
Network Working Group S. Pfeiffer
Request for Comments: 3533 CSIRO
Category: Informational May 2003

 The Ogg Encapsulation Format Version 0

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document describes the Ogg bitstream format version 0, which is
 a general, freely-available encapsulation format for media streams.
 It is able to encapsulate any kind and number of video and audio
 encoding formats as well as other data streams in a single bitstream.

Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119 [2].

Table of Contents

 1. Introduction . 2
 2. Definitions . 2
 3. Requirements for a generic encapsulation format 3
 4. The Ogg bitstream format 3
 5. The encapsulation process 6
 6. The Ogg page format . 9
 7. Security Considerations 11
 8. References . 12
 A. Glossary of terms and abbreviations 13
 B. Acknowledgements . 14
 Author’s Address . 14
 Full Copyright Statement 15

Pfeiffer Informational [Page 1]

RFC 3533 OGG May 2003

1. Introduction

 The Ogg bitstream format has been developed as a part of a larger
 project aimed at creating a set of components for the coding and
 decoding of multimedia content (codecs) which are to be freely
 available and freely re-implementable, both in software and in
 hardware for the computing community at large, including the Internet
 community. It is the intention of the Ogg developers represented by
 Xiph.Org that it be usable without intellectual property concerns.

 This document describes the Ogg bitstream format and how to use it to
 encapsulate one or several media bitstreams created by one or several
 encoders. The Ogg transport bitstream is designed to provide
 framing, error protection and seeking structure for higher-level
 codec streams that consist of raw, unencapsulated data packets, such
 as the Vorbis audio codec or the upcoming Tarkin and Theora video
 codecs. It is capable of interleaving different binary media and
 other time-continuous data streams that are prepared by an encoder as
 a sequence of data packets. Ogg provides enough information to
 properly separate data back into such encoder created data packets at
 the original packet boundaries without relying on decoding to find
 packet boundaries.

 Please note that the MIME type application/ogg has been registered
 with the IANA [1].

2. Definitions

 For describing the Ogg encapsulation process, a set of terms will be
 used whose meaning needs to be well understood. Therefore, some of
 the most fundamental terms are defined now before we start with the
 description of the requirements for a generic media stream
 encapsulation format, the process of encapsulation, and the concrete
 format of the Ogg bitstream. See the Appendix for a more complete
 glossary.

 The result of an Ogg encapsulation is called the "Physical (Ogg)
 Bitstream". It encapsulates one or several encoder-created
 bitstreams, which are called "Logical Bitstreams". A logical
 bitstream, provided to the Ogg encapsulation process, has a
 structure, i.e., it is split up into a sequence of so-called
 "Packets". The packets are created by the encoder of that logical
 bitstream and represent meaningful entities for that encoder only
 (e.g., an uncompressed stream may use video frames as packets). They
 do not contain boundary information - strung together they appear to
 be streams of random bytes with no landmarks.

Pfeiffer Informational [Page 2]

RFC 3533 OGG May 2003

 Please note that the term "packet" is not used in this document to
 signify entities for transport over a network.

3. Requirements for a generic encapsulation format

 The design idea behind Ogg was to provide a generic, linear media
 transport format to enable both file-based storage and stream-based
 transmission of one or several interleaved media streams independent
 of the encoding format of the media data. Such an encapsulation
 format needs to provide:

 o framing for logical bitstreams.

 o interleaving of different logical bitstreams.

 o detection of corruption.

 o recapture after a parsing error.

 o position landmarks for direct random access of arbitrary positions
 in the bitstream.

 o streaming capability (i.e., no seeking is needed to build a 100%
 complete bitstream).

 o small overhead (i.e., use no more than approximately 1-2% of
 bitstream bandwidth for packet boundary marking, high-level
 framing, sync and seeking).

 o simplicity to enable fast parsing.

 o simple concatenation mechanism of several physical bitstreams.

 All of these design considerations have been taken into consideration
 for Ogg. Ogg supports framing and interleaving of logical
 bitstreams, seeking landmarks, detection of corruption, and stream
 resynchronisation after a parsing error with no more than
 approximately 1-2% overhead. It is a generic framework to perform
 encapsulation of time-continuous bitstreams. It does not know any
 specifics about the codec data that it encapsulates and is thus
 independent of any media codec.

4. The Ogg bitstream format

 A physical Ogg bitstream consists of multiple logical bitstreams
 interleaved in so-called "Pages". Whole pages are taken in order
 from multiple logical bitstreams multiplexed at the page level. The
 logical bitstreams are identified by a unique serial number in the

Pfeiffer Informational [Page 3]

RFC 3533 OGG May 2003

 header of each page of the physical bitstream. This unique serial
 number is created randomly and does not have any connection to the
 content or encoder of the logical bitstream it represents. Pages of
 all logical bitstreams are concurrently interleaved, but they need
 not be in a regular order - they are only required to be consecutive
 within the logical bitstream. Ogg demultiplexing reconstructs the
 original logical bitstreams from the physical bitstream by taking the
 pages in order from the physical bitstream and redirecting them into
 the appropriate logical decoding entity.

 Each Ogg page contains only one type of data as it belongs to one
 logical bitstream only. Pages are of variable size and have a page
 header containing encapsulation and error recovery information. Each
 logical bitstream in a physical Ogg bitstream starts with a special
 start page (bos=beginning of stream) and ends with a special page
 (eos=end of stream).

 The bos page contains information to uniquely identify the codec type
 and MAY contain information to set up the decoding process. The bos
 page SHOULD also contain information about the encoded media - for
 example, for audio, it should contain the sample rate and number of
 channels. By convention, the first bytes of the bos page contain
 magic data that uniquely identifies the required codec. It is the
 responsibility of anyone fielding a new codec to make sure it is
 possible to reliably distinguish his/her codec from all other codecs
 in use. There is no fixed way to detect the end of the codec-
 identifying marker. The format of the bos page is dependent on the
 codec and therefore MUST be given in the encapsulation specification
 of that logical bitstream type. Ogg also allows but does not require
 secondary header packets after the bos page for logical bitstreams
 and these must also precede any data packets in any logical
 bitstream. These subsequent header packets are framed into an
 integral number of pages, which will not contain any data packets.
 So, a physical bitstream begins with the bos pages of all logical
 bitstreams containing one initial header packet per page, followed by
 the subsidiary header packets of all streams, followed by pages
 containing data packets.

 The encapsulation specification for one or more logical bitstreams is
 called a "media mapping". An example for a media mapping is "Ogg
 Vorbis", which uses the Ogg framework to encapsulate Vorbis-encoded
 audio data for stream-based storage (such as files) and transport
 (such as TCP streams or pipes). Ogg Vorbis provides the name and
 revision of the Vorbis codec, the audio rate and the audio quality on
 the Ogg Vorbis bos page. It also uses two additional header pages
 per logical bitstream. The Ogg Vorbis bos page starts with the byte
 0x01, followed by "vorbis" (a total of 7 bytes of identifier).

Pfeiffer Informational [Page 4]

RFC 3533 OGG May 2003

 Ogg knows two types of multiplexing: concurrent multiplexing (so-
 called "Grouping") and sequential multiplexing (so-called
 "Chaining"). Grouping defines how to interleave several logical
 bitstreams page-wise in the same physical bitstream. Grouping is for
 example needed for interleaving a video stream with several
 synchronised audio tracks using different codecs in different logical
 bitstreams. Chaining on the other hand, is defined to provide a
 simple mechanism to concatenate physical Ogg bitstreams, as is often
 needed for streaming applications.

 In grouping, all bos pages of all logical bitstreams MUST appear
 together at the beginning of the Ogg bitstream. The media mapping
 specifies the order of the initial pages. For example, the grouping
 of a specific Ogg video and Ogg audio bitstream may specify that the
 physical bitstream MUST begin with the bos page of the logical video
 bitstream, followed by the bos page of the audio bitstream. Unlike
 bos pages, eos pages for the logical bitstreams need not all occur
 contiguously. Eos pages may be ’nil’ pages, that is, pages
 containing no content but simply a page header with position
 information and the eos flag set in the page header. Each grouped
 logical bitstream MUST have a unique serial number within the scope
 of the physical bitstream.

 In chaining, complete logical bitstreams are concatenated. The
 bitstreams do not overlap, i.e., the eos page of a given logical
 bitstream is immediately followed by the bos page of the next. Each
 chained logical bitstream MUST have a unique serial number within the
 scope of the physical bitstream.

 It is possible to consecutively chain groups of concurrently
 multiplexed bitstreams. The groups, when unchained, MUST stand on
 their own as a valid concurrently multiplexed bitstream. The
 following diagram shows a schematic example of such a physical
 bitstream that obeys all the rules of both grouped and chained
 multiplexed bitstreams.

 physical bitstream with pages of
 different logical bitstreams grouped and chained

 |*A*|*B*|*C*|A|A|C|B|A|B|#A#|C|...|B|C|#B#|#C#|*D*|D|...|#D#|

 bos bos bos eos eos eos bos eos

 In this example, there are two chained physical bitstreams, the first
 of which is a grouped stream of three logical bitstreams A, B, and C.
 The second physical bitstream is chained after the end of the grouped
 bitstream, which ends after the last eos page of all its grouped
 logical bitstreams. As can be seen, grouped bitstreams begin

Pfeiffer Informational [Page 5]

RFC 3533 OGG May 2003

 together - all of the bos pages MUST appear before any data pages.
 It can also be seen that pages of concurrently multiplexed bitstreams
 need not conform to a regular order. And it can be seen that a
 grouped bitstream can end long before the other bitstreams in the
 group end.

 Ogg does not know any specifics about the codec data except that each
 logical bitstream belongs to a different codec, the data from the
 codec comes in order and has position markers (so-called "Granule
 positions"). Ogg does not have a concept of ’time’: it only knows
 about sequentially increasing, unitless position markers. An
 application can only get temporal information through higher layers
 which have access to the codec APIs to assign and convert granule
 positions or time.

 A specific definition of a media mapping using Ogg may put further
 constraints on its specific use of the Ogg bitstream format. For
 example, a specific media mapping may require that all the eos pages
 for all grouped bitstreams need to appear in direct sequence. An
 example for a media mapping is the specification of "Ogg Vorbis".
 Another example is the upcoming "Ogg Theora" specification which
 encapsulates Theora-encoded video data and usually comes multiplexed
 with a Vorbis stream for an Ogg containing synchronised audio and
 video. As Ogg does not specify temporal relationships between the
 encapsulated concurrently multiplexed bitstreams, the temporal
 synchronisation between the audio and video stream will be specified
 in this media mapping. To enable streaming, pages from various
 logical bitstreams will typically be interleaved in chronological
 order.

5. The encapsulation process

 The process of multiplexing different logical bitstreams happens at
 the level of pages as described above. The bitstreams provided by
 encoders are however handed over to Ogg as so-called "Packets" with
 packet boundaries dependent on the encoding format. The process of
 encapsulating packets into pages will be described now.

 From Ogg’s perspective, packets can be of any arbitrary size. A
 specific media mapping will define how to group or break up packets
 from a specific media encoder. As Ogg pages have a maximum size of
 about 64 kBytes, sometimes a packet has to be distributed over
 several pages. To simplify that process, Ogg divides each packet
 into 255 byte long chunks plus a final shorter chunk. These chunks
 are called "Ogg Segments". They are only a logical construct and do
 not have a header for themselves.

Pfeiffer Informational [Page 6]

RFC 3533 OGG May 2003

 A group of contiguous segments is wrapped into a variable length page
 preceded by a header. A segment table in the page header tells about
 the "Lacing values" (sizes) of the segments included in the page. A
 flag in the page header tells whether a page contains a packet
 continued from a previous page. Note that a lacing value of 255
 implies that a second lacing value follows in the packet, and a value
 of less than 255 marks the end of the packet after that many
 additional bytes. A packet of 255 bytes (or a multiple of 255 bytes)
 is terminated by a lacing value of 0. Note also that a ’nil’ (zero
 length) packet is not an error; it consists of nothing more than a
 lacing value of zero in the header.

 The encoding is optimized for speed and the expected case of the
 majority of packets being between 50 and 200 bytes large. This is a
 design justification rather than a recommendation. This encoding
 both avoids imposing a maximum packet size as well as imposing
 minimum overhead on small packets. In contrast, e.g., simply using
 two bytes at the head of every packet and having a max packet size of
 32 kBytes would always penalize small packets (< 255 bytes, the
 typical case) with twice the segmentation overhead. Using the lacing
 values as suggested, small packets see the minimum possible byte-
 aligned overhead (1 byte) and large packets (>512 bytes) see a fairly
 constant ˜0.5% overhead on encoding space.

Pfeiffer Informational [Page 7]

RFC 3533 OGG May 2003

 The following diagram shows a schematic example of a media mapping
 using Ogg and grouped logical bitstreams:

 logical bitstream with packet boundaries

 > | packet_1 | packet_2 | packet_3 | <

 |segmentation (logically only)
 v

 packet_1 (5 segments) packet_2 (4 segs) p_3 (2 segs)
 ------------------------------ -------------------- ------------
 .. |seg_1|seg_2|seg_3|seg_4|s_5 | |seg_1|seg_2|seg_3|| |seg_1|s_2 | ..
 ------------------------------ -------------------- ------------

 | page encapsulation
 v

 page_1 (packet_1 data) page_2 (pket_1 data) page_3 (packet_2 data)
------------------------ ---------------- ------------------------
|H|------------------- | |H|----------- | |H|------------------- |
|D||seg_1|seg_2|seg_3| | |D|seg_4|s_5 | | |D||seg_1|seg_2|seg_3| | ...
|R|------------------- | |R|----------- | |R|------------------- |
------------------------ ---------------- ------------------------

 |
pages of |
other --------| |
logical -------
bitstreams | MUX |

 |
 v

 page_1 page_2 page_3
 ------ ------ ------- ----- -------
 ... || | || | || | || | || | ...
 ------ ------ ------- ----- -------
 physical Ogg bitstream

 In this example we take a snapshot of the encapsulation process of
 one logical bitstream. We can see part of that bitstream’s
 subdivision into packets as provided by the codec. The Ogg
 encapsulation process chops up the packets into segments. The
 packets in this example are rather large such that packet_1 is split
 into 5 segments - 4 segments with 255 bytes and a final smaller one.
 Packet_2 is split into 4 segments - 3 segments with 255 bytes and a

Pfeiffer Informational [Page 8]

RFC 3533 OGG May 2003

 final very small one - and packet_3 is split into two segments. The
 encapsulation process then creates pages, which are quite small in
 this example. Page_1 consists of the first three segments of
 packet_1, page_2 contains the remaining 2 segments from packet_1, and
 page_3 contains the first three pages of packet_2. Finally, this
 logical bitstream is multiplexed into a physical Ogg bitstream with
 pages of other logical bitstreams.

6. The Ogg page format

 A physical Ogg bitstream consists of a sequence of concatenated
 pages. Pages are of variable size, usually 4-8 kB, maximum 65307
 bytes. A page header contains all the information needed to
 demultiplex the logical bitstreams out of the physical bitstream and
 to perform basic error recovery and landmarks for seeking. Each page
 is a self-contained entity such that the page decode mechanism can
 recognize, verify, and handle single pages at a time without
 requiring the overall bitstream.

 The Ogg page header has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1| Byte
+-+
| capture_pattern: Magic number for page start "OggS" | 0-3
+-+
| version | header_type | granule_position | 4-7
+-+
| | 8-11
+-+
| | bitstream_serial_number | 12-15
+-+
| | page_sequence_number | 16-19
+-+
| | CRC_checksum | 20-23
+-+
| |page_segments | segment_table | 24-27
+-+
| ... | 28-
+-+

 The LSb (least significant bit) comes first in the Bytes. Fields
 with more than one byte length are encoded LSB (least significant
 byte) first.

Pfeiffer Informational [Page 9]

RFC 3533 OGG May 2003

 The fields in the page header have the following meaning:

 1. capture_pattern: a 4 Byte field that signifies the beginning of a
 page. It contains the magic numbers:

 0x4f ’O’

 0x67 ’g’

 0x67 ’g’

 0x53 ’S’

 It helps a decoder to find the page boundaries and regain
 synchronisation after parsing a corrupted stream. Once the
 capture pattern is found, the decoder verifies page sync and
 integrity by computing and comparing the checksum.

 2. stream_structure_version: 1 Byte signifying the version number of
 the Ogg file format used in this stream (this document specifies
 version 0).

 3. header_type_flag: the bits in this 1 Byte field identify the
 specific type of this page.

 * bit 0x01

 set: page contains data of a packet continued from the previous
 page

 unset: page contains a fresh packet

 * bit 0x02

 set: this is the first page of a logical bitstream (bos)

 unset: this page is not a first page

 * bit 0x04

 set: this is the last page of a logical bitstream (eos)

 unset: this page is not a last page

 4. granule_position: an 8 Byte field containing position information.
 For example, for an audio stream, it MAY contain the total number
 of PCM samples encoded after including all frames finished on this
 page. For a video stream it MAY contain the total number of video

Pfeiffer Informational [Page 10]

RFC 3533 OGG May 2003

 frames encoded after this page. This is a hint for the decoder
 and gives it some timing and position information. Its meaning is
 dependent on the codec for that logical bitstream and specified in
 a specific media mapping. A special value of -1 (in two’s
 complement) indicates that no packets finish on this page.

 5. bitstream_serial_number: a 4 Byte field containing the unique
 serial number by which the logical bitstream is identified.

 6. page_sequence_number: a 4 Byte field containing the sequence
 number of the page so the decoder can identify page loss. This
 sequence number is increasing on each logical bitstream
 separately.

 7. CRC_checksum: a 4 Byte field containing a 32 bit CRC checksum of
 the page (including header with zero CRC field and page content).
 The generator polynomial is 0x04c11db7.

 8. number_page_segments: 1 Byte giving the number of segment entries
 encoded in the segment table.

 9. segment_table: number_page_segments Bytes containing the lacing
 values of all segments in this page. Each Byte contains one
 lacing value.

 The total header size in bytes is given by:
 header_size = number_page_segments + 27 [Byte]

 The total page size in Bytes is given by:
 page_size = header_size + sum(lacing_values: 1..number_page_segments)
 [Byte]

7. Security Considerations

 The Ogg encapsulation format is a container format and only
 encapsulates content (such as Vorbis-encoded audio). It does not
 provide for any generic encryption or signing of itself or its
 contained content bitstreams. However, it encapsulates any kind of
 content bitstream as long as there is a codec for it, and is thus
 able to contain encrypted and signed content data. It is also
 possible to add an external security mechanism that encrypts or signs
 an Ogg physical bitstream and thus provides content confidentiality
 and authenticity.

 As Ogg encapsulates binary data, it is possible to include executable
 content in an Ogg bitstream. This can be an issue with applications
 that are implemented using the Ogg format, especially when Ogg is
 used for streaming or file transfer in a networking scenario. As

Pfeiffer Informational [Page 11]

RFC 3533 OGG May 2003

 such, Ogg does not pose a threat there. However, an application
 decoding Ogg and its encapsulated content bitstreams has to ensure
 correct handling of manipulated bitstreams, of buffer overflows and
 the like.

8. References

 [1] Walleij, L., "The application/ogg Media Type", RFC 3534, May
 2003.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

Pfeiffer Informational [Page 12]

RFC 3533 OGG May 2003

Appendix A. Glossary of terms and abbreviations

 bos page: The initial page (beginning of stream) of a logical
 bitstream which contains information to identify the codec type
 and other decoding-relevant information.

 chaining (or sequential multiplexing): Concatenation of two or more
 complete physical Ogg bitstreams.

 eos page: The final page (end of stream) of a logical bitstream.

 granule position: An increasing position number for a specific
 logical bitstream stored in the page header. Its meaning is
 dependent on the codec for that logical bitstream and specified in
 a specific media mapping.

 grouping (or concurrent multiplexing): Interleaving of pages of
 several logical bitstreams into one complete physical Ogg
 bitstream under the restriction that all bos pages of all grouped
 logical bitstreams MUST appear before any data pages.

 lacing value: An entry in the segment table of a page header
 representing the size of the related segment.

 logical bitstream: A sequence of bits being the result of an encoded
 media stream.

 media mapping: A specific use of the Ogg encapsulation format
 together with a specific (set of) codec(s).

 (Ogg) packet: A subpart of a logical bitstream that is created by the
 encoder for that bitstream and represents a meaningful entity for
 the encoder, but only a sequence of bits to the Ogg encapsulation.

 (Ogg) page: A physical bitstream consists of a sequence of Ogg pages
 containing data of one logical bitstream only. It usually
 contains a group of contiguous segments of one packet only, but
 sometimes packets are too large and need to be split over several
 pages.

 physical (Ogg) bitstream: The sequence of bits resulting from an Ogg
 encapsulation of one or several logical bitstreams. It consists
 of a sequence of pages from the logical bitstreams with the
 restriction that the pages of one logical bitstream MUST come in
 their correct temporal order.

Pfeiffer Informational [Page 13]

RFC 3533 OGG May 2003

 (Ogg) segment: The Ogg encapsulation process splits each packet into
 chunks of 255 bytes plus a last fractional chunk of less than 255
 bytes. These chunks are called segments.

Appendix B. Acknowledgements

 The author gratefully acknowledges the work that Christopher
 Montgomery and the Xiph.Org foundation have done in defining the Ogg
 multimedia project and as part of it the open file format described
 in this document. The author hopes that providing this document to
 the Internet community will help in promoting the Ogg multimedia
 project at http://www.xiph.org/. Many thanks also for the many
 technical and typo corrections that C. Montgomery and the Ogg
 community provided as feedback to this RFC.

Author’s Address

 Silvia Pfeiffer
 CSIRO, Australia
 Locked Bag 17
 North Ryde, NSW 2113
 Australia

 Phone: +61 2 9325 3141
 EMail: Silvia.Pfeiffer@csiro.au
 URI: http://www.cmis.csiro.au/Silvia.Pfeiffer/

Pfeiffer Informational [Page 14]

RFC 3533 OGG May 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Pfeiffer Informational [Page 15]

