determined to have started the previous
 loss event, and we have just determined that S_new has been lost,
 then we interpolate the nominal arrival times of S_old and S_new,
 called T_old and T_new respectively.

 If T_old + R >= T_new, then S_new is part of the existing loss event.
 Otherwise S_new is the first packet in a new loss event.

5.3. Inter-loss Event Interval

 If a loss interval, A, is determined to have started with packet
 sequence number S_A and the next loss interval, B, started with
 packet sequence number S_B, then the number of packets in loss
 interval A is given by (S_B - S_A).

5.4. Average Loss Interval

 To calculate the loss event rate p, we first calculate the average
 loss interval. This is done using a filter that weights the n most
 recent loss event intervals in such a way that the measured loss
 event rate changes smoothly.

 Weights w_0 to w_(n-1) are calculated as:

 If (i < n/2)
 w_i = 1;
 Else
 w_i = 1 - (i - (n/2 - 1))/(n/2 + 1);

 Thus if n=8, the values of w_0 to w_7 are:

 1.0, 1.0, 1.0, 1.0, 0.8, 0.6, 0.4, 0.2

Handley, et. al. Standards Track [Page 14]

RFC 3448 TFRC: Protocol Specification January 2003

 The value n for the number of loss intervals used in calculating the
 loss event rate determines TFRC’s speed in responding to changes in
 the level of congestion. As currently specified, TFRC should not be
 used for values of n significantly greater than 8, for traffic that
 might compete in the global Internet with TCP. At the very least,
 safe operation with values of n greater than 8 would require a slight
 change to TFRC’s mechanisms to include a more severe response to two
 or more round-trip times with heavy packet loss.

 When calculating the average loss interval we need to decide whether
 to include the interval since the most recent packet loss event. We
 only do this if it is sufficiently large to increase the average loss
 interval.

 Thus if the most recent loss intervals are I_0 to I_n, with I_0 being
 the interval since the most recent loss event, then we calculate the
 average loss interval I_mean as:

 I_tot0 = 0;
 I_tot1 = 0;
 W_tot = 0;
 for (i = 0 to n-1) {
 I_tot0 = I_tot0 + (I_i * w_i);
 W_tot = W_tot + w_i;
 }
 for (i = 1 to n) {
 I_tot1 = I_tot1 + (I_i * w_(i-1));
 }
 I_tot = max(I_tot0, I_tot1);
 I_mean = I_tot/W_tot;

 The loss event rate, p is simply:

 p = 1 / I_mean;

5.5. History Discounting

 As described in Section 5.4, the most recent loss interval is only
 assigned 1/(0.75*n) of the total weight in calculating the average
 loss interval, regardless of the size of the most recent loss
 interval. This section describes an optional history discounting
 mechanism, discussed further in [3] and [9], that allows the TFRC
 receiver to adjust the weights, concentrating more of the relative
 weight on the most recent loss interval, when the most recent loss
 interval is more than twice as large as the computed average loss
 interval.

Handley, et. al. Standards Track [Page 15]

RFC 3448 TFRC: Protocol Specification January 2003

 To carry out history discounting, we associate a discount factor DF_i
 with each loss interval L_i, for i > 0, where each discount factor is
 a floating point number. The discount array maintains the cumulative
 history of discounting for each loss interval. At the beginning, the
 values of DF_i in the discount array are initialized to 1:

 for (i = 1 to n) {
 DF_i = 1;
 }

 History discounting also uses a general discount factor DF, also a
 floating point number, that is also initialized to 1. First we show
 how the discount factors are used in calculating the average loss
 interval, and then we describe later in this section how the discount
 factors are modified over time.

 As described in Section 5.4 the average loss interval is calculated
 using the n previous loss intervals I_1, ..., I_n, and the interval
 I_0 that represents the number of packets received since the last
 loss event. The computation of the average loss interval using the
 discount factors is a simple modification of the procedure in Section
 5.4, as follows:

 I_tot0 = I_0 * w_0
 I_tot1 = 0;
 W_tot0 = w_0
 W_tot1 = 0;
 for (i = 1 to n-1) {
 I_tot0 = I_tot0 + (I_i * w_i * DF_i * DF);
 W_tot0 = W_tot0 + w_i * DF_i * DF;
 }
 for (i = 1 to n) {
 I_tot1 = I_tot1 + (I_i * w_(i-1) * DF_i);
 W_tot1 = W_tot1 + w_(i-1) * DF_i;
 }
 p = min(W_tot0/I_tot0, W_tot1/I_tot1);

 The general discounting factor, DF is updated on every packet arrival
 as follows. First, the receiver computes the weighted average I_mean
 of the loss intervals I_1, ..., I_n:

 I_tot = 0;
 W_tot = 0;
 for (i = 1 to n) {
 W_tot = W_tot + w_(i-1) * DF_i;
 I_tot = I_tot + (I_i * w_(i-1) * DF_i);
 }
 I_mean = I_tot / W_tot;

Handley, et. al. Standards Track [Page 16]

RFC 3448 TFRC: Protocol Specification January 2003

 This weighted average I_mean is compared to I_0, the number of
 packets received since the last loss event. If I_0 is greater than
 twice I_mean, then the new loss interval is considerably larger than
 the old ones, and the general discount factor DF is updated to
 decrease the relative weight on the older intervals, as follows:

 if (I_0 > 2 * I_mean) {
 DF = 2 * I_mean/I_0;
 if (DF < THRESHOLD)
 DF = THRESHOLD;
 } else
 DF = 1;

 A nonzero value for THRESHOLD ensures that older loss intervals from
 an earlier time of high congestion are not discounted entirely. We
 recommend a THRESHOLD of 0.5. Note that with each new packet
 arrival, I_0 will increase further, and the discount factor DF will
 be updated.

 When a new loss event occurs, the current interval shifts from I_0 to
 I_1, loss interval I_i shifts to interval I_(i+1), and the loss
 interval I_n is forgotten. The previous discount factor DF has to be
 incorporated into the discount array. Because DF_i carries the
 discount factor associated with loss interval I_i, the DF_i array has
 to be shifted as well. This is done as follows:

 for (i = 1 to n) {
 DF_i = DF * DF_i;
 }
 for (i = n-1 to 0 step -1) {
 DF_(i+1) = DF_i;
 }
 I_0 = 1;
 DF_0 = 1;
 DF = 1;

 This completes the description of the optional history discounting
 mechanism. We emphasize that this is an optional mechanism whose
 sole purpose is to allow TFRC to response somewhat more quickly to
 the sudden absence of congestion, as represented by a long current
 loss interval.

6. Data Receiver Protocol

 The receiver periodically sends feedback messages to the sender.
 Feedback packets should normally be sent at least once per RTT,
 unless the sender is sending at a rate of less than one packet per
 RTT, in which case a feedback packet should be send for every data

Handley, et. al. Standards Track [Page 17]

RFC 3448 TFRC: Protocol Specification January 2003

 packet received. A feedback packet should also be sent whenever a
 new loss event is detected without waiting for the end of an RTT, and
 whenever an out-of-order data packet is received that removes a loss
 event from the history.

 If the sender is transmitting at a high rate (many packets per RTT)
 there may be some advantages to sending periodic feedback messages
 more than once per RTT as this allows faster response to changing RTT
 measurements, and more resilience to feedback packet loss. However,
 there is little gain from sending a large number of feedback messages
 per RTT.

6.1. Receiver behavior when a data packet is received

 When a data packet is received, the receiver performs the following
 steps:

 1) Add the packet to the packet history.

 2) Let the previous value of p be p_prev. Calculate the new value of
 p as described in Section 5.

 3) If p > p_prev, cause the feedback timer to expire, and perform the
 actions described in Section 6.2

 If p <= p_prev no action need be performed.

 However an optimization might check to see if the arrival of the
 packet caused a hole in the packet history to be filled and
 consequently two loss intervals were merged into one. If this is
 the case, the receiver might also send feedback immediately. The
 effects of such an optimization are normally expected to be small.

6.2. Expiration of feedback timer

 When the feedback timer at the receiver expires, the action to be
 taken depends on whether data packets have been received since the
 last feedback was sent.

 Let the maximum sequence number of a packet at the receiver so far be
 S_m, and the value of the RTT measurement included in packet S_m be
 R_m. If data packets have been received since the previous feedback
 was sent, the receiver performs the following steps:

 1) Calculate the average loss event rate using the algorithm
 described above.

Handley, et. al. Standards Track [Page 18]

RFC 3448 TFRC: Protocol Specification January 2003

 2) Calculate the measured receive rate, X_recv, based on the packets
 received within the previous R_m seconds.

 3) Prepare and send a feedback packet containing the information
 described in Section 3.2.2

 4) Restart the feedback timer to expire after R_m seconds.

 If no data packets have been received since the last feedback was
 sent, no feedback packet is sent, and the feedback timer is restarted
 to expire after R_m seconds.

6.3. Receiver initialization

 The receiver is initialized by the first packet that arrives at the
 receiver. Let the sequence number of this packet be i.

 When the first packet is received:

 o Set p=0

 o Set X_recv = 0.

 o Prepare and send a feedback packet.

 o Set the feedback timer to expire after R_i seconds.

6.3.1. Initializing the Loss History after the First Loss Event

 The number of packets until the first loss can not be used to compute
 the sending rate directly, as the sending rate changes rapidly during
 this time. TFRC assumes that the correct data rate after the first
 loss is half of the sending rate when the loss occurred. TFRC
 approximates this target rate by X_recv, the receive rate over the
 most recent round-trip time. After the first loss, instead of
 initializing the first loss interval to the number of packets sent
 until the first loss, the TFRC receiver calculates the loss interval
 that would be required to produce the data rate X_recv, and uses this
 synthetic loss interval to seed the loss history mechanism.

 TFRC does this by finding some value p for which the throughput
 equation in Section 3.1 gives a sending rate within 5% of X_recv,
 given the current packet size s and round-trip time R. The first
 loss interval is then set to 1/p. (The 5% tolerance is introduced
 simply because the throughput equation is difficult to invert, and we
 want to reduce the costs of calculating p numerically.)

Handley, et. al. Standards Track [Page 19]

RFC 3448 TFRC: Protocol Specification January 2003

7. Sender-based Variants

 It would be possible to implement a sender-based variant of TFRC,
 where the receiver uses reliable delivery to send information about
 packet losses to the sender, and the sender computes the packet loss
 rate and the acceptable transmit rate. However, we do not specify
 the details of a sender-based variant in this document.

 The main advantages of a sender-based variant of TFRC would be that
 the sender would not have to trust the receiver’s calculation of the
 packet loss rate. However, with the requirement of reliable delivery
 of loss information from the receiver to the sender, a sender-based
 TFRC would have much tighter constraints on the transport protocol in
 which it is embedded.

 In contrast, the receiver-based variant of TFRC specified in this
 document is robust to the loss of feedback packets, and therefore
 does not require the reliable delivery of feedback packets. It is
 also better suited for applications such as streaming media from web
 servers, where it is typically desirable to offload work from the
 server to the client as much as possible.

 The sender-based and receiver-based variants also have different
 properties in terms of upgrades. For example, for changes in the
 procedure for calculating the packet loss rate, the sender would have
 to be upgraded in the sender-based variant, and the receiver would
 have to be upgraded in the receiver-based variant.

8. Implementation Issues

 This document has specified the TFRC congestion control mechanism,
 for use by applications and transport protocols. This section
 mentions briefly some of the few implementation issues.

 For t_RTO = 4*R and b = 1, the throughput equation in Section 3.1 can
 be expressed as follows:

 s
 X = --------
 R * f(p)

 for

 f(p) = sqrt(2*p/3) + (12*sqrt(3*p/8) * p * (1+32*p^2)).

 A table lookup could be used for the function f(p).

Handley, et. al. Standards Track [Page 20]

RFC 3448 TFRC: Protocol Specification January 2003

 Many of the multiplications (e.g., q and 1-q for the round-trip time
 average, a factor of 4 for the timeout interval) are or could be by
 powers of two, and therefore could be implemented as simple shift
 operations.

 We note that the optional sender mechanism for preventing
 oscillations described in Section 4.5 uses a square-root computation.

 The calculation of the average loss interval in Section 5.4 involves
 multiplications by the weights w_0 to w_(n-1), which for n=8 are:

 1.0, 1.0, 1.0, 1.0, 0.8, 0.6, 0.4, 0.2.

 With a minor loss of smoothness, it would be possible to use weights
 that were powers of two or sums of powers of two, e.g.,

 1.0, 1.0, 1.0, 1.0, 0.75, 0.5, 0.25, 0.25.

 The optional history discounting mechanism described in Section 5.5
 is used in the calculation of the average loss rate. The history
 discounting mechanism is invoked only when there has been an
 unusually long interval with no packet losses. For a more efficient
 operation, the discount factor DF_i could be restricted to be a power
 of two.

9. Security Considerations

 TFRC is not a transport protocol in its own right, but a congestion
 control mechanism that is intended to be used in conjunction with a
 transport protocol. Therefore security primarily needs to be
 considered in the context of a specific transport protocol and its
 authentication mechanisms.

 Congestion control mechanisms can potentially be exploited to create
 denial of service. This may occur through spoofed feedback. Thus
 any transport protocol that uses TFRC should take care to ensure that
 feedback is only accepted from the receiver of the data. The precise
 mechanism to achieve this will however depend on the transport
 protocol itself.

 In addition, congestion control mechanisms may potentially be
 manipulated by a greedy receiver that wishes to receive more than its
 fair share of network bandwidth. A receiver might do this by
 claiming to have received packets that in fact were lost due to
 congestion. Possible defenses against such a receiver would normally
 include some form of nonce that the receiver must feed back to the
 sender to prove receipt. However, the details of such a nonce would

Handley, et. al. Standards Track [Page 21]

RFC 3448 TFRC: Protocol Specification January 2003

 depend on the transport protocol, and in particular on whether the
 transport protocol is reliable or unreliable.

 We expect that protocols incorporating ECN with TFRC will also want
 to incorporate feedback from the receiver to the sender using the ECN
 nonce [WES02]. The ECN nonce is a modification to ECN that protects
 the sender from the accidental or malicious concealment of marked
 packets. Again, the details of such a nonce would depend on the
 transport protocol, and are not addressed in this document.

10. IANA Considerations

 There are no IANA actions required for this document.

11. Acknowledgments

 We would like to acknowledge feedback and discussions on equation-
 based congestion control with a wide range of people, including
 members of the Reliable Multicast Research Group, the Reliable
 Multicast Transport Working Group, and the End-to-End Research Group.
 We would like to thank Ken Lofgren, Mike Luby, Eduardo Urzaiz,
 Vladica Stanisic, Randall Stewart, Shushan Wen, and Wendy Lee
 (lhh@zsu.edu.cn) for feedback on earlier versions of this document,
 and to thank Mark Allman for his extensive feedback from using the
 document to produce a working implementation.

12. Informational References

 [1] Balakrishnan, H., Rahul, H., and S. Seshan, "An Integrated
 Congestion Management Architecture for Internet Hosts," Proc. ACM
 SIGCOMM, Cambridge, MA, September 1999.

 [2] Floyd, S., Handley, M., Padhye, J. and J. Widmer, "Equation-Based
 Congestion Control for Unicast Applications", August 2000, Proc.
 ACM SIGCOMM 2000.

 [3] Floyd, S., Handley, M., Padhye, J. and J. Widmer, "Equation-Based
 Congestion Control for Unicast Applications: the Extended
 Version", ICSI tech report TR-00-03, March 2000.

 [4] Padhye, J., Firoiu, V., Towsley, D. and J. Kurose, "Modeling TCP
 Throughput: A Simple Model and its Empirical Validation", Proc.
 ACM SIGCOMM 1998.

 [5] Paxson V. and M. Allman, "Computing TCP’s Retransmission Timer",
 RFC 2988, November 2000.

Handley, et. al. Standards Track [Page 22]

RFC 3448 TFRC: Protocol Specification January 2003

 [6] Ramakrishnan, K., Floyd, S. and D. Black, "The Addition of
 Explicit Congestion Notification (ECN) to IP", RFC 3168,
 September 2001.

 [7] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson, "RTP:
 A Transport Protocol for Real-Time Applications", RFC 1889,
 January 1996.

 [8] Wetherall, D., Ely, D., N. Spring, S. Savage, and T. Anderson,
 "Robust Congestion Signaling", IEEE International Conference on
 Network Protocols, November 2001.

 [9] Widmer, J., "Equation-Based Congestion Control", Diploma Thesis,
 University of Mannheim, February 2000. URL
 "http://www.icir.org/tfrc/".

13. Authors’ Addresses

 Mark Handley
 ICIR/ICSI
 1947 Center St, Suite 600
 Berkeley, CA 94708

 EMail: mjh@icir.org

 Sally Floyd
 ICIR/ICSI
 1947 Center St, Suite 600
 Berkeley, CA 94708

 EMail: floyd@icir.org

 Jitendra Padhye
 Microsoft Research

 EMail: padhye@microsoft.com

 Joerg Widmer
 Lehrstuhl Praktische Informatik IV
 Universitat Mannheim
 L 15, 16 - Room 415
 D-68131 Mannheim
 Germany

 EMail: widmer@informatik.uni-mannheim.de

Handley, et. al. Standards Track [Page 23]

RFC 3448 TFRC: Protocol Specification January 2003

14. Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Handley, et. al. Standards Track [Page 24]

