
Network Working Group S. Kwan
Request for Comments: 3645 P. Garg
Updates: 2845 J. Gilroy
Category: Standards Track L. Esibov
 J. Westhead
 Microsoft Corp.
 R. Hall
 Lucent Technologies
 October 2003

 Generic Security Service Algorithm for
 Secret Key Transaction Authentication for DNS (GSS-TSIG)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 The Secret Key Transaction Authentication for DNS (TSIG) protocol
 provides transaction level authentication for DNS. TSIG is
 extensible through the definition of new algorithms. This document
 specifies an algorithm based on the Generic Security Service
 Application Program Interface (GSS-API) (RFC2743). This document
 updates RFC 2845.

Kwan, et al. Standards Track [Page 1]

RFC 3645 GSS-TSIG October 2003

Table of Contents

 1. Introduction . 2
 2. Algorithm Overview . 3
 2.1. GSS Details. 4
 2.2. Modifications to the TSIG protocol (RFC 2845). 4
 3. Client Protocol Details. 5
 3.1. Negotiating Context. 5
 3.1.1. Call GSS_Init_sec_context. 6
 3.1.2. Send TKEY Query to Server. 8
 3.1.3. Receive TKEY Query-Response from Server. 8
 3.2. Context Established. 11
 3.2.1. Terminating a Context. 11
 4. Server Protocol Details. 12
 4.1. Negotiating Context. 12
 4.1.1. Receive TKEY Query from Client 12
 4.1.2. Call GSS_Accept_sec_context. 12
 4.1.3. Send TKEY Query-Response to Client 13
 4.2. Context Established. 15
 4.2.1. Terminating a Context. 15
 5. Sending and Verifying Signed Messages. 15
 5.1. Sending a Signed Message - Call GSS_GetMIC 15
 5.2. Verifying a Signed Message - Call GSS_VerifyMIC. 16
 6. Example usage of GSS-TSIG algorithm. 18
 7. Security Considerations. 22
 8. IANA Considerations. 22
 9. Conformance. 22
 10. Intellectual Property Statement. 23
 11. Acknowledgements . 23
 12. References . 24
 12.1. Normative References. 24
 12.2. Informative References. 24
 13. Authors’ Addresses . 25
 14. Full Copyright Statement 26

1. Introduction

 The Secret Key Transaction Authentication for DNS (TSIG) [RFC2845]
 protocol was developed to provide a lightweight authentication and
 integrity of messages between two DNS entities, such as client and
 server or server and server. TSIG can be used to protect dynamic
 update messages, authenticate regular message or to off-load
 complicated DNSSEC [RFC2535] processing from a client to a server and
 still allow the client to be assured of the integrity of the answers.

Kwan, et al. Standards Track [Page 2]

RFC 3645 GSS-TSIG October 2003

 The TSIG protocol [RFC2845] is extensible through the definition of
 new algorithms. This document specifies an algorithm based on the
 Generic Security Service Application Program Interface (GSS-API)
 [RFC2743]. GSS-API is a framework that provides an abstraction of
 security to the application protocol developer. The security
 services offered can include authentication, integrity, and
 confidentiality.

 The GSS-API framework has several benefits:

 * Mechanism and protocol independence. The underlying mechanisms
 that realize the security services can be negotiated on the fly
 and varied over time. For example, a client and server MAY use
 Kerberos [RFC1964] for one transaction, whereas that same server
 MAY use SPKM [RFC2025] with a different client.

 * The protocol developer is removed from the responsibility of
 creating and managing a security infrastructure. For example, the
 developer does not need to create new key distribution or key
 management systems. Instead the developer relies on the security
 service mechanism to manage this on its behalf.

 The scope of this document is limited to the description of an
 authentication mechanism only. It does not discuss and/or propose an
 authorization mechanism. Readers that are unfamiliar with GSS-API
 concepts are encouraged to read the characteristics and concepts
 section of [RFC2743] before examining this protocol in detail. It is
 also assumed that the reader is familiar with [RFC2845], [RFC2930],
 [RFC1034] and [RFC1035].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", and "MAY" in this document are to be interpreted as
 described in BCP 14, RFC 2119 [RFC2119].

2. Algorithm Overview

 In GSS, client and server interact to create a "security context".
 The security context can be used to create and verify transaction
 signatures on messages between the two parties. A unique security
 context is required for each unique connection between client and
 server.

 Creating a security context involves a negotiation between client and
 server. Once a context has been established, it has a finite
 lifetime for which it can be used to secure messages. Thus there are
 three states of a context associated with a connection:

Kwan, et al. Standards Track [Page 3]

RFC 3645 GSS-TSIG October 2003

 +----------+
 | |
 V |
 +---------------+ |
 | Uninitialized | |
 | | |
 +---------------+ |
 | |
 V |
 +---------------+ |
 | Negotiating | |
 | Context | |
 +---------------+ |
 | |
 V |
 +---------------+ |
 | Context | |
 | Established | |
 +---------------+ |
 | |
 +----------+

 Every connection begins in the uninitialized state.

2.1. GSS Details

 Client and server MUST be locally authenticated and have acquired
 default credentials before using this protocol as specified in
 Section 1.1.1 "Credentials" in RFC 2743 [RFC2743].

 The GSS-TSIG algorithm consists of two stages:

 I. Establish security context. The Client and Server use the
 GSS_Init_sec_context and GSS_Accept_sec_context APIs to generate
 the tokens that they pass to each other using [RFC2930] as a
 transport mechanism.

 II. Once the security context is established it is used to generate
 and verify signatures using GSS_GetMIC and GSS_VerifyMIC APIs.
 These signatures are exchanged by the Client and Server as a part
 of the TSIG records exchanged in DNS messages sent between the
 Client and Server, as described in [RFC2845].

2.2. Modifications to the TSIG protocol (RFC 2845)

 Modification to RFC 2845 allows use of TSIG through signing server’s
 response in an explicitly specified place in multi message exchange
 between two DNS entities even if client’s request wasn’t signed.

Kwan, et al. Standards Track [Page 4]

RFC 3645 GSS-TSIG October 2003

 Specifically, Section 4.2 of RFC 2845 MUST be modified as follows:

 Replace:
 "The server MUST not generate a signed response to an unsigned
 request."

 With:
 "The server MUST not generate a signed response to an unsigned
 request, except in case of response to client’s unsigned TKEY
 query if secret key is established on server side after server
 processed client’s query. Signing responses to unsigned TKEY
 queries MUST be explicitly specified in the description of an
 individual secret key establishment algorithm."

3. Client Protocol Details

 A unique context is required for each server to which the client
 sends secure messages. A context is identified by a context handle.
 A client maintains a mapping of servers to handles:

 (target_name, key_name, context_handle)

 The value key_name also identifies a context handle. The key_name is
 the owner name of the TKEY and TSIG records sent between a client and
 a server to indicate to each other which context MUST be used to
 process the current request.

 DNS client and server MAY use various underlying security mechanisms
 to establish security context as described in sections 3 and 4. At
 the same time, in order to guarantee interoperability between DNS
 clients and servers that support GSS-TSIG it is REQUIRED that
 security mechanism used by client enables use of Kerberos v5 (see
 Section 9 for more information).

3.1. Negotiating Context

 In GSS, establishing a security context involves the passing of
 opaque tokens between the client and the server. The client
 generates the initial token and sends it to the server. The server
 processes the token and if necessary, returns a subsequent token to
 the client. The client processes this token, and so on, until the
 negotiation is complete. The number of times the client and server
 exchange tokens depends on the underlying security mechanism. A
 completed negotiation results in a context handle.

Kwan, et al. Standards Track [Page 5]

RFC 3645 GSS-TSIG October 2003

 The TKEY resource record [RFC2930] is used as the vehicle to transfer
 tokens between client and server. The TKEY record is a general
 mechanism for establishing secret keys for use with TSIG. For more
 information, see [RFC2930].

3.1.1. Call GSS_Init_sec_context

 To obtain the first token to be sent to a server, a client MUST call
 GSS_Init_sec_context API.

 The following input parameters MUST be used. The outcome of the call
 is indicated with the output values below. Consult Sections 2.2.1,
 "GSS_Init_sec_context call", of [RFC2743] for syntax definitions.

 INPUTS
 CREDENTIAL HANDLE claimant_cred_handle = NULL (NULL specifies "use
 default"). Client MAY instead specify some other valid
 handle to its credentials.
 CONTEXT HANDLE input_context_handle = 0
 INTERNAL NAME targ_name = "DNS@<target_server_name>"
 OBJECT IDENTIFIER mech_type = Underlying security
 mechanism chosen by implementers. To guarantee
 interoperability of the implementations of the GSS-TSIG
 mechanism client MUST specify a valid underlying security
 mechanism that enables use of Kerberos v5 (see Section 9 for
 more information).
 OCTET STRING input_token = NULL
 BOOLEAN replay_det_req_flag = TRUE
 BOOLEAN mutual_req_flag = TRUE
 BOOLEAN deleg_req_flag = TRUE
 BOOLEAN sequence_req_flag = TRUE
 BOOLEAN anon_req_flag = FALSE
 BOOLEAN integ_req_flag = TRUE
 INTEGER lifetime_req = 0 (0 requests a default
 value). Client MAY instead specify another upper bound for the
 lifetime of the context to be established in seconds.
 OCTET STRING chan_bindings = Any valid channel bindings
 as specified in Section 1.1.6 "Channel Bindings" in [RFC2743]

 OUTPUTS
 INTEGER major_status
 CONTEXT HANDLE output_context_handle
 OCTET STRING output_token
 BOOLEAN replay_det_state
 BOOLEAN mutual_state
 INTEGER minor_status
 OBJECT IDENTIFIER mech_type
 BOOLEAN deleg_state

Kwan, et al. Standards Track [Page 6]

RFC 3645 GSS-TSIG October 2003

 BOOLEAN sequence_state
 BOOLEAN anon_state
 BOOLEAN trans_state
 BOOLEAN prot_ready_state
 BOOLEAN conf_avail
 BOOLEAN integ_avail
 INTEGER lifetime_rec

 If returned major_status is set to one of the following errors:

 GSS_S_DEFECTIVE_TOKEN
 GSS_S_DEFECTIVE_CREDENTIAL
 GSS_S_BAD_SIG (GSS_S_BAD_MIC)
 GSS_S_NO_CRED
 GSS_S_CREDENTIALS_EXPIRED
 GSS_S_BAD_BINDINGS
 GSS_S_OLD_TOKEN
 GSS_S_DUPLICATE_TOKEN
 GSS_S_NO_CONTEXT
 GSS_S_BAD_NAMETYPE
 GSS_S_BAD_NAME
 GSS_S_BAD_MECH
 GSS_S_FAILURE

 then the client MUST abandon the algorithm and MUST NOT use the GSS-
 TSIG algorithm to establish this security context. This document
 does not prescribe which other mechanism could be used to establish a
 security context. Next time when this client needs to establish
 security context, the client MAY use GSS-TSIG algorithm.

 Success values of major_status are GSS_S_CONTINUE_NEEDED and
 GSS_S_COMPLETE. The exact success code is important during later
 processing.

 The values of replay_det_state and mutual_state indicate if the
 security package provides replay detection and mutual authentication,
 respectively. If returned major_status is GSS_S_COMPLETE AND one or
 both of these values are FALSE, the client MUST abandon this
 algorithm.

 Client’s behavior MAY depend on other OUTPUT parameters according to
 the policy local to the client.

 The handle output_context_handle is unique to this negotiation and is
 stored in the client’s mapping table as the context_handle that maps
 to target_name.

Kwan, et al. Standards Track [Page 7]

RFC 3645 GSS-TSIG October 2003

3.1.2. Send TKEY Query to Server

 An opaque output_token returned by GSS_Init_sec_context is
 transmitted to the server in a query request with QTYPE=TKEY. The
 token itself will be placed in a Key Data field of the RDATA field in
 the TKEY resource record in the additional records section of the
 query. The owner name of the TKEY resource record set queried for
 and the owner name of the supplied TKEY resource record in the
 additional records section MUST be the same. This name uniquely
 identifies the security context to both the client and server, and
 thus the client SHOULD use a value which is globally unique as
 described in [RFC2930]. To achieve global uniqueness, the name MAY
 contain a UUID/GUID [ISO11578].

 TKEY Record
 NAME = client-generated globally unique domain name string
 (as described in [RFC2930])
 RDATA
 Algorithm Name = gss-tsig
 Mode = 3 (GSS-API negotiation - per [RFC2930])
 Key Size = size of output_token in octets
 Key Data = output_token

 The remaining fields in the TKEY RDATA, i.e., Inception, Expiration,
 Error, Other Size and Data Fields, MUST be set according to
 [RFC2930].

 The query is transmitted to the server.

 Note: if the original client call to GSS_Init_sec_context returned
 any major_status other than GSS_S_CONTINUE_NEEDED or GSS_S_COMPLETE,
 then the client MUST NOT send TKEY query. Client’s behavior in this
 case is described above in Section 3.1.1.

3.1.3. Receive TKEY Query-Response from Server

 Upon the reception of the TKEY query the DNS server MUST respond
 according to the description in Section 4. This section specifies
 the behavior of the client after it receives the matching response to
 its query.

 The next processing step depends on the value of major_status from
 the most recent call that client performed to GSS_Init_sec_context:
 either GSS_S_COMPLETE or GSS_S_CONTINUE.

Kwan, et al. Standards Track [Page 8]

RFC 3645 GSS-TSIG October 2003

3.1.3.1. Value of major_status == GSS_S_COMPLETE

 If the last call to GSS_Init_sec_context yielded a major_status value
 of GSS_S_COMPLETE and a non-NULL output_token was sent to the server,
 then the client side component of the negotiation is complete and the
 client is awaiting confirmation from the server.

 Confirmation is in the form of a query response with RCODE=NOERROR
 and with the last client supplied TKEY record in the answer section
 of the query. The response MUST be signed with a TSIG record. Note
 that the server is allowed to sign a response to unsigned client’s
 query due to modification to the RFC 2845 specified in Section 2.2
 above. The signature in the TSIG record MUST be verified using the
 procedure detailed in section 5, Sending and Verifying Signed
 Messages. If the response is not signed, OR if the response is
 signed but the signature is invalid, then an attacker has tampered
 with the message in transit or has attempted to send the client a
 false response. In this case, the client MAY continue waiting for a
 response to its last TKEY query until the time period since the
 client sent last TKEY query expires. Such a time period is specified
 by the policy local to the client. This is a new option that allows
 the DNS client to accept multiple answers for one query ID and select
 one (not necessarily the first one) based on some criteria.

 If the signature is verified, the context state is advanced to
 Context Established. Proceed to section 3.2 for usage of the
 security context.

3.1.3.2. Value of major_status == GSS_S_CONTINUE_NEEDED

 If the last call to GSS_Init_sec_context yielded a major_status value
 of GSS_S_CONTINUE_NEEDED, then the negotiation is not yet complete.
 The server will return to the client a query response with a TKEY
 record in the Answer section. If the DNS message error is not
 NO_ERROR or error field in the TKEY record is not 0 (i.e., no error),
 then the client MUST abandon this negotiation sequence. The client
 MUST delete an active context by calling GSS_Delete_sec_context
 providing the associated context_handle. The client MAY repeat the
 negotiation sequence starting with the uninitialized state as
 described in section 3.1. To prevent infinite looping the number of
 attempts to establish a security context MUST be limited to ten or
 less.

 If the DNS message error is NO_ERROR and the error field in the TKEY
 record is 0 (i.e., no error), then the client MUST pass a token
 specified in the Key Data field in the TKEY resource record to

Kwan, et al. Standards Track [Page 9]

RFC 3645 GSS-TSIG October 2003

 GSS_Init_sec_context using the same parameters values as in previous
 call except values for CONTEXT HANDLE input_context_handle and OCTET
 STRING input_token as described below:

 INPUTS
 CONTEXT HANDLE input_context_handle = context_handle (this is the
 context_handle corresponding to the key_name which is the
 owner name of the TKEY record in the answer section in the
 TKEY query response)

 OCTET STRING input_token = token from Key field of
 TKEY record

 Depending on the following OUTPUT values of GSS_Init_sec_context

 INTEGER major_status
 OCTET STRING output_token

 the client MUST take one of the following actions:

 If OUTPUT major_status is set to one of the following values:

 GSS_S_DEFECTIVE_TOKEN
 GSS_S_DEFECTIVE_CREDENTIAL
 GSS_S_BAD_SIG (GSS_S_BAD_MIC)
 GSS_S_NO_CRED
 GSS_S_CREDENTIALS_EXPIRED
 GSS_S_BAD_BINDINGS
 GSS_S_OLD_TOKEN
 GSS_S_DUPLICATE_TOKEN
 GSS_S_NO_CONTEXT
 GSS_S_BAD_NAMETYPE
 GSS_S_BAD_NAME
 GSS_S_BAD_MECH
 GSS_S_FAILURE

 the client MUST abandon this negotiation sequence. This means that
 the client MUST delete an active context by calling
 GSS_Delete_sec_context providing the associated context_handle. The
 client MAY repeat the negotiation sequence starting with the
 uninitialized state as described in section 3.1. To prevent infinite
 looping the number of attempts to establish a security context MUST
 be limited to ten or less.

 If OUTPUT major_status is GSS_S_CONTINUE_NEEDED OR GSS_S_COMPLETE
 then client MUST act as described below.

Kwan, et al. Standards Track [Page 10]

RFC 3645 GSS-TSIG October 2003

 If the response from the server was signed, and the OUTPUT
 major_status is GSS_S_COMPLETE,then the signature in the TSIG record
 MUST be verified using the procedure detailed in section 5, Sending
 and Verifying Signed Messages. If the signature is invalid, then the
 client MUST abandon this negotiation sequence. This means that the
 client MUST delete an active context by calling
 GSS_Delete_sec_context providing the associated context_handle. The
 client MAY repeat the negotiation sequence starting with the
 uninitialized state as described in section 3.1. To prevent infinite
 looping the number of attempts to establish a security context MUST
 be limited to ten or less.

 If major_status is GSS_S_CONTINUE_NEEDED the negotiation is not yet
 finished. The token output_token MUST be passed to the server in a
 TKEY record by repeating the negotiation sequence beginning with
 section 3.1.2. The client MUST place a limit on the number of
 continuations in a context negotiation to prevent endless looping.
 Such limit SHOULD NOT exceed value of 10.

 If major_status is GSS_S_COMPLETE and output_token is non-NULL, the
 client-side component of the negotiation is complete but the token
 output_token MUST be passed to the server by repeating the
 negotiation sequence beginning with section 3.1.2.

 If major_status is GSS_S_COMPLETE and output_token is NULL, context
 negotiation is complete. The context state is advanced to Context
 Established. Proceed to section 3.2 for usage of the security
 context.

3.2. Context Established

 When context negotiation is complete, the handle context_handle MUST
 be used for the generation and verification of transaction
 signatures.

 The procedures for sending and receiving signed messages are
 described in section 5, Sending and Verifying Signed Messages.

3.2.1. Terminating a Context

 When the client is not intended to continue using the established
 security context, the client SHOULD delete an active context by
 calling GSS_Delete_sec_context providing the associated
 context_handle, AND client SHOULD delete the established context on
 the DNS server by using TKEY RR with the Mode field set to 5, i.e.,
 "key deletion" [RFC2930].

Kwan, et al. Standards Track [Page 11]

RFC 3645 GSS-TSIG October 2003

4. Server Protocol Details

 As on the client-side, the result of a successful context negotiation
 is a context handle used in future generation and verification of the
 transaction signatures.

 A server MAY be managing several contexts with several clients.
 Clients identify their contexts by providing a key name in their
 request. The server maintains a mapping of key names to handles:

 (key_name, context_handle)

4.1. Negotiating Context

 A server MUST recognize TKEY queries as security context negotiation
 messages.

4.1.1. Receive TKEY Query from Client

 Upon receiving a query with QTYPE = TKEY, the server MUST examine
 whether the Mode and Algorithm Name fields of the TKEY record in the
 additional records section of the message contain values of 3 and
 gss-tsig, respectively. If they do, then the (key_name,
 context_handle) mapping table is searched for the key_name matching
 the owner name of the TKEY record in the additional records section
 of the query. If the name is found in the table and the security
 context for this name is established and not expired, then the server
 MUST respond to the query with BADNAME error in the TKEY error field.
 If the name is found in the table and the security context is not
 established, the corresponding context_handle is used in subsequent
 GSS operations. If the name is found but the security context is
 expired, then the server deletes this security context, as described
 in Section 4.2.1, and interprets this query as a start of new
 security context negotiation and performs operations described in
 Section 4.1.2 and 4.1.3. If the name is not found, then the server
 interprets this query as a start of new security context negotiation
 and performs operations described in Section 4.1.2 and 4.1.3.

4.1.2. Call GSS_Accept_sec_context

 The server performs its side of a context negotiation by calling
 GSS_Accept_sec_context. The following input parameters MUST be used.
 The outcome of the call is indicated with the output values below.
 Consult Sections 2.2.2 "GSS_Accept_sec_context call" of the RFC 2743
 [RFC2743] for syntax definitions.

Kwan, et al. Standards Track [Page 12]

RFC 3645 GSS-TSIG October 2003

 INPUTS
 CONTEXT HANDLE input_context_handle = 0 if new negotiation,
 context_handle matching
 key_name if ongoing negotiation
 OCTET STRING input_token = token specified in the Key
 field from TKEY RR (from Additional records Section of
 the client’s query)

 CREDENTIAL HANDLE acceptor_cred_handle = NULL (NULL specifies "use
 default"). Server MAY instead specify some other valid
 handle to its credentials.
 OCTET STRING chan_bindings = Any valid channel bindings
 as specified in Section 1.1.6 "Channel Bindings" in [RFC2743]

 OUTPUTS
 INTEGER major_status
 CONTEXT_HANDLE output_context_handle
 OCTET STRING output_token
 INTEGER minor_status
 INTERNAL NAME src_name
 OBJECT IDENTIFIER mech_type
 BOOLEAN deleg_state
 BOOLEAN mutual_state
 BOOLEAN replay_det_state
 BOOLEAN sequence_state
 BOOLEAN anon_state
 BOOLEAN trans_state
 BOOLEAN prot_ready_state
 BOOLEAN conf_avail
 BOOLEAN integ_avail
 INTEGER lifetime_rec
 CONTEXT_HANDLE delegated_cred_handle

 If this is the first call to GSS_Accept_sec_context in a new
 negotiation, then output_context_handle is stored in the server’s
 key-mapping table as the context_handle that maps to the name of the
 TKEY record.

4.1.3. Send TKEY Query-Response to Client

 The server MUST respond to the client with a TKEY query response with
 RCODE = NOERROR, that contains a TKEY record in the answer section.

 If OUTPUT major_status is one of the following errors the error field
 in the TKEY record set to BADKEY.

Kwan, et al. Standards Track [Page 13]

RFC 3645 GSS-TSIG October 2003

 GSS_S_DEFECTIVE_TOKEN
 GSS_S_DEFECTIVE_CREDENTIAL
 GSS_S_BAD_SIG (GSS_S_BAD_MIC)
 GSS_S_DUPLICATE_TOKEN
 GSS_S_OLD_TOKEN
 GSS_S_NO_CRED
 GSS_S_CREDENTIALS_EXPIRED
 GSS_S_BAD_BINDINGS
 GSS_S_NO_CONTEXT
 GSS_S_BAD_MECH
 GSS_S_FAILURE

 If OUTPUT major_status is set to GSS_S_COMPLETE or
 GSS_S_CONTINUE_NEEDED then server MUST act as described below.

 If major_status is GSS_S_COMPLETE the server component of the
 negotiation is finished. If output_token is non-NULL, then it MUST
 be returned to the client in a Key Data field of the RDATA in TKEY.
 The error field in the TKEY record is set to NOERROR. The message
 MUST be signed with a TSIG record as described in section 5, Sending
 and Verifying Signed Messages. Note that server is allowed to sign a
 response to unsigned client’s query due to modification to the RFC
 2845 specified in Section 2.2 above. The context state is advanced
 to Context Established. Section 4.2 discusses the usage of the
 security context.

 If major_status is GSS_S_COMPLETE and output_token is NULL, then the
 TKEY record received from the client MUST be returned in the Answer
 section of the response. The message MUST be signed with a TSIG
 record as described in section 5, Sending and Verifying Signed
 Messages. Note that server is allowed to sign a response to unsigned
 client’s query due to modification to the RFC 2845 specified in
 section 2.2 above. The context state is advanced to Context
 Established. Section 4.2 discusses the usage of the security
 context.

 If major_status is GSS_S_CONTINUE_NEEDED, the server component of the
 negotiation is not yet finished. The server responds to the TKEY
 query with a standard query response, placing in the answer section a
 TKEY record containing output_token in the Key Data RDATA field. The
 error field in the TKEY record is set to NOERROR. The server MUST
 limit the number of times that a given context is allowed to repeat,
 to prevent endless looping. Such limit SHOULD NOT exceed value of
 10.

Kwan, et al. Standards Track [Page 14]

RFC 3645 GSS-TSIG October 2003

 In all cases, except if major_status is GSS_S_COMPLETE and
 output_token is NULL, other TKEY record fields MUST contain the
 following values:

 NAME = key_name
 RDATA
 Algorithm Name = gss-tsig
 Mode = 3 (GSS-API negotiation - per [RFC2930])
 Key Size = size of output_token in octets

 The remaining fields in the TKEY RDATA, i.e., Inception, Expiration,
 Error, Other Size and Data Fields, MUST be set according to
 [RFC2930].

4.2. Context Established

 When context negotiation is complete, the handle context_handle is
 used for the generation and verification of transaction signatures.
 The handle is valid for a finite amount of time determined by the
 underlying security mechanism. A server MAY unilaterally terminate a
 context at any time (see section 4.2.1).

 Server SHOULD limit the amount of memory used to cache established
 contexts.

 The procedures for sending and receiving signed messages are given in
 section 5, Sending and Verifying Signed Messages.

4.2.1. Terminating a Context

 A server can terminate any established context at any time. The
 server MAY hint to the client that the context is being deleted by
 including a TKEY RR in a response with the Mode field set to 5, i.e.,
 "key deletion" [RFC2930]. An active context is deleted by calling
 GSS_Delete_sec_context providing the associated context_handle.

5. Sending and Verifying Signed Messages

5.1. Sending a Signed Message - Call GSS_GetMIC

 The procedure for sending a signature-protected message is specified
 in [RFC2845]. The data to be passed to the signature routine
 includes the whole DNS message with specific TSIG variables appended.
 For the exact format, see [RFC2845]. For this protocol, use the
 following TSIG variable values:

Kwan, et al. Standards Track [Page 15]

RFC 3645 GSS-TSIG October 2003

 TSIG Record
 NAME = key_name that identifies this context
 RDATA
 Algorithm Name = gss-tsig

 Assign the remaining fields in the TSIG RDATA appropriate values as
 described in [RFC2845].

 The signature is generated by calling GSS_GetMIC. The following
 input parameters MUST be used. The outcome of the call is indicated
 with the output values specified below. Consult Sections 2.3.1
 "GSS_GetMIC call" of the RFC 2743[RFC2743] for syntax definitions.

 INPUTS
 CONTEXT HANDLE context_handle = context_handle for key_name
 OCTET STRING message = outgoing message plus TSIG
 variables (per [RFC2845])
 INTEGER qop_req = 0 (0 requests a default
 value). Caller MAY instead specify other valid value (for
 details see Section 1.2.4 in [RFC2743])

 OUTPUTS
 INTEGER major_status
 INTEGER minor_status
 OCTET STRING per_msg_token

 If major_status is GSS_S_COMPLETE, then signature generation
 succeeded. The signature in per_msg_token is inserted into the
 Signature field of the TSIG RR and the message is transmitted.

 If major_status is GSS_S_CONTEXT_EXPIRED, GSS_S_CREDENTIALS_EXPIRED
 or GSS_S_FAILURE the caller MUST delete the security context, return
 to the uninitialized state and SHOULD negotiate a new security
 context, as described above in Section 3.1

 If major_status is GSS_S_NO_CONTEXT, the caller MUST remove the entry
 for key_name from the (target_ name, key_name, context_handle)
 mapping table, return to the uninitialized state and SHOULD negotiate
 a new security context, as described above in Section 3.1

 If major_status is GSS_S_BAD_QOP, the caller SHOULD repeat the
 GSS_GetMIC call with allowed QOP value. The number of such
 repetitions MUST be limited to prevent infinite loops.

5.2. Verifying a Signed Message - Call GSS_VerifyMIC

 The procedure for verifying a signature-protected message is
 specified in [RFC2845].

Kwan, et al. Standards Track [Page 16]

RFC 3645 GSS-TSIG October 2003

 The NAME of the TSIG record determines which context_handle maps to
 the context that MUST be used to verify the signature. If the NAME
 does not map to an established context, the server MUST send a
 standard TSIG error response to the client indicating BADKEY in the
 TSIG error field (as described in [RFC2845]).

 For the GSS algorithm, a signature is verified by using
 GSS_VerifyMIC:

 INPUTS
 CONTEXT HANDLE context_handle = context_handle for key_name
 OCTET STRING message = incoming message plus TSIG
 variables (per [RFC2845])
 OCTET STRING per_msg_token = Signature field from TSIG RR

 OUTPUTS
 INTEGER major_status
 INTEGER minor_status
 INTEGER qop_state

 If major_status is GSS_S_COMPLETE, the signature is authentic and the
 message was delivered intact. Per [RFC2845], the timer values of the
 TSIG record MUST also be valid before considering the message to be
 authentic. The caller MUST not act on the request or response in the
 message until these checks are verified.

 When a server is processing a client request, the server MUST send a
 standard TSIG error response to the client indicating BADKEY in the
 TSIG error field as described in [RFC2845], if major_status is set to
 one of the following values

 GSS_S_DEFECTIVE_TOKEN
 GSS_S_BAD_SIG (GSS_S_BAD_MIC)
 GSS_S_DUPLICATE_TOKEN
 GSS_S_OLD_TOKEN
 GSS_S_UNSEQ_TOKEN
 GSS_S_GAP_TOKEN
 GSS_S_CONTEXT_EXPIRED
 GSS_S_NO_CONTEXT
 GSS_S_FAILURE

 If the timer values of the TSIG record are invalid, the message MUST
 NOT be considered authentic. If this error checking fails when a
 server is processing a client request, the appropriate error response
 MUST be sent to the client according to [RFC2845].

Kwan, et al. Standards Track [Page 17]

RFC 3645 GSS-TSIG October 2003

6. Example usage of GSS-TSIG algorithm

 This Section describes an example where a Client, client.example.com,
 and a Server, server.example.com, establish a security context
 according to the algorithm described above.

 I. Client initializes security context negotiation

 To establish a security context with a server, server.example.com, the
 Client calls GSS_Init_sec_context with the following parameters.
 (Note that some INPUT and OUTPUT parameters not critical for this
 algorithm are not described in this example.)

 CONTEXT HANDLE input_context_handle = 0
 INTERNAL NAME targ_name = "DNS@server.example.com"
 OCTET STRING input_token = NULL
 BOOLEAN replay_det_req_flag = TRUE
 BOOLEAN mutual_req_flag = TRUE

 The OUTPUTS parameters returned by GSS_Init_sec_context include
 INTEGER major_status = GSS_S_CONTINUE_NEEDED
 CONTEXT HANDLE output_context_handle context_handle
 OCTET STRING output_token output_token
 BOOLEAN replay_det_state = TRUE
 BOOLEAN mutual_state = TRUE

 Client verifies that replay_det_state and mutual_state values are
 TRUE. Since the major_status is GSS_S_CONTINUE_NEEDED, which is a
 success OUTPUT major_status value, client stores context_handle that
 maps to "DNS@server.example.com" and proceeds to the next step.

 II. Client sends a query with QTYPE = TKEY to server

 Client sends a query with QTYPE = TKEY for a client-generated globally
 unique domain name string, 789.client.example.com.server.example.com.
 Query contains a TKEY record in its Additional records section with
 the following fields. (Note that some fields not specific to this
 algorithm are not specified.)

 NAME = 789.client.example.com.server.example.com.
 RDATA
 Algorithm Name = gss-tsig
 Mode = 3 (GSS-API negotiation - per [RFC2930])
 Key Size = size of output_token in octets
 Key Data = output_token

Kwan, et al. Standards Track [Page 18]

RFC 3645 GSS-TSIG October 2003

 After the key_name 789.client.example.com.server.example.com.
 is generated it is stored in the client’s (target_name, key_name,
 context_handle) mapping table.

 III. Server receives a query with QTYPE = TKEY

 When server receives a query with QTYPE = TKEY, the server verifies
 that Mode and Algorithm fields in the TKEY record in the Additional
 records section of the query are set to 3 and "gss-tsig" respectively.
 It finds that the key_name 789.client.example.com.server.example.com.
 is not listed in its (key_name, context_handle) mapping table.

 IV. Server calls GSS_Accept_sec_context

 To continue security context negotiation server calls
 GSS_Accept_sec_context with the following parameters. (Note that
 some INPUT and OUTPUT parameters not critical for this algorithm
 are not described in this example.)

 INPUTS
 CONTEXT HANDLE input_context_handle = 0
 OCTET STRING input_token = token specified in the Key
 field from TKEY RR (from Additional
 records section of the client’s query)

 The OUTPUTS parameters returned by GSS_Accept_sec_context include
 INTEGER major_status = GSS_S_CONTINUE_NEEDED
 CONTEXT_HANDLE output_context_handle context_handle
 OCTET STRING output_token output_token

 Server stores the mapping of the
 789.client.example.com.server.example.com. to OUTPUT context_handle
 in its (key_name, context_handle) mapping table.

 V. Server responds to the TKEY query

 Since the major_status = GSS_S_CONTINUE_NEEDED in the last server’s
 call to GSS_Accept_sec_context, the server responds to the TKEY query
 placing in the answer section a TKEY record containing output_token in
 the Key Data RDATA field. The error field in the TKEY record is set
 to 0. The RCODE in the query response is set to NOERROR.

 VI. Client processes token returned by server

 When the client receives the TKEY query response from the server, the
 client calls GSS_Init_sec_context with the following parameters.
 (Note that some INPUT and OUTPUT parameters not critical for this
 algorithm are not described in this example.)

Kwan, et al. Standards Track [Page 19]

RFC 3645 GSS-TSIG October 2003

 CONTEXT HANDLE input_context_handle = the context_handle stored
 in the client’s mapping table entry (DNS@server.example.com.,
 789.client.example.com.server.example.com., context_handle)
 INTERNAL NAME targ_name = "DNS@server.example.com"
 OCTET STRING input_token = token from Key field of TKEY
 record from the Answer section of the server’s response
 BOOLEAN replay_det_req_flag = TRUE
 BOOLEAN mutual_req_flag = TRUE

 The OUTPUTS parameters returned by GSS_Init_sec_context include
 INTEGER major_status = GSS_S_COMPLETE
 CONTEXT HANDLE output_context_handle = context_handle
 OCTET STRING output_token = output_token
 BOOLEAN replay_det_state = TRUE
 BOOLEAN mutual_state = TRUE

 Since the major_status is set to GSS_S_COMPLETE the client side
 security context is established, but since the output_token is not
 NULL client MUST send a TKEY query to the server as described below.

 VII. Client sends a query with QTYPE = TKEY to server

 Client sends to the server a TKEY query for the
 789.client.example.com.server.example.com. name. Query contains a
 TKEY record in its Additional records section with the following
 fields. (Note that some INPUT and OUTPUT parameters not critical to
 this algorithm are not described in this example.)

 NAME = 789.client.example.com.server.example.com.
 RDATA
 Algorithm Name = gss-tsig
 Mode = 3 (GSS-API negotiation - per [RFC2930])
 Key Size = size of output_token in octets
 Key Data = output_token

 VIII. Server receives a TKEY query

 When the server receives a TKEY query, the server verifies that Mode
 and Algorithm fields in the TKEY record in the Additional records
 section of the query are set to 3 and gss-tsig, respectively. It
 finds that the key_name 789.client.example.com.server.example.com. is
 listed in its (key_name, context_handle) mapping table.

Kwan, et al. Standards Track [Page 20]

RFC 3645 GSS-TSIG October 2003

 IX. Server calls GSS_Accept_sec_context

 To continue security context negotiation server calls
 GSS_Accept_sec_context with the following parameters (Note that some
 INPUT and OUTPUT parameters not critical for this algorithm are not
 described in this example)

 INPUTS
 CONTEXT HANDLE input_context_handle = context_handle from the
 (789.client.example.com.server.example.com., context_handle)
 entry in the server’s mapping table
 OCTET STRING input_token = token specified in the Key
 field of TKEY RR (from Additional records Section of
 the client’s query)

 The OUTPUTS parameters returned by GSS_Accept_sec_context include
 INTEGER major_status = GSS_S_COMPLETE
 CONTEXT_HANDLE output_context_handle = context_handle
 OCTET STRING output_token = NULL

 Since major_status = GSS_S_COMPLETE, the security context on the
 server side is established, but the server still needs to respond to
 the client’s TKEY query, as described below. The security context
 state is advanced to Context Established.

 X. Server responds to the TKEY query

 Since the major_status = GSS_S_COMPLETE in the last server’s call to
 GSS_Accept_sec_context and the output_token is NULL, the server
 responds to the TKEY query placing in the answer section a TKEY record
 that was sent by the client in the Additional records section of the
 client’s latest TKEY query. In addition, this server places a
 TSIG record in additional records section of its response. Server
 calls GSS_GetMIC to generate a signature to include it in the TSIG
 record. The server specifies the following GSS_GetMIC INPUT
 parameters:

 CONTEXT HANDLE context_handle = context_handle from the
 (789.client.example.com.server.example.com., context_handle)
 entry in the server’s mapping table
 OCTET STRING message = outgoing message plus TSIG
 variables (as described in [RFC2845])

 The OUTPUTS parameters returned by GSS_GetMIC include
 INTEGER major_status = GSS_S_COMPLETE
 OCTET STRING per_msg_token

 Signature field in the TSIG record is set to per_msg_token.

Kwan, et al. Standards Track [Page 21]

RFC 3645 GSS-TSIG October 2003

 XI. Client processes token returned by server

 Client receives the TKEY query response from the server. Since the
 major_status was GSS_S_COMPLETE in the last client’s call to
 GSS_Init_sec_context, the client verifies that the server’s response
 is signed. To validate the signature, the client calls
 GSS_VerifyMIC with the following parameters:

 INPUTS
 CONTEXT HANDLE context_handle = context_handle for
 789.client.example.com.server.example.com. key_name
 OCTET STRING message = incoming message plus TSIG
 variables (as described in [RFC2845])
 OCTET STRING per_msg_token = Signature field from TSIG RR
 included in the server’s query response

 Since the OUTPUTS parameter major_status = GSS_S_COMPLETE, the
 signature is validated, security negotiation is complete and the
 security context state is advanced to Context Established. These
 client and server will use the established security context to sign
 and validate the signatures when they exchange packets with each
 other until the context expires.

7. Security Considerations

 This document describes a protocol for DNS security using GSS-API.
 The security provided by this protocol is only as effective as the
 security provided by the underlying GSS mechanisms.

 All the security considerations from RFC 2845, RFC 2930 and RFC 2743
 apply to the protocol described in this document.

8. IANA Considerations

 The IANA has reserved the TSIG Algorithm name gss-tsig for the use in
 the Algorithm fields of TKEY and TSIG resource records. This
 Algorithm name refers to the algorithm described in this document.
 The requirement to have this name registered with IANA is specified
 in RFC 2845.

9. Conformance

 The GSS API using SPNEGO [RFC2478] provides maximum flexibility to
 choose the underlying security mechanisms that enables security
 context negotiation. GSS API using SPNEGO [RFC2478] enables client
 and server to negotiate and choose such underlying security
 mechanisms on the fly. To support such flexibility, DNS clients and
 servers SHOULD specify SPNEGO mech_type in their GSS API calls. At

Kwan, et al. Standards Track [Page 22]

RFC 3645 GSS-TSIG October 2003

 the same time, in order to guarantee interoperability between DNS
 clients and servers that support GSS-TSIG it is required that

 - DNS servers specify SPNEGO mech_type
 - GSS APIs called by DNS client support Kerberos v5
 - GSS APIs called by DNS server support SPNEGO [RFC2478] and
 Kerberos v5.

 In addition to these, GSS APIs used by DNS client and server MAY also
 support other underlying security mechanisms.

10. Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

11. Acknowledgements

 The authors of this document would like to thank the following people
 for their contribution to this specification: Chuck Chan, Mike
 Swift, Ram Viswanathan, Olafur Gudmundsson, Donald E. Eastlake, 3rd
 and Erik Nordmark.

Kwan, et al. Standards Track [Page 23]

RFC 3645 GSS-TSIG October 2003

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2478] Baize, E. and D. Pinkas, "The Simple and Protected GSS-API
 Negotiation Mechanism", RFC 2478, December 1998.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface, Version 2 , Update 1", RFC 2743, January 2000.

 [RFC2845] Vixie, P., Gudmundsson, O., Eastlake 3rd, D. and B.
 Wellington, "Secret Key Transaction Authentication for DNS
 (TSIG)", RFC 2845, May 2000.

 [RFC2930] Eastlake 3rd, D., "Secret Key Establishment for DNS (TKEY
 RR)", RFC 2930, September 2000.

12.2. Informative References

 [ISO11578] "Information technology", "Open Systems Interconnection",
 "Remote Procedure Call", ISO/IEC 11578:1996,
 http://www.iso.ch/cate/d2229.html.

 [RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
 STD 13, RFC 1034, November 1987.

 [RFC1035] Mockapetris, P., "Domain Names - Implementation and
 Specification", STD 13, RFC 1034, November 1987.

 [RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC
 1964, June 1996.

 [RFC2025] Adams, C., "The Simple Public-Key GSS-API Mechanism
 (SPKM)", RFC 2025, October 1996.

 [RFC2137] Eastlake 3rd, D., "Secure Domain Name System Dynamic
 Update", RFC 2137, April 1997.

 [RFC2535] Eastlake 3rd, D., "Domain Name System Security Extensions",
 RFC 2535, March 1999.

Kwan, et al. Standards Track [Page 24]

RFC 3645 GSS-TSIG October 2003

13. Authors’ Addresses

 Stuart Kwan
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 USA
 EMail: skwan@microsoft.com

 Praerit Garg
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 USA
 EMail: praeritg@microsoft.com

 James Gilroy
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 USA
 EMail: jamesg@microsoft.com

 Levon Esibov
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 USA
 EMail: levone@microsoft.com

 Randy Hall
 Lucent Technologies
 400 Lapp Road
 Malvern PA 19355
 USA
 EMail: randyhall@lucent.com

 Jeff Westhead
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 USA
 EMail: jwesth@microsoft.com

Kwan, et al. Standards Track [Page 25]

RFC 3645 GSS-TSIG October 2003

14. Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Kwan, et al. Standards Track [Page 26]

