
Network Working Group F. Strauss
Request for Comments: 3781 TU Braunschweig
Category: Experimental J. Schoenwaelder
 International University Bremen
 May 2004

 Next Generation Structure of Management Information (SMIng)
 Mappings to the Simple Network Management Protocol (SNMP)

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 SMIng (Structure of Management Information, Next Generation)
 (RFC3780), is a protocol-independent data definition language for
 management information. This memo defines an SMIng language
 extension that specifies the mapping of SMIng definitions of
 identities, classes, and their attributes and events to dedicated
 definitions of nodes, scalar objects, tables and columnar objects,
 and notifications, for application to the SNMP management framework.

Table of Contents

 1. Introduction . 3
 2. SNMP Based Internet Management 3
 2.1. Kinds of Nodes. 4
 2.2. Scalar and Columnar Object Instances. 5
 2.3. Object Identifier Hierarchy 7
 3. SMIng Data Type Mappings 8
 3.1. ASN.1 Definitions 9
 4. The snmp Extension Statement 10
 4.1. The oid Statement 10
 4.2. The node Statement. 10
 4.2.1. The node’s oid Statement 10
 4.2.2. The node’s represents Statement. 10
 4.2.3. The node’s status Statement. 11
 4.2.4. The node’s description Statement 11
 4.2.5. The node’s reference Statement 11

Strauss & Schoenwaelder Experimental [Page 1]

RFC 3781 SMIng Mappings to SNMP May 2004

 4.2.6. Usage Examples 11
 4.3. The scalars Statement 11
 4.3.1. The scalars’ oid Statement 12
 4.3.2. The scalars’ object Statement 12
 4.3.3. The scalars’ status Statement 13
 4.3.4. The scalars’ description Statement 14
 4.3.5. The scalars’ reference Statement 14
 4.3.6. Usage Example. 14
 4.4. The table Statement 14
 4.4.1. The table’s oid Statement. 15
 4.4.2. Table Indexing Statements. 15
 4.4.3. The table’s create Statement 17
 4.4.4. The table’s object Statement 17
 4.4.5. The table’s status Statement 19
 4.4.6. The table’s description Statement 19
 4.4.7. The table’s reference Statement 19
 4.4.8. Usage Example 19
 4.5. The notification Statement 20
 4.5.1. The notification’s oid Statement 20
 4.5.2. The notification’s signals Statement 20
 4.5.3. The notification’s status Statement 20
 4.5.4. The notification’s description Statement 21
 4.5.5. The notification’s reference Statement 21
 4.5.6. Usage Example. 21
 4.6. The group Statement 21
 4.6.1. The group’s oid Statement 22
 4.6.2. The group’s members Statement 22
 4.6.3. The group’s status Statement 22
 4.6.4. The group’s description Statement 22
 4.6.5. The group’s reference Statement 22
 4.6.6. Usage Example 22
 4.7. The compliance Statement. 23
 4.7.1. The compliance’s oid Statement 23
 4.7.2. The compliance’s status Statement 23
 4.7.3. The compliance’s description Statement 23
 4.7.4. The compliance’s reference Statement 23
 4.7.5. The compliance’s mandatory Statement 24
 4.7.6. The compliance’s optional Statement. 24
 4.7.7. The compliance’s refine Statement 24
 4.7.8. Usage Example 26
 5. NMRG-SMING-SNMP-EXT . 26
 6. NMRG-SMING-SNMP . 33
 7. Security Considerations 46
 8. Acknowledgements . 46

Strauss & Schoenwaelder Experimental [Page 2]

RFC 3781 SMIng Mappings to SNMP May 2004

 9. References . 47
 9.1. Normative References. 47
 9.2. Informative References. 47
 Authors’ Addresses . 48
 Full Copyright Statement . 49

1. Introduction

 SMIng (Structure of Management Information, Next Generation)
 [RFC3780] is a protocol-independent data definition language for
 management information. This memo defines an SMIng language
 extension that specifies the mapping of SMIng definitions of
 identities, classes, and their attributes and events to dedicated
 definitions of nodes, scalar objects, tables and columnar objects,
 and notifications for application in the SNMP management framework.
 Section 2 introduces basics of the SNMP management framework.
 Section 3 defines how SMIng data types are mapped to the data types
 supported by the SNMP protocol. It introduces some new ASN.1 [ASN1]
 definitions which are used to represent new SMIng base types such as
 floats in the SNMP protocol.

 Section 4 describes the semantics of the SNMP mapping extensions for
 SMIng. The formal SMIng specification of the extension is provided
 in Section 5.

 Section 6 contains an SMIng module which defines derived types (such
 as RowStatus) that are specific to the SNMP mapping.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. SNMP-Based Internet Management

 The SNMP network management framework [RFC3410] is based on the
 concept of "managed objects". Managed objects represent real or
 synthesized variables of systems that are to be managed. Note that
 in spite of these terms this model is not object-oriented. For
 naming purposes, the managed objects are organized hierarchically in
 an "object identifier tree", where only leaf nodes may represent
 objects.

 Nodes in the object identifier tree may also identify conceptual
 tables, rows of conceptual tables, notifications, groups of objects
 and/or notifications, compliance statements, modules or other
 information. Each node is identified by an unique "object
 identifier" value which is a sequence of non-negative numbers, named
 "sub-identifiers", where the left-most sub-identifier refers to the

Strauss & Schoenwaelder Experimental [Page 3]

RFC 3781 SMIng Mappings to SNMP May 2004

 node next to the root of the tree and the right-most sub-identifier
 refers to the node that is identified by the complete object
 identifier value. Each sub-identifier has a value between 0 and
 2^32-1 (4294967295).

 The SMIng extensions described in this document are used to map SMIng
 data definitions to SNMP compliant managed objects. This mapping is
 designed to be readable to computer programs, named MIB compilers, as
 well as to human readers.

2.1. Kinds of Nodes

 Each node in the object identifier tree is of a certain kind and may
 represent management information or not:

 o Simple nodes, that do not represent management information, but
 may be used for grouping nodes in a subtree. Those nodes are
 defined by the ‘node’ statement. This statement can also be used
 to map an SMIng ‘identity’ to a node.

 o Nodes representing the identity of a module to allow references to
 a module in other objects of type ‘ObjectIdentifier’. Those nodes
 are defined by the ‘snmp’ statement,

 o Scalar objects, which have exactly one object instance and no
 child nodes. See Section 2.2 for scalar objects’ instances. A
 set of scalar objects is mapped from one or more SMIng classes
 using the ‘scalars’ statement. The statement block of the
 ‘scalars’ statement contains one ‘implements’ statement for each
 class. The associated statement blocks in turn contain ‘object’
 statements that specify the mapping of attributes to scalar
 objects. Scalar objects MUST not have any child node.

 o Tables, which represent the root node of a collection of
 information structured in table rows. Table nodes are defined by
 the ‘table’ statement. A table object identifier SHOULD not have
 any other child node than the implicitly defined row node (see
 below).

 o Rows, which belong to a table (that is, row’s object identifier
 consists of the table’s full object identifier plus a single ‘1’
 sub-identifier) and represent a sequence of one or more columnar
 objects. A row node is implicitly defined for each table node.

Strauss & Schoenwaelder Experimental [Page 4]

RFC 3781 SMIng Mappings to SNMP May 2004

 o Columnar objects, which belong to a row (that is, the columnar
 objects’ object identifier consists of the row’s full object
 identifier plus a single column-identifying sub-identifier) and
 have zero or more object instances and no child nodes. They are
 defined as follows: The classes that are implemented by a ‘table’
 statement are identified by ‘implements’ statements. The
 statement block of each ‘implements’ statement contains ‘object’
 statements that specify the mapping of attributes to columnar
 objects of this table. Columnar objects MUST not have any child
 node.

 o Notifications, which represent information that is sent by agents
 within unsolicited transmissions. The ‘notification’ statement is
 used to map an SMIng event to a notification. A notification’s
 object identifier SHOULD not have any child node.

 o Groups of objects and notifications, which may be used for
 compliance statements. They are defined using the ‘group’
 statement.

 o Compliance statements which define requirements for MIB module
 implementations. They are defined using the ‘compliance’
 statement.

2.2. Scalar and Columnar Object Instances

 Instances of managed objects are identified by appending an
 instance-identifier to the object’s object identifier. Scalar
 objects and columnar objects use different ways to construct the
 instance-identifier.

 Scalar objects have exactly one object instance. It is identified by
 appending a single ‘0’ sub-identifier to the object identifier of the
 scalar object.

 Within tables, different instances of the same columnar object are
 identified by appending a sequence of one or more sub-identifiers to
 the object identifier of the columnar object which consists of the
 values of object instances that unambiguously distinguish a table
 row. These indexing objects can be columnar objects of the same
 and/or another table, but MUST NOT be scalar objects. Multiple
 applications of the same object in a single table indexing
 specification are strongly discouraged.

Strauss & Schoenwaelder Experimental [Page 5]

RFC 3781 SMIng Mappings to SNMP May 2004

 The base types of the indexing objects indicate how to form the
 instance-identifier:

 o integer-valued or enumeration-valued: a single sub-identifier
 taking the integer value (this works only for non-negative
 integers and integers of a size of up to 32 bits),

 o string-valued, fixed-length strings (or variable-length with
 compact encoding): ‘n’ sub-identifiers, where ‘n’ is the length of
 the string (each octet of the string is encoded in a separate
 sub-identifier),

 o string-valued, variable-length strings or bits-valued: ‘n+1’ sub-
 identifiers, where ‘n’ is the length of the string or bits
 encoding (the first sub-identifier is ‘n’ itself, following this,
 each octet of the string or bits is encoded in a separate sub-
 identifier),

 o object identifier-valued (with compact encoding): ‘n’ sub-
 identifiers, where ‘n’ is the number of sub-identifiers in the
 value (each sub-identifier of the value is copied into a separate
 sub-identifier),

 o object identifier-valued: ‘n+1’ sub-identifiers, where ‘n’ is the
 number of sub-identifiers in the value (the first sub-identifier
 is ‘n’ itself, following this, each sub-identifier in the value is
 copied),

 Note that compact encoding can only be applied to an object having a
 variable-length syntax (e.g., variable-length strings, bits objects
 or object identifier-valued objects). Further, compact encoding can
 only be associated with the last object in a list of indexing
 objects. Finally, compact encoding MUST NOT be used on a variable-
 length string object if that string might have a value of zero-
 length.

 Instances identified by use of integer-valued or enumeration-valued
 objects are RECOMMENDED to be numbered starting from one (i.e., not
 from zero). Integer objects that allow negative values, Unsigned64
 objects, Integer64 objects and floating point objects MUST NOT be
 used for table indexing.

 Objects which are both specified for indexing in a row and also
 columnar objects of the same row are termed auxiliary objects.
 Auxiliary objects SHOULD be non-accessible, except in the following
 circumstances:

 o within a module originally written to conform to SMIv1, or

Strauss & Schoenwaelder Experimental [Page 6]

RFC 3781 SMIng Mappings to SNMP May 2004

 o a row must contain at least one columnar object which is not an
 auxiliary object. In the event that all of a row’s columnar
 objects are also specified to be indexing objects then one of them
 MUST be accessible.

2.3. Object Identifier Hierarchy

 The layers of the object identifier tree near the root are well
 defined and organized by standardization bodies. The first level
 next to the root has three nodes:

 0: ccitt

 1: iso

 2: joint-iso-ccitt

 Note that the renaming of the Commite Consultatif International de
 Telegraphique et Telephonique (CCITT) to International
 Telecommunications Union (ITU) had no consequence on the names used
 in the object identifier tree.

 The root of the subtree administered by the Internet Assigned Numbers
 Authority (IANA) for the Internet is ‘1.3.6.1’ which is assigned with
 the identifier ‘internet’. That is, the Internet subtree of object
 identifiers starts with the prefix ‘1.3.6.1.’.

 Several branches underneath this subtree are used for network
 management:

 The ‘mgmt’ (internet.2) subtree is used to identify "standard"
 definitions. An information module produced by an IETF working group
 becomes a "standard" information module when the document is first
 approved by the IESG and enters the Internet standards track.

 The ‘experimental’ (internet.3) subtree is used to identify
 experimental definitions being designed by working groups of the IETF
 or IRTF. If an information module produced by a working group
 becomes a "standard" module, then at the very beginning of its entry
 onto the Internet standards track, the definitions are moved under
 the mgmt subtree.

 The ‘private’ (internet.4) subtree is used to identify definitions
 defined unilaterally. The ‘enterprises’ (private.1) subtree beneath
 private is used, among other things, to permit providers of
 networking subsystems to register information modules of their
 products.

Strauss & Schoenwaelder Experimental [Page 7]

RFC 3781 SMIng Mappings to SNMP May 2004

 These and some other nodes are defined in the SMIng module NMRG-
 SMING-SNMP-EXT (Section 5).

3. SMIng Data Type Mappings

 SMIng [RFC3780] supports the following set of base types:
 OctetString, Pointer, Integer32, Integer64, Unsigned32, Unsigned64,
 Float32, Float64, Float128, Enumeration, Bits, and ObjectIdentifier.

 The SMIng core module NMRG-SMING ([RFC3780], Appendix A) defines
 additional derived types, among them Counter32 (derived from
 Unsigned32), Counter64 (derived from Unsigned64), TimeTicks32 and
 TimeTicks64 (derived from Unsigned32 and Unsigned64), IpAddress
 (derived from OctetString), and Opaque (derived from OctetString).

 The version 2 of the protocol operations for SNMP document [RFC3416]
 defines the following 9 data types which are distinguished by the
 protocol: INTEGER, OCTET STRING, OBJECT IDENTIFIER, IpAddress,
 Counter32, TimeTicks, Opaque, Counter64, and Unsigned32.

 The SMIng base types and their derived types are mapped to SNMP data
 types according to the following table:

 SMIng Data Type SNMP Data Type Comment
 --------------- ------------------- -------
 OctetString OCTET STRING (1)
 Pointer OBJECT IDENTIFIER
 Integer32 INTEGER
 Integer64 Opaque (Integer64) (2)
 Unsigned32 Unsigned32 (3)
 Unsigned64 Opaque (Unsigned64) (2) (4)
 Float32 Opaque (Float32) (2)
 Float64 Opaque (Float64) (2)
 Float128 Opaque (Float128) (2)
 Enumeration INTEGER
 Bits OCTET STRING
 ObjectIdentifier OBJECT IDENTIFIER

 Counter32 Counter32
 Counter64 Counter64
 TimeTicks32 TimeTicks
 TimeTicks64 Opaque (Unsigned64) (2)
 IpAddress IpAddress
 Opaque Opaque

 (1) This mapping includes all types derived from the OctetString
 type except those types derived from the IpAddress and Opaque
 SMIng types defined in the module NMRG-SMING.

Strauss & Schoenwaelder Experimental [Page 8]

RFC 3781 SMIng Mappings to SNMP May 2004

 (2) This type is encoded according to the ASN.1 type with the same
 name defined in Section 3.1. The resulting BER encoded value
 is then wrapped in an Opaque value.

 (3) This mapping includes all types derived from the Unsigned32
 type except those types derived from the Counter32 and
 TimeTicks32 SMIng types defined in the module NMRG-SMING.

 (4) This mapping includes all types derived from the Unsigned64
 type except those types derived from the Counter64 SMIng type
 defined in the module NMRG-SMING.

3.1. ASN.1 Definitions

 The ASN.1 [ASN1] type definitions below introduce data types which
 are used to map the new SMIng base types into the set of ASN.1 types
 supported by the second version of SNMP protocol operations
 [RFC3416].

 NMRG-SMING-SNMP-MAPPING DEFINITIONS ::= BEGIN

 Integer64 ::=
 [APPLICATION 10]
 IMPLICIT INTEGER (-9223372036854775808..9223372036854775807)

 Unsigned64
 [APPLICATION 11]
 IMPLICIT INTEGER (0..18446744073709551615)

 Float32
 [APPLICATION 12]
 IMPLICIT OCTET STRING (SIZE (4))

 Float64
 [APPLICATION 13]
 IMPLICIT OCTET STRING (SIZE (8))

 Float128
 [APPLICATION 14]
 IMPLICIT OCTET STRING (SIZE (16))

 END

 The definitions of Integer64 and Unsigned64 are consistent with the
 same definitions in the SPPI [RFC3159]. The floating point types
 Float32, Float64 and Float128 support single, double and quadruple

Strauss & Schoenwaelder Experimental [Page 9]

RFC 3781 SMIng Mappings to SNMP May 2004

 IEEE floating point values. The encoding of the values follows the
 "IEEE Standard for Binary Floating-Point Arithmetic" as defined in
 ANSI/IEEE Standard 754-1985 [IEEE754].

4. The snmp Extension Statement

 The ‘snmp’ statement is the main statement of the SNMP mapping
 specification. It gets one or two arguments: an optional lower-case
 identifier that specifies a node that represents the module’s
 identity, and a mandatory statement block that contains all details
 of the SNMP mapping. All information of an SNMP mapping are mapped
 to an SNMP conformant module of the same name as the containing SMIng
 module. A single SMIng module must not contain more than one ‘snmp’
 statement.

4.1. The oid Statement

 The snmp’s ‘oid’ statement, which must be present, if the snmp
 statement contains a module identifier and must be absent otherwise,
 gets one argument which specifies the object identifier value that is
 assigned to this module’s identity node.

4.2. The node Statement

 The ‘node’ statement is used to name and describe a node in the
 object identifier tree, without associating any class or attribute
 information with this node. This may be useful to group definitions
 in a subtree of related management information, or to uniquely define
 an SMIng ‘identity’ to be referenced in attributes of type Pointer.
 The ‘node’ statement gets two arguments: a lower-case node identifier
 and a statement block that holds detailed node information in an
 obligatory order.

 See the ‘nodeStatement’ rule of the grammar (Section 5) for the
 formal syntax of the ‘node’ statement.

4.2.1. The node’s oid Statement

 The node’s ‘oid’ statement, which must be present, gets one argument
 which specifies the object identifier value that is assigned to this
 node.

4.2.2. The node’s represents Statement

 The node’s ‘represents’ statement, which need not be present, makes
 this node represent an SMIng identity, so that objects of type
 Pointer can reference that identity. The statement gets one argument
 which specifies the identity name.

Strauss & Schoenwaelder Experimental [Page 10]

RFC 3781 SMIng Mappings to SNMP May 2004

4.2.3 The node’s status Statement

 The node’s ‘status’ statement, which must be present, gets one
 argument which is used to specify whether this node definition is
 current or historic. The value ‘current’ means that the definition
 is current and valid. The value ‘obsolete’ means the definition is
 obsolete and should not be implemented and/or can be removed if
 previously implemented. While the value ‘deprecated’ also indicates
 an obsolete definition, it permits new/continued implementation in
 order to foster interoperability with older/existing implementations.

4.2.4. The node’s description Statement

 The node’s ‘description’ statement, which need not be present, gets
 one argument which is used to specify a high-level textual
 description of this node.

 It is RECOMMENDED to include all semantics and purposes of this node.

4.2.5. The node’s reference Statement

 The node’s ‘reference’ statement, which need not be present, gets one
 argument which is used to specify a textual cross-reference to some
 other document, either another module which defines related
 definitions, or some other document which provides additional
 information relevant to this node.

4.2.6. Usage Examples

 node iso { oid 1; status current; };
 node org { oid iso.3; status current; };
 node dod { oid org.6; status current; };
 node internet { oid dod.1; status current; };

 node zeroDotZero {
 oid 0.0;
 represents NMRG-SMING::null;
 status current;
 description "A null value used for pointers.";
 };

4.3. The scalars Statement

 The ‘scalars’ statement is used to define the mapping of one or more
 classes to a group of SNMP scalar managed objects organized under a
 common parent node. The ‘scalars’ statement gets two arguments: a

Strauss & Schoenwaelder Experimental [Page 11]

RFC 3781 SMIng Mappings to SNMP May 2004

 lower-case scalar group identifier and a statement block that holds
 detailed mapping information of this scalar group in an obligatory
 order.

 See the ‘scalarsStatement’ rule of the grammar (Section 5) for the
 formal syntax of the ‘scalars’ statement.

4.3.1. The scalars’ oid Statement

 The scalars’ ‘oid’ statement, which must be present, gets one
 argument which specifies the object identifier value that is assigned
 to the common parent node of this scalar group.

4.3.2. The scalars’ object Statement

 The scalars’ ‘object’ statement, which must be present at least once,
 makes this scalar group contain a given scalar object. It gets two
 arguments: the name of the scalar object to be defined and a
 statement block that holds additional detailed information in an
 obligatory order.

4.3.2.1. The object’s implements Statement

 The ‘implements’ statement, which must be present, is used to specify
 a single leaf attribute of a class that is implemented by this scalar
 object. The type of this attribute must be a simple type, i.e., not
 a class.

4.3.2.2. The object’s subid Statement

 The ‘subid’ statement, which need not be present, is used to specify
 the sub-identifier that identifies the scalar object within this
 scalar group, i.e., the object identifier of the scalar object is the
 concatenation of the values of this scalar group’s oid statement and
 of this subid statement.

 If this statement is omitted, the sub-identifier is the one of the
 previous object statement within this scalar group plus 1. If the
 containing object statement is the first one within the containing
 scalar group and the subid statement is omitted, the sub-identifier
 is 1.

4.3.2.3. The object’s status Statement

 The object’s ‘status’ statement, which need not be present, gets one
 argument which is used to specify whether this scalar object
 definition is current or historic. The value ‘current’ means that

Strauss & Schoenwaelder Experimental [Page 12]

RFC 3781 SMIng Mappings to SNMP May 2004

 the definition is current and valid. The value ‘obsolete’ means the
 definition is obsolete and should not be implemented and/or can be
 removed if previously implemented. While the value ‘deprecated’ also
 indicates an obsolete definition, it permits new/continued
 implementation in order to foster interoperability with
 older/existing implementations.

 Scalar objects SHOULD NOT be defined as ‘current’ if the implemented
 attribute definition is ‘deprecated’ or ‘obsolete’. Similarly, they
 SHOULD NOT be defined as ‘deprecated’ if the implemented attribute is
 ‘obsolete’. Nevertheless, subsequent revisions of used class
 definitions cannot be avoided, but SHOULD be taken into account in
 subsequent revisions of the local module.

 Note that it is RECOMMENDED to omit the status statement which means
 that the status is inherited from the containing scalars statement.
 However, if the status of a scalar object varies from the containing
 scalar group, it has to be expressed explicitly, e.g., if the
 implemented attribute has been deprecated or obsoleted.

4.3.2.4. The object’s description Statement

 The object’s ‘description’ statement, which need not be present, gets
 one argument which is used to specify a high-level textual
 description of this scalar object.

 Note that in contrast to other definitions this description statement
 is not mandatory and it is RECOMMENDED to omit it, if the object is
 fully described by the description of the implemented attribute.

4.3.2.5. The object’s reference Statement

 The object’s ‘reference’ statement, which need not be present, gets
 one argument which is used to specify a textual cross-reference to
 some other document, either another module which defines related
 definitions, or some other document which provides additional
 information relevant to this scalar object.

 It is RECOMMENDED to omit this statement, if the object’s references
 are fully described by the implemented attribute.

4.3.3. The scalars’ status Statement

 The scalars’ ‘status’ statement, which must be present, gets one
 argument which is used to specify whether this scalar group
 definition is current or historic. The value ‘current’ means that
 the definition is current and valid. The value ‘obsolete’ means the
 definition is obsolete and should not be implemented and/or can be

Strauss & Schoenwaelder Experimental [Page 13]

RFC 3781 SMIng Mappings to SNMP May 2004

 removed if previously implemented. While the value ‘deprecated’ also
 indicates an obsolete definition, it permits new/continued
 implementation in order to foster interoperability with
 older/existing implementations.

4.3.4. The scalars’ description Statement

 The scalars’ ‘description’ statement, which must be present, gets one
 argument which is used to specify a high-level textual description of
 this scalar group.

 It is RECOMMENDED to include all semantic definitions necessary for
 the implementation of this scalar group.

4.3.5. The scalars’ reference Statement

 The scalars’ ‘reference’ statement, which need not be present, gets
 one argument which is used to specify a textual cross-reference to
 some other document, either another module which defines related
 definitions, or some other document which provides additional
 information relevant to this scalars statement.

4.3.6. Usage Example

 scalars ip {
 oid mib-2.4;
 object ipForwarding { implements Ip.forwarding; };
 object ipDefaultTTL { implements Ip.defaultTTL; };
 // ...
 status current;
 description
 "This scalar group implements the Ip class.";
 };

4.4. The table Statement

 The ‘table’ statement is used to define the mapping of one or more
 classes to a single SNMP table of columnar managed objects. The
 ‘table’ statement gets two arguments: a lower-case table identifier
 and a statement block that holds detailed mapping information of this
 table in an obligatory order.

 See the ‘tableStatement’ rule of the grammar (Section 5) for the
 formal syntax of the ‘table’ statement.

Strauss & Schoenwaelder Experimental [Page 14]

RFC 3781 SMIng Mappings to SNMP May 2004

4.4.1. The table’s oid Statement

 The table’s ‘oid’ statement, which must be present, gets one argument
 which specifies the object identifier value that is assigned to this
 table’s node.

4.4.2. Table Indexing Statements

 SNMP table mappings offers five methods to supply table indexing
 information: ordinary tables, table augmentations, sparse table
 augmentations, table expansions, and reordered tables use different
 statements to denote their indexing information. Each table
 definition must contain exactly one of the following indexing
 statements.

4.4.2.1. The table’s index Statement for Table Indexing

 The table’s ‘index’ statement, which is used to supply table indexing
 information of base tables, gets one argument that specifies a
 comma-separated list of objects, that are used for table indexing,
 enclosed in parenthesis.

 The elements of the ‘unique’ statement of the implemented class(es)
 and their order should be regarded as a hint for the index elements
 of the table.

 In case of modules that should be compatible on the SNMP protocol
 level to SMIv2 versions of the module, an optional ‘implied’ keyword
 may be added in front of the list to indicate a compact encoding of
 the last object in the list. See Section 2.2 for details.

4.4.2.2. The table’s augments Statement for Table Indexing

 The table’s ‘augments’ statement, which is used to supply table
 indexing information of tables that augment a base table, gets one
 argument that specifies the identifier of the table to be augmented.
 Note that a table augmentation cannot itself be augmented. Anyhow, a
 base table may be augmented by multiple table augmentations.

 A table augmentation makes instances of subordinate columnar objects
 identified according to the index specification of the base table
 corresponding to the table named in the ‘augments’ statement.
 Further, instances of subordinate columnar objects of a table
 augmentation exist according to the same semantics as instances of
 subordinate columnar objects of the base table being augmented. As
 such, note that creation of a base table row implies the

Strauss & Schoenwaelder Experimental [Page 15]

RFC 3781 SMIng Mappings to SNMP May 2004

 correspondent creation of any table row augmentations. Table
 augmentations MUST NOT be used in table row creation and deletion
 operations.

4.4.2.3. The table’s extends Statement for Table Indexing

 The table’s ‘extends’ statement, which is used to supply table
 indexing information of tables that sparsely augment a base table,
 gets one argument that specifies the identifier of the table to be
 sparsely augmented. Note that a sparse table augmentation cannot
 itself be augmented. Anyhow, a base table may be augmented by
 multiple table augmentations, sparsely or not.

 A sparse table augmentation makes instances of subordinate columnar
 objects identified, if present, according to the index specification
 of the base table corresponding to the table named in the ‘extends’
 statement. Further, instances of subordinate columnar objects of a
 sparse table augmentation exist according to the semantics as
 instances of subordinate columnar objects of the base table and the
 (non-formal) rules that confine the sparse relationship. As such,
 note that creation of a sparse table row augmentation may be implied
 by the creation of a base table row as well as done by an explicit
 creation. However, if a base table row gets deleted, any dependent
 sparse table row augmentations get also deleted implicitly.

4.4.2.4. The table’s reorders Statement for Table Indexing

 The table’s ‘reorders’ statement is used to supply table indexing
 information of tables, that contain exactly the same index objects of
 a base table but in a different order. It gets at least two
 arguments. The first one specifies the identifier of the base table.
 The second one specifies a comma-separated list of exactly those
 object identifiers of the base table’s ‘index’ statement, but in the
 order to be used in this table. Note that a reordered table cannot
 itself be reordered. Anyhow, a base table may be used for multiple
 reordered tables.

 Under some circumstances, an optional ‘implied’ keyword may be added
 in front of the list to indicate a compact encoding of the last
 object in the list. See Section 2.2 for details.

 Instances of subordinate columnar objects of a reordered table exist
 according to the same semantics as instances of subordinate columnar
 objects of the base table. As such, note that creation of a base
 table row implies the correspondent creation of any related reordered
 table row. Reordered tables MUST NOT be used in table row creation
 and deletion operations.

Strauss & Schoenwaelder Experimental [Page 16]

RFC 3781 SMIng Mappings to SNMP May 2004

4.4.2.5. The table’s expands Statement for Table Indexing

 The table’s ‘expands’ statement is used to supply table indexing
 information of table expansions. Table expansions use exactly the
 same index objects of another table together with additional indexing
 objects. Thus, the ‘expands’ statement gets at least two arguments.
 The first one specifies the identifier of the base table. The second
 one specifies a comma-separated list of the additional object
 identifiers used for indexing. Note that an expanded table may
 itself be expanded, and base tables may be used for multiple table
 expansions.

 Under some circumstances, an optional ‘implied’ keyword may be added
 in front of the list to indicate a compact encoding of the last
 object in the list. See Section 2.2 for details.

4.4.3. The table’s create Statement

 The table’s ‘create’ statement, which need not be present, gets no
 argument. If the ‘create’ statement is present, table row creation
 (and deletion) is possible.

4.4.4. The table’s object Statement

 The table’s ‘object’ statement, which must be present at least once,
 makes this table contain a given columnar object. It gets two
 arguments: the name of the columnar object to be defined and a
 statement block that holds additional detailed information in an
 obligatory order.

4.4.4.1. The object’s implements Statement

 The ‘implements’ statement, which must be present, is used to specify
 a single leaf attribute of a class that is implemented by this
 columnar object. The type of this attribute must be a simple type,
 i.e., not a class.

4.4.4.2. The object’s subid Statement

 The ‘subid’ statement, which need not be present, is used to specify
 the sub-identifier that identifies the columnar object within this
 table, i.e., the object identifier of the columnar object is the
 concatenation of the values of this table’s oid statement and of this
 subid statement.

Strauss & Schoenwaelder Experimental [Page 17]

RFC 3781 SMIng Mappings to SNMP May 2004

 If this statement is omitted, the sub-identifier is the one of the
 previous object statement within this table plus 1. If the
 containing object statement is the first one within the containing
 table and the subid statement is omitted, the sub-identifier is 1.

4.4.4.3. The object’s status Statement

 The object’s ‘status’ statement, which need not be present, gets one
 argument which is used to specify whether this columnar object
 definition is current or historic. The value ‘current’ means that
 the definition is current and valid. The value ‘obsolete’ means the
 definition is obsolete and should not be implemented and/or can be
 removed if previously implemented. While the value ‘deprecated’ also
 indicates an obsolete definition, it permits new/continued
 implementation in order to foster interoperability with
 older/existing implementations.

 Columnar objects SHOULD NOT be defined as ‘current’ if the
 implemented attribute definition is ‘deprecated’ or ‘obsolete’.
 Similarly, they SHOULD NOT be defined as ‘deprecated’ if the
 implemented attribute is ‘obsolete’. Nevertheless, subsequent
 revisions of used class definitions cannot be avoided, but SHOULD be
 taken into account in subsequent revisions of the local module.

 Note that it is RECOMMENDED to omit the status statement which means
 that the status is inherited from the containing table statement.
 However, if the status of a columnar object varies from the
 containing table, it has to be expressed explicitly, e.g., if the
 implemented attribute has been deprecated or obsoleted.

4.4.4.4. The object’s description Statement

 The object’s ‘description’ statement, which need not be present, gets
 one argument which is used to specify a high-level textual
 description of this columnar object.

 Note that in contrast to other definitions this description statement
 is not mandatory and it is RECOMMENDED to omit it, if the object is
 fully described by the description of the implemented attribute.

4.4.4.5. The object’s reference Statement

 The object’s ‘reference’ statement, which need not be present, gets
 one argument which is used to specify a textual cross-reference to
 some other document, either another module which defines related
 definitions, or some other document which provides additional
 information relevant to this columnar object.

Strauss & Schoenwaelder Experimental [Page 18]

RFC 3781 SMIng Mappings to SNMP May 2004

 It is RECOMMENDED to omit this statement, if the object’s references
 are fully described by the implemented attribute.

4.4.5. The table’s status Statement

 The table’s ‘status’ statement, which must be present, gets one
 argument which is used to specify whether this table definition is
 current or historic. The value ‘current’ means that the definition
 is current and valid. The value ‘obsolete’ means the definition is
 obsolete and should not be implemented and/or can be removed if
 previously implemented. While the value ‘deprecated’ also indicates
 an obsolete definition, it permits new/continued implementation in
 order to foster interoperability with older/existing implementations.

4.4.6. The table’s description Statement

 The table’s ‘description’ statement, which must be present, gets one
 argument which is used to specify a high-level textual description of
 this table.

 It is RECOMMENDED to include all semantic definitions necessary for
 the implementation of this table.

4.4.7. The table’s reference Statement

 The table’s ‘reference’ statement, which need not be present, gets
 one argument which is used to specify a textual cross-reference to
 some other document, either another module which defines related
 definitions, or some other document which provides additional
 information relevant to this table statement.

4.4.8. Usage Example

 table ifTable {
 oid interfaces.2;
 index (ifIndex);
 object ifIndex { implements Interface.index; };
 object ifDescr { implements Interface.description; };
 // ...
 status current;
 description
 "This table implements the Interface class.";
 };

Strauss & Schoenwaelder Experimental [Page 19]

RFC 3781 SMIng Mappings to SNMP May 2004

4.5. The notification Statement

 The ‘notification’ statement is used to map events defined within
 classes to SNMP notifications. The ‘notification’ statement gets two
 arguments: a lower-case notification identifier and a statement block
 that holds detailed notification information in an obligatory order.

 See the ‘notificationStatement’ rule of the grammar (Section 5) for
 the formal syntax of the ‘notification’ statement.

4.5.1. The notification’s oid Statement

 The notification’s ‘oid’ statement, which must be present, gets one
 argument which specifies the object identifier value that is assigned
 to this notification.

4.5.2. The notification’s signals Statement

 The notification’s ‘signals’ statement, which must be present,
 denotes the event that is signaled by this notification. The
 statement gets two arguments: the event to be signaled (in the
 qualified form ‘Class.event’) and a statement block that holds
 detailed information on the objects transmitted with this
 notification in an obligatory order.

4.5.2.1. The signals’ object Statement

 The signals’ ‘object’ statement, which can be present zero, one or
 multiple times, makes a single instance of a class attribute be
 contained in this notification. It gets one argument: the specific
 class attribute. The namespace of attributes not specified by
 qualified names is the namespace of the event’s class specified in
 the ‘signals’ statement.

4.5.3. The notification’s status Statement

 The notification’s ‘status’ statement, which must be present, gets
 one argument which is used to specify whether this notification
 definition is current or historic. The value ‘current’ means that
 the definition is current and valid. The value ‘obsolete’ means the
 definition is obsolete and should not be implemented and/or can be
 removed if previously implemented. While the value ‘deprecated’ also
 indicates an obsolete definition, it permits new/continued
 implementation in order to foster interoperability with
 older/existing implementations.

Strauss & Schoenwaelder Experimental [Page 20]

RFC 3781 SMIng Mappings to SNMP May 2004

4.5.4. The notification’s description Statement

 The notification’s ‘description’ statement, which need not be
 present, gets one argument which is used to specify a high-level
 textual description of this notification.

 It is RECOMMENDED to include all semantics and purposes of this
 notification.

4.5.5. The notification’s reference Statement

 The notification’s ‘reference’ statement, which need not be present,
 gets one argument which is used to specify a textual cross-reference
 to some other document, either another module which defines related
 definitions, or some other document which provides additional
 information relevant to this notification statement.

4.5.6. Usage Example

 notification linkDown {
 oid snmpTraps.3;
 signals Interface.linkDown {
 object ifIndex;
 object ifAdminStatus;
 object ifOperStatus;
 };
 status current;
 description
 "This notification signals the linkDown event
 of the Interface class.";
 };

4.6. The group Statement

 The ‘group’ statement is used to define a group of arbitrary nodes in
 the object identifier tree. It gets two arguments: a lower-case
 group identifier and a statement block that holds detailed group
 information in an obligatory order.

 Note that the primary application of groups are compliance
 statements, although they might be referred in other formal or
 informal documents.

 See the ‘groupStatement’ rule of the grammar (Section 5) for the
 formal syntax of the ‘group’ statement.

Strauss & Schoenwaelder Experimental [Page 21]

RFC 3781 SMIng Mappings to SNMP May 2004

4.6.1. The group’s oid Statement

 The group’s ‘oid’ statement, which must be present, gets one argument
 which specifies the object identifier value that is assigned to this
 group.

4.6.2. The group’s members Statement

 The group’s ‘members’ statement, which must be present, gets one
 argument which specifies the list of nodes by their identifiers to be
 contained in this group. The list of nodes has to be comma-separated
 and enclosed in parenthesis.

4.6.3. The group’s status Statement

 The group’s ‘status’ statement, which must be present, gets one
 argument which is used to specify whether this group definition is
 current or historic. The value ‘current’ means that the definition
 is current and valid. The value ‘obsolete’ means the definition is
 obsolete and the group should no longer be used. While the value
 ‘deprecated’ also indicates an obsolete definition, it permits
 new/continued use of this group.

4.6.4. The group’s description Statement

 The group’s ‘description’ statement, which must be present, gets one
 argument which is used to specify a high-level textual description of
 this group. It is RECOMMENDED to include any relation to other
 groups.

4.6.5. The group’s reference Statement

 The group’s ‘reference’ statement, which need not be present, gets
 one argument which is used to specify a textual cross-reference to
 some other document, either another module which defines related
 groups, or some other document which provides additional information
 relevant to this group.

4.6.6. Usage Example

 The snmpGroup, originally defined in [RFC3418], may be described as
 follows:

 group snmpGroup {
 oid snmpMIBGroups.8;
 objects (snmpInPkts, snmpInBadVersions,
 snmpInASNParseErrs,
 snmpSilentDrops, snmpProxyDrops,

Strauss & Schoenwaelder Experimental [Page 22]

RFC 3781 SMIng Mappings to SNMP May 2004

 snmpEnableAuthenTraps);
 status current;
 description
 "A collection of objects providing basic
 instrumentation and control of an agent.";
 };

4.7. The compliance Statement

 The ‘compliance’ statement is used to define a set of conformance
 requirements, named a ‘compliance statement’. It gets two arguments:
 a lower-case compliance identifier and a statement block that holds
 detailed compliance information in an obligatory order.

 See the ‘complianceStatement’ rule of the grammar (Section 5) for the
 formal syntax of the ‘compliance’ statement.

4.7.1. The compliance’s oid Statement

 The compliance’s ‘oid’ statement, which must be present, gets one
 argument which specifies the object identifier value that is assigned
 to this compliance statement.

4.7.2. The compliance’s status Statement

 The compliance’s ‘status’ statement, which must be present, gets one
 argument which is used to specify whether this compliance statement
 is current or historic. The value ‘current’ means that the
 definition is current and valid. The value ‘obsolete’ means the
 definition is obsolete and no longer specifies a valid definition of
 conformance. While the value ‘deprecated’ also indicates an obsolete
 definition, it permits new/continued use of the compliance
 specification.

4.7.3. The compliance’s description Statement

 The compliance’s ‘description’ statement, which must be present, gets
 one argument which is used to specify a high-level textual
 description of this compliance statement.

4.7.4. The compliance’s reference Statement

 The compliance’s ‘reference’ statement, which need not be present,
 gets one argument which is used to specify a textual cross-reference
 to some other document, either another module which defines related
 compliance statements, or some other document which provides
 additional information relevant to this compliance statement.

Strauss & Schoenwaelder Experimental [Page 23]

RFC 3781 SMIng Mappings to SNMP May 2004

4.7.5. The compliance’s mandatory Statement

 The compliance’s ‘mandatory’ statement, which need not be present,
 gets one argument which is used to specify a comma-separated list of
 one or more groups (Section 4.6) of objects and/or notifications
 enclosed in parenthesis. These groups are unconditionally mandatory
 for implementation.

 If an agent claims compliance to a MIB module then it must implement
 each and every object and notification within each group listed in
 the ‘mandatory’ statement(s) of the compliance statement(s) of that
 module.

4.7.6. The compliance’s optional Statement

 The compliance’s ‘optional’ statement, which need not be present, is
 repeatedly used to name each group which is conditionally mandatory
 for compliance to the compliance statement. It can also be used to
 name unconditionally optional groups. A group named in an ‘optional’
 statement MUST be absent from the correspondent ‘mandatory’
 statement. The ‘optional’ statement gets two arguments: a lower-case
 group identifier and a statement block that holds detailed compliance
 information on that group.

 Conditionally mandatory groups include those groups which are
 mandatory only if a particular protocol is implemented, or only if
 another group is implemented. The ‘description’ statement specifies
 the conditions under which the group is conditionally mandatory.

 A group which is named in neither a ‘mandatory’ statement nor an
 ‘optional’ statement, is unconditionally optional for compliance to
 the module.

 See the ‘optionalStatement’ rule of the grammar (Section 5) for the
 formal syntax of the ‘optional’ statement.

4.7.6.1. The optional’s description Statement

 The optional’s ‘description’ statement, which must be present, gets
 one argument which is used to specify a high-level textual
 description of the conditions under which this group is conditionally
 mandatory or unconditionally optional.

4.7.7. The compliance’s refine Statement

 The compliance’s ‘refine’ statement, which need not be present, is
 repeatedly used to specify each object for which compliance has a
 refined requirement with respect to the module definition. The

Strauss & Schoenwaelder Experimental [Page 24]

RFC 3781 SMIng Mappings to SNMP May 2004

 object must be present in one of the conformance groups named in the
 correspondent ‘mandatory’ or ‘optional’ statements. The ‘refine’
 statement gets two arguments: a lower-case identifier of a scalar or
 columnar object and a statement block that holds detailed refinement
 information on that object.

 See the ‘refineStatement’ rule of the grammar (Section 5) for the
 formal syntax of the ‘refine’ statement.

4.7.7.1. The refine’s type Statement

 The refine’s ‘type’ statement, which need not be present, gets one
 argument that is used to provide a refined type for the correspondent
 object. Type restrictions may be applied by appending subtyping
 information according to the rules of the base type. See [RFC3780]
 for SMIng base types and their type restrictions. In case of
 enumeration or bitset types the order of named numbers is not
 significant.

 Note that if a ‘type’ and a ‘writetype’ statement are both present
 then this type only applies when instances of the correspondent
 object are read.

4.7.7.2. The refine’s writetype Statement

 The refine’s ‘writetype’ statement, which need not be present, gets
 one argument that is used to provide a refined type for the
 correspondent object, only when instances of that object are written.
 Type restrictions may be applied by appending subtyping information
 according to the rules of the base type. See [RFC3780] for SMIng
 base types and their type restrictions. In case of enumeration or
 bitset types the order of named numbers is not significant.

4.7.7.3. The refine’s access Statement

 The refine’s ‘access’ statement, which need not be present, gets one
 argument that is used to specify the minimal level of access that the
 correspondent object must implement in the sense of its original
 ‘access’ statement. Hence, the refine’s ‘access’ statement MUST NOT
 specify a greater level of access than is specified in the
 correspondent object definition.

 An implementation is compliant if the level of access it provides is
 greater or equal to the minimal level in the refine’s ‘access’
 statement and less or equal to the maximal level in the object’s
 ‘access’ statement.

Strauss & Schoenwaelder Experimental [Page 25]

RFC 3781 SMIng Mappings to SNMP May 2004

4.7.7.4. The refine’s description Statement

 The refine’s ‘description’ statement, which must be present, gets one
 argument which is used to specify a high-level textual description of
 the refined compliance requirement.

4.7.8. Usage Example

 The compliance statement contained in the SNMPv2-MIB [RFC3418],
 converted to SMIng:

 compliance snmpBasicComplianceRev2 {
 oid snmpMIBCompliances.3;
 status current;
 description
 "The compliance statement for SNMP entities which
 implement this MIB module.";

 mandatory (snmpGroup, snmpSetGroup, systemGroup,
 snmpBasicNotificationsGroup);

 optional snmpCommunityGroup {
 description
 "This group is mandatory for SNMP entities which
 support community-based authentication.";
 };
 optional snmpWarmStartNotificationGroup {
 description
 "This group is mandatory for an SNMP entity which
 supports command responder applications, and is
 able to reinitialize itself such that its
 configuration is unaltered.";
 };
 };

5. NMRG-SMING-SNMP-EXT

 The grammar of the snmp statement (including all its contained
 statements) conforms to the Augmented Backus-Naur Form (ABNF)
 [RFC2234]. It is included in the abnf statement of the snmp SMIng
 extension definition in the NMRG-SMING-SNMP-EXT module below.

 module NMRG-SMING-SNMP-EXT {

 organization "IRTF Network Management Research Group (NMRG)";

 contact "IRTF Network Management Research Group (NMRG)
 http://www.ibr.cs.tu-bs.de/projects/nmrg/

Strauss & Schoenwaelder Experimental [Page 26]

RFC 3781 SMIng Mappings to SNMP May 2004

 Frank Strauss
 TU Braunschweig
 Muehlenpfordtstrasse 23
 38106 Braunschweig
 Germany
 Phone: +49 531 391 3266
 EMail: strauss@ibr.cs.tu-bs.de

 Juergen Schoenwaelder
 International University Bremen
 P.O. Box 750 561
 28725 Bremen
 Germany
 Phone: +49 421 200 3587
 EMail: j.schoenwaelder@iu-bremen.de";

 description "This module defines a SMIng extension to define
 the mapping of SMIng definitions of class and
 their attributes and events to SNMP compatible
 definitions of modules, node, scalars, tables,
 and notifications, and additional information on
 module compliances.

 Copyright (C) The Internet Society (2004).
 All Rights Reserved.
 This version of this module is part of
 RFC 3781, see the RFC itself for full
 legal notices.";

 revision {
 date "2003-12-16";
 description "Initial revision, published as RFC 3781.";
 };

 //
 //
 //

 extension snmp {

 status current;
 description
 "The snmp statement maps SMIng definitions to SNMP
 conformant definitions.";
 abnf "
 ;;
 ;; sming-snmp.abnf -- Grammar of SNMP mappings in ABNF
 ;; notation (RFC 2234).

Strauss & Schoenwaelder Experimental [Page 27]

RFC 3781 SMIng Mappings to SNMP May 2004

 ;;
 ;; @(#) $Id: sming-snmp.abnf,v 1.14 2003/10/23 19:31:55 strauss Exp $
 ;;
 ;; Copyright (C) The Internet Society (2004). All Rights Reserved.
 ;;

 ;;
 ;; Statement rules.
 ;;

 snmpStatement = snmpKeyword *1(sep lcIdentifier) optsep
 \"{\" stmtsep
 *1(oidStatement stmtsep)
 *(nodeStatement stmtsep)
 *(scalarsStatement stmtsep)
 *(tableStatement stmtsep)
 *(notificationStatement stmtsep)
 *(groupStatement stmtsep)
 *(complianceStatement stmtsep)
 statusStatement stmtsep
 descriptionStatement stmtsep
 *1(referenceStatement stmtsep)
 \"}\" optsep \";\"

 nodeStatement = nodeKeyword sep lcIdentifier optsep
 \"{\" stmtsep
 oidStatement stmtsep
 *1(representsStatement stmtsep)
 statusStatement stmtsep
 *1(descriptionStatement stmtsep)
 *1(referenceStatement stmtsep)
 \"}\" optsep \";\"

 representsStatement = representsKeyword sep
 qucIdentifier optsep \";\"

 scalarsStatement = scalarsKeyword sep lcIdentifier optsep
 \"{\" stmtsep
 oidStatement stmtsep
 1*(objectStatement stmtsep)
 statusStatement stmtsep
 descriptionStatement stmtsep
 *1(referenceStatement stmtsep)
 \"}\" optsep \";\"

 tableStatement = tableKeyword sep lcIdentifier optsep
 \"{\" stmtsep
 oidStatement stmtsep

Strauss & Schoenwaelder Experimental [Page 28]

RFC 3781 SMIng Mappings to SNMP May 2004

 anyIndexStatement stmtsep
 *1(createStatement stmtsep)
 1*(objectStatement stmtsep)
 statusStatement stmtsep
 descriptionStatement stmtsep
 *1(referenceStatement stmtsep)
 \"}\" optsep \";\"

 objectStatement = objectKeyword sep lcIdentifier optsep
 \"{\" stmtsep
 implementsStatement stmtsep
 *1(subidStatement stmtsep)
 *1(statusStatement stmtsep)
 *1(descriptionStatement stmtsep)
 *1(referenceStatement stmtsep)
 \"}\" optsep \";\"

 implementsStatement = implementsKeyword sep qcattrIdentifier
 optsep \";\"

 notificationStatement = notificationKeyword sep lcIdentifier
 optsep \"{\" stmtsep
 oidStatement stmtsep
 signalsStatement stmtsep
 statusStatement stmtsep
 descriptionStatement stmtsep
 *1(referenceStatement stmtsep)
 \"}\" optsep \";\"

 signalsStatement = signalsKeyword sep qattrIdentifier
 optsep \"{\" stmtsep
 *(signalsObjectStatement)
 \"}\" optsep \";\"

 signalsObjectStatement = objectKeyword sep
 qattrIdentifier optsep \";\"

 groupStatement = groupKeyword sep lcIdentifier optsep
 \"{\" stmtsep
 oidStatement stmtsep
 membersStatement stmtsep
 statusStatement stmtsep
 descriptionStatement stmtsep
 *1(referenceStatement stmtsep)
 \"}\" optsep \";\"

 complianceStatement = complianceKeyword sep lcIdentifier optsep
 \"{\" stmtsep

Strauss & Schoenwaelder Experimental [Page 29]

RFC 3781 SMIng Mappings to SNMP May 2004

 oidStatement stmtsep
 statusStatement stmtsep
 descriptionStatement stmtsep
 *1(referenceStatement stmtsep)
 *1(mandatoryStatement stmtsep)
 *(optionalStatement stmtsep)
 *(refineStatement stmtsep)
 \"}\" optsep \";\"

 anyIndexStatement = indexStatement /
 augmentsStatement /
 reordersStatement /
 extendsStatement /
 expandsStatement

 indexStatement = indexKeyword *1(sep impliedKeyword) optsep
 \"(\" optsep qlcIdentifierList
 optsep \")\" optsep \";\"

 augmentsStatement = augmentsKeyword sep qlcIdentifier
 optsep \";\"

 reordersStatement = reordersKeyword sep qlcIdentifier
 *1(sep impliedKeyword)
 optsep \"(\" optsep
 qlcIdentifierList optsep \")\"
 optsep \";\"

 extendsStatement = extendsKeyword sep qlcIdentifier optsep \";\"

 expandsStatement = expandsKeyword sep qlcIdentifier
 *1(sep impliedKeyword)
 optsep \"(\" optsep
 qlcIdentifierList optsep \")\"
 optsep \";\"

 createStatement = createKeyword optsep \";\"

 membersStatement = membersKeyword optsep \"(\" optsep
 qlcIdentifierList optsep
 \")\" optsep \";\"

 mandatoryStatement = mandatoryKeyword optsep \"(\" optsep
 qlcIdentifierList optsep
 \")\" optsep \";\"

 optionalStatement = optionalKeyword sep qlcIdentifier optsep
 \"{\" descriptionStatement stmtsep

Strauss & Schoenwaelder Experimental [Page 30]

RFC 3781 SMIng Mappings to SNMP May 2004

 \"}\" optsep \";\"

 refineStatement = refineKeyword sep qlcIdentifier optsep \"{\"
 *1(typeStatement stmtsep)
 *1(writetypeStatement stmtsep)
 *1(accessStatement stmtsep)
 descriptionStatement stmtsep
 \"}\" optsep \";\"

 typeStatement = typeKeyword sep
 (refinedBaseType / refinedType)
 optsep \";\"

 writetypeStatement = writetypeKeyword sep
 (refinedBaseType / refinedType)
 optsep \";\"

 oidStatement = oidKeyword sep objectIdentifier optsep \";\"

 subidStatement = subidKeyword sep subid optsep \";\"

 ;;
 ;; Statement keywords.
 ;;

 snmpKeyword = %x73 %x6E %x6D %x70
 nodeKeyword = %x6E %x6F %x64 %x65
 representsKeyword = %x72 %x65 %x70 %x72 %x65 %x73 %x65 %x6E %x74
 %x73
 scalarsKeyword = %x73 %x63 %x61 %x6C %x61 %x72 %x73
 tableKeyword = %x74 %x61 %x62 %x6C %x65
 implementsKeyword = %x69 %x6D %x70 %x6C %x65 %x6D %x65 %x6E %x74
 %x73
 subidKeyword = %x73 %x75 %x62 %x69 %x64
 objectKeyword = %x6F %x62 %x6A %x65 %x63 %x74
 notificationKeyword = %x6E %x6F %x74 %x69 %x66 %x69 %x63 %x61 %x74
 %x69 %x6F %x6E
 signalsKeyword = %x73 %x69 %x67 %x6E %x61 %x6C %x73
 oidKeyword = %x6F %x69 %x64
 groupKeyword = %x67 %x72 %x6F %x75 %x70
 complianceKeyword = %x63 %x6F %x6D %x70 %x6C %x69 %x61 %x6E %x63
 %x65
 impliedKeyword = %x69 %x6D %x70 %x6C %x69 %x65 %x64
 indexKeyword = %x69 %x6E %x64 %x65 %x78
 augmentsKeyword = %x61 %x75 %x67 %x6D %x65 %x6E %x74 %x73
 reordersKeyword = %x72 %x65 %x6F %x72 %x64 %x65 %x72 %x73
 extendsKeyword = %x65 %x78 %x74 %x65 %x6E %x64 %x73
 expandsKeyword = %x65 %x78 %x70 %x61 %x6E %x64 %x73

Strauss & Schoenwaelder Experimental [Page 31]

RFC 3781 SMIng Mappings to SNMP May 2004

 createKeyword = %x63 %x72 %x65 %x61 %x74 %x65
 membersKeyword = %x6D %x65 %x6D %x62 %x65 %x72 %x73
 mandatoryKeyword = %x6D %x61 %x6E %x64 %x61 %x74 %x6F %x72 %x79
 optionalKeyword = %x6F %x70 %x74 %x69 %x6F %x6E %x61 %x6C
 refineKeyword = %x72 %x65 %x66 %x69 %x6E %x65
 writetypeKeyword = %x77 %x72 %x69 %x74 %x65 %x74 %x79 %x70 %x65

 ;; End of ABNF
 ";
 };
 //
 //
 //

 snmp {

 node ccitt { oid 0; };

 node zeroDotZero {
 oid 0.0;
 description "A null value used for pointers.";
 };

 node iso { oid 1; };
 node org { oid iso.3; };
 node dod { oid org.6; };
 node internet { oid dod.1; };
 node directory { oid internet.1; };
 node mgmt { oid internet.2; };
 node mib-2 { oid mgmt.1; };
 node transmission { oid mib-2.10; };
 node experimental { oid internet.3; };
 node private { oid internet.4; };
 node enterprises { oid private.1; };
 node security { oid internet.5; };
 node snmpV2 { oid internet.6; };
 node snmpDomains { oid snmpV2.1; };
 node snmpProxys { oid snmpV2.2; };
 node snmpModules { oid snmpV2.3; };

 node joint-iso-ccitt { oid 2; };

 status current;
 description
 "This set of nodes defines the core object
 identifier hierarchy";
 reference
 "RFC 2578, Section 2.";

Strauss & Schoenwaelder Experimental [Page 32]

RFC 3781 SMIng Mappings to SNMP May 2004

 };

 };

6. NMRG-SMING-SNMP

 The module NMRG-SMING-SNMP specified below defines derived types that
 are specific to the SNMP mapping.

module NMRG-SMING-SNMP {

 organization "IRTF Network Management Research Group (NMRG)";

 contact "IRTF Network Management Research Group (NMRG)
 http://www.ibr.cs.tu-bs.de/projects/nmrg/

 Frank Strauss
 TU Braunschweig
 Muehlenpfordtstrasse 23
 38106 Braunschweig
 Germany
 Phone: +49 531 391 3266
 EMail: strauss@ibr.cs.tu-bs.de

 Juergen Schoenwaelder
 International University Bremen
 P.O. Box 750 561
 28725 Bremen
 Germany
 Phone: +49 421 200 3587
 EMail: j.schoenwaelder@iu-bremen.de";

 description "Core type definitions for the SMIng SNMP mapping.
 These definitions are based on RFC 2579 definitions
 that are specific to the SNMP protocol and its
 naming system.

 Copyright (C) The Internet Society (2004).
 All Rights Reserved.
 This version of this module is part of
 RFC 3781, see the RFC itself for full
 legal notices.";

 revision {
 date "2003-12-16";
 description "Initial version, published as RFC 3781.";
 };

Strauss & Schoenwaelder Experimental [Page 33]

RFC 3781 SMIng Mappings to SNMP May 2004

 typedef TestAndIncr {
 type Integer32 (0..2147483647);
 description
 "Represents integer-valued information used for atomic
 operations. When the management protocol is used to
 specify that an object instance having this type is to
 be modified, the new value supplied via the management
 protocol must precisely match the value presently held by
 the instance. If not, the management protocol set
 operation fails with an error of ‘inconsistentValue’.
 Otherwise, if the current value is the maximum value of
 2^31-1 (2147483647 decimal), then the value held by the
 instance is wrapped to zero; otherwise, the value held by
 the instance is incremented by one. (Note that
 regardless of whether the management protocol set
 operation succeeds, the variable-binding in the request
 and response PDUs are identical.)

 The value of the SNMP access clause for objects having
 this type has to be ‘readwrite’. When an instance of a
 columnar object having this type is created, any value
 may be supplied via the management protocol.

 When the network management portion of the system is re-
 initialized, the value of every object instance having
 this type must either be incremented from its value prior
 to the re-initialization, or (if the value prior to the
 re-initialization is unknown) be set to a
 pseudo-randomly generated value."; };

 typedef AutonomousType {
 type Pointer;
 description
 "Represents an independently extensible type
 identification value. It may, for example, indicate a
 particular OID sub-tree with further MIB definitions, or
 define a particular type of protocol or hardware.";
 };

 typedef VariablePointer {
 type Pointer;
 description
 "A pointer to a specific object instance. For example,
 sysContact.0 or ifInOctets.3.";
 };

 typedef RowPointer {
 type Pointer;

Strauss & Schoenwaelder Experimental [Page 34]

RFC 3781 SMIng Mappings to SNMP May 2004

 description
 "Represents a pointer to a conceptual row. The value is
 the name of the instance of the first accessible columnar
 object in the conceptual row.

 For example, ifIndex.3 would point to the 3rd row in the
 ifTable (note that if ifIndex were not-accessible, then
 ifDescr.3 would be used instead).";
 };

 typedef RowStatus {
 type Enumeration (active(1), notInService(2),
 notReady(3), createAndGo(4),
 createAndWait(5), destroy(6));
 description
 "The RowStatus type is used to manage the creation and
 deletion of conceptual rows, and is used as the type for the
 row status column of a conceptual row.

 The status column has six defined values:

 - ‘active’, which indicates that the conceptual row is
 available for use by the managed device;

 - ‘notInService’, which indicates that the conceptual
 row exists in the agent, but is unavailable for use by
 the managed device (see NOTE below);

 - ‘notReady’, which indicates that the conceptual row
 exists in the agent, but is missing information
 necessary in order to be available for use by the
 managed device;

 - ‘createAndGo’, which is supplied by a management
 station wishing to create a new instance of a
 conceptual row and to have its status automatically set
 to active, making it available for use by the managed
 device;

 - ‘createAndWait’, which is supplied by a management
 station wishing to create a new instance of a
 conceptual row (but not make it available for use by
 the managed device); and,

 - ‘destroy’, which is supplied by a management station
 wishing to delete all of the instances associated with
 an existing conceptual row.

Strauss & Schoenwaelder Experimental [Page 35]

RFC 3781 SMIng Mappings to SNMP May 2004

 Whereas five of the six values (all except ‘notReady’) may
 be specified in a management protocol set operation, only
 three values will be returned in response to a management
 protocol retrieval operation: ‘notReady’, ‘notInService’ or
 ‘active’. That is, when queried, an existing conceptual row
 has only three states: it is either available for use by the
 managed device (the status column has value ‘active’); it is
 not available for use by the managed device, though the
 agent has sufficient information to make it so (the status
 column has value ‘notInService’); or, it is not available
 for use by the managed device, and an attempt to make it so
 would fail because the agent has insufficient information
 (the state column has value ‘notReady’).

 NOTE WELL

 This textual convention may be used for a MIB table,
 irrespective of whether the values of that table’s
 conceptual rows are able to be modified while it is
 active, or whether its conceptual rows must be taken
 out of service in order to be modified. That is, it is
 the responsibility of the DESCRIPTION clause of the
 status column to specify whether the status column must
 not be ‘active’ in order for the value of some other
 column of the same conceptual row to be modified. If
 such a specification is made, affected columns may be
 changed by an SNMP set PDU if the RowStatus would not
 be equal to ‘active’ either immediately before or after
 processing the PDU. In other words, if the PDU also
 contained a varbind that would change the RowStatus
 value, the column in question may be changed if the
 RowStatus was not equal to ‘active’ as the PDU was
 received, or if the varbind sets the status to a value
 other than ’active’.

 Also note that whenever any elements of a row exist, the
 RowStatus column must also exist.

 To summarize the effect of having a conceptual row with a
 column having a type of RowStatus, consider the following
 state diagram:

Strauss & Schoenwaelder Experimental [Page 36]

RFC 3781 SMIng Mappings to SNMP May 2004

 STATE
 +--------------+-----------+-------------+-------------
 | A | B | C | D
 | |status col.|status column|
 |status column | is | is |status column
 ACTION |does not exist| notReady | notInService| is active
--------------+--------------+-----------+-------------+-------------
set status |noError ->D|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndGo |inconsistent- | | |
 | Value| | |
--------------+--------------+-----------+-------------+-------------
set status |noError see 1|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndWait |wrongValue | | |
--------------+--------------+-----------+-------------+-------------
set status |inconsistent- |inconsist- |noError |noError
column to | Value| entValue| |
active | | | |
 | | or | |
 | | | |
 | |see 2 ->D|see 8 ->D| ->D
--------------+--------------+-----------+-------------+-------------
set status |inconsistent- |inconsist- |noError |noError ->C
column to | Value| entValue| |
notInService | | | |
 | | or | | or
 | | | |
 | |see 3 ->C| ->C|see 6
--------------+--------------+-----------+-------------+-------------
set status |noError |noError |noError |noError ->A
column to | | | | or
destroy | ->A| ->A| ->A|see 7
--------------+--------------+-----------+-------------+-------------
set any other |see 4 |noError |noError |see 5
column to some| | | |
value | | see 1| ->C| ->D
--------------+--------------+-----------+-------------+-------------

 (1) go to B or C, depending on information available to the
 agent.

 (2) if other variable bindings included in the same PDU,
 provide values for all columns which are missing but
 required, then return noError and goto D.

Strauss & Schoenwaelder Experimental [Page 37]

RFC 3781 SMIng Mappings to SNMP May 2004

 (3) if other variable bindings included in the same PDU,
 provide values for all columns which are missing but
 required, then return noError and goto C.

 (4) at the discretion of the agent, the return value may be
 either:

 inconsistentName: because the agent does not choose to
 create such an instance when the corresponding
 RowStatus instance does not exist, or

 inconsistentValue: if the supplied value is
 inconsistent with the state of some other MIB object’s
 value, or

 noError: because the agent chooses to create the
 instance.

 If noError is returned, then the instance of the status
 column must also be created, and the new state is B or C,
 depending on the information available to the agent. If
 inconsistentName or inconsistentValue is returned, the row
 remains in state A.

 (5) depending on the MIB definition for the column/table,
 either noError or inconsistentValue may be returned.

 (6) the return value can indicate one of the following
 errors:

 wrongValue: because the agent does not support
 createAndWait, or

 inconsistentValue: because the agent is unable to take
 the row out of service at this time, perhaps because it
 is in use and cannot be de-activated.

 (7) the return value can indicate the following error:

 inconsistentValue: because the agent is unable to
 remove the row at this time, perhaps because it is in
 use and cannot be de-activated.

 NOTE: Other processing of the set request may result in a
 response other than noError being returned, e.g.,
 wrongValue, noCreation, etc.

Strauss & Schoenwaelder Experimental [Page 38]

RFC 3781 SMIng Mappings to SNMP May 2004

 Conceptual Row Creation

 There are four potential interactions when creating a
 conceptual row: selecting an instance-identifier which is
 not in use; creating the conceptual row; initializing any
 objects for which the agent does not supply a default; and,
 making the conceptual row available for use by the managed
 device.

 Interaction 1: Selecting an Instance-Identifier

 The algorithm used to select an instance-identifier varies
 for each conceptual row. In some cases, the instance-
 identifier is semantically significant, e.g., the
 destination address of a route, and a management station
 selects the instance-identifier according to the semantics.

 In other cases, the instance-identifier is used solely to
 distinguish conceptual rows, and a management station
 without specific knowledge of the conceptual row might
 examine the instances present in order to determine an
 unused instance-identifier. (This approach may be used, but
 it is often highly sub-optimal; however, it is also a
 questionable practice for a naive management station to
 attempt conceptual row creation.)

 Alternately, the MIB module which defines the conceptual row
 might provide one or more objects which provide assistance
 in determining an unused instance-identifier. For example,
 if the conceptual row is indexed by an integer-value, then
 an object having an integer-valued SYNTAX clause might be
 defined for such a purpose, allowing a management station to
 issue a management protocol retrieval operation. In order
 to avoid unnecessary collisions between competing management
 stations, ‘adjacent’ retrievals of this object should be
 different.

 Finally, the management station could select a pseudo-random
 number to use as the index. In the event that this index
 was already in use and an inconsistentValue was returned in
 response to the management protocol set operation, the
 management station should simply select a new pseudo-random
 number and retry the operation.

 A MIB designer should choose between the two latter
 algorithms based on the size of the table (and therefore the
 efficiency of each algorithm). For tables in which a large
 number of entries are expected, it is recommended that a MIB

Strauss & Schoenwaelder Experimental [Page 39]

RFC 3781 SMIng Mappings to SNMP May 2004

 object be defined that returns an acceptable index for
 creation. For tables with small numbers of entries, it is
 recommended that the latter pseudo-random index mechanism be
 used.

 Interaction 2: Creating the Conceptual Row

 Once an unused instance-identifier has been selected, the
 management station determines if it wishes to create and
 activate the conceptual row in one transaction or in a
 negotiated set of interactions.

 Interaction 2a: Creating and Activating the Conceptual Row

 The management station must first determine the column
 requirements, i.e., it must determine those columns for
 which it must or must not provide values. Depending on the
 complexity of the table and the management station’s
 knowledge of the agent’s capabilities, this determination
 can be made locally by the management station. Alternately,
 the management station issues a management protocol get
 operation to examine all columns in the conceptual row that
 it wishes to create. In response, for each column, there
 are three possible outcomes:

 - a value is returned, indicating that some other
 management station has already created this conceptual
 row. We return to interaction 1.

 - the exception ‘noSuchInstance’ is returned,
 indicating that the agent implements the object-type
 associated with this column, and that this column in at
 least one conceptual row would be accessible in the MIB
 view used by the retrieval were it to exist. For those
 columns to which the agent provides read-create access,
 the ‘noSuchInstance’ exception tells the management
 station that it should supply a value for this column
 when the conceptual row is to be created.

 - the exception ‘noSuchObject’ is returned, indicating
 that the agent does not implement the object-type
 associated with this column or that there is no
 conceptual row for which this column would be
 accessible in the MIB view used by the retrieval. As
 such, the management station can not issue any
 management protocol set operations to create an
 instance of this column.

Strauss & Schoenwaelder Experimental [Page 40]

RFC 3781 SMIng Mappings to SNMP May 2004

 Once the column requirements have been determined, a
 management protocol set operation is accordingly issued.
 This operation also sets the new instance of the status
 column to ‘createAndGo’.

 When the agent processes the set operation, it verifies that
 it has sufficient information to make the conceptual row
 available for use by the managed device. The information
 available to the agent is provided by two sources: the
 management protocol set operation which creates the
 conceptual row, and, implementation-specific defaults
 supplied by the agent (note that an agent must provide
 implementation-specific defaults for at least those objects
 which it implements as read-only). If there is sufficient
 information available, then the conceptual row is created, a
 ‘noError’ response is returned, the status column is set to
 ‘active’, and no further interactions are necessary (i.e.,
 interactions 3 and 4 are skipped). If there is insufficient
 information, then the conceptual row is not created, and the
 set operation fails with an error of ‘inconsistentValue’.
 On this error, the management station can issue a management
 protocol retrieval operation to determine if this was
 because it failed to specify a value for a required column,
 or, because the selected instance of the status column
 already existed. In the latter case, we return to
 interaction 1. In the former case, the management station
 can re-issue the set operation with the additional
 information, or begin interaction 2 again using
 ‘createAndWait’ in order to negotiate creation of the
 conceptual row.

 NOTE WELL

 Regardless of the method used to determine the column
 requirements, it is possible that the management
 station might deem a column necessary when, in fact,
 the agent will not allow that particular columnar
 instance to be created or written. In this case, the
 management protocol set operation will fail with an
 error such as ‘noCreation’ or ‘notWritable’. In this
 case, the management station decides whether it needs
 to be able to set a value for that particular columnar
 instance. If not, the management station re-issues the
 management protocol set operation, but without setting

Strauss & Schoenwaelder Experimental [Page 41]

RFC 3781 SMIng Mappings to SNMP May 2004

 a value for that particular columnar instance;
 otherwise, the management station aborts the row
 creation algorithm.

 Interaction 2b: Negotiating the Creation of the Conceptual
 Row

 The management station issues a management protocol set
 operation which sets the desired instance of the status
 column to ‘createAndWait’. If the agent is unwilling to
 process a request of this sort, the set operation fails with
 an error of ‘wrongValue’. (As a consequence, such an agent
 must be prepared to accept a single management protocol set
 operation, i.e., interaction 2a above, containing all of the
 columns indicated by its column requirements.) Otherwise,
 the conceptual row is created, a ‘noError’ response is
 returned, and the status column is immediately set to either
 ‘notInService’ or ‘notReady’, depending on whether it has
 sufficient information to make the conceptual row available
 for use by the managed device. If there is sufficient
 information available, then the status column is set to
 ‘notInService’; otherwise, if there is insufficient
 information, then the status column is set to ‘notReady’.
 Regardless, we proceed to interaction 3.

 Interaction 3: Initializing non-defaulted Objects

 The management station must now determine the column
 requirements. It issues a management protocol get operation
 to examine all columns in the created conceptual row. In
 the response, for each column, there are three possible
 outcomes:

 - a value is returned, indicating that the agent
 implements the object-type associated with this column
 and had sufficient information to provide a value. For
 those columns to which the agent provides read-create
 access (and for which the agent allows their values to
 be changed after their creation), a value return tells
 the management station that it may issue additional
 management protocol set operations, if it desires, in
 order to change the value associated with this column.

 - the exception ‘noSuchInstance’ is returned,
 indicating that the agent implements the object-type
 associated with this column, and that this column in at
 least one conceptual row would be accessible in the MIB
 view used by the retrieval were it to exist. However,

Strauss & Schoenwaelder Experimental [Page 42]

RFC 3781 SMIng Mappings to SNMP May 2004

 the agent does not have sufficient information to
 provide a value, and until a value is provided, the
 conceptual row may not be made available for use by the
 managed device. For those columns to which the agent
 provides read-create access, the ‘noSuchInstance’
 exception tells the management station that it must
 issue additional management protocol set operations, in
 order to provide a value associated with this column.

 - the exception ‘noSuchObject’ is returned, indicating
 that the agent does not implement the object-type
 associated with this column or that there is no
 conceptual row for which this column would be
 accessible in the MIB view used by the retrieval. As
 such, the management station can not issue any
 management protocol set operations to create an
 instance of this column.

 If the value associated with the status column is
 ‘notReady’, then the management station must first deal with
 all ‘noSuchInstance’ columns, if any. Having done so, the
 value of the status column becomes ‘notInService’, and we
 proceed to interaction 4.

 Interaction 4: Making the Conceptual Row Available

 Once the management station is satisfied with the values
 associated with the columns of the conceptual row, it issues
 a management protocol set operation to set the status column
 to ‘active’. If the agent has sufficient information to
 make the conceptual row available for use by the managed
 device, the management protocol set operation succeeds (a
 ‘noError’ response is returned). Otherwise, the management
 protocol set operation fails with an error of
 ‘inconsistentValue’.

 NOTE WELL

 A conceptual row having a status column with value
 ‘notInService’ or ‘notReady’ is unavailable to the
 managed device. As such, it is possible for the
 managed device to create its own instances during the
 time between the management protocol set operation
 which sets the status column to ‘createAndWait’ and the
 management protocol set operation which sets the status
 column to ‘active’. In this case, when the management
 protocol set operation is issued to set the status
 column to ‘active’, the values held in the agent

Strauss & Schoenwaelder Experimental [Page 43]

RFC 3781 SMIng Mappings to SNMP May 2004

 supersede those used by the managed device.

 If the management station is prevented from setting the
 status column to ‘active’ (e.g., due to management station or
 network failure) the conceptual row will be left in the
 ‘notInService’ or ‘notReady’ state, consuming resources
 indefinitely. The agent must detect conceptual rows that
 have been in either state for an abnormally long period of
 time and remove them. It is the responsibility of the
 DESCRIPTION clause of the status column to indicate what an
 abnormally long period of time would be. This period of time
 should be long enough to allow for human response time
 (including ‘think time’) between the creation of the
 conceptual row and the setting of the status to ‘active’. In
 the absence of such information in the DESCRIPTION clause, it
 is suggested that this period be approximately 5 minutes in
 length. This removal action applies not only to newly-
 created rows, but also to previously active rows which are
 set to, and left in, the notInService state for a prolonged
 period exceeding that which is considered normal for such a
 conceptual row.

 Conceptual Row Suspension

 When a conceptual row is ‘active’, the management station
 may issue a management protocol set operation which sets the
 instance of the status column to ‘notInService’. If the
 agent is unwilling to do so, the set operation fails with an
 error of ‘wrongValue’ or ‘inconsistentValue’.
 Otherwise, the conceptual row is taken out of service, and a
 ‘noError’ response is returned. It is the responsibility of
 the DESCRIPTION clause of the status column to indicate
 under what circumstances the status column should be taken
 out of service (e.g., in order for the value of some other
 column of the same conceptual row to be modified).

 Conceptual Row Deletion

 For deletion of conceptual rows, a management protocol set
 operation is issued which sets the instance of the status
 column to ‘destroy’. This request may be made regardless of
 the current value of the status column (e.g., it is possible
 to delete conceptual rows which are either ‘notReady’,
 ‘notInService’ or ‘active’.) If the operation succeeds, then
 all instances associated with the conceptual row are
 immediately removed.";
 };

Strauss & Schoenwaelder Experimental [Page 44]

RFC 3781 SMIng Mappings to SNMP May 2004

 typedef StorageType {
 type Enumeration (other(1), volatile(2),
 nonVolatile(3), permanent(4),
 readOnly(5));
 description
 "Describes the memory realization of a conceptual row. A
 row which is volatile(2) is lost upon reboot. A row
 which is either nonVolatile(3), permanent(4) or
 readOnly(5), is backed up by stable storage. A row which
 is permanent(4) can be changed but not deleted. A row
 which is readOnly(5) cannot be changed nor deleted.

 If the value of an object with this syntax is either
 permanent(4) or readOnly(5), it cannot be modified.
 Conversely, if the value is either other(1), volatile(2)
 or nonVolatile(3), it cannot be modified to be
 permanent(4) or readOnly(5). (All illegal modifications
 result in a ’wrongValue’ error.)

 Every usage of this textual convention is required to
 specify the columnar objects which a permanent(4) row
 must at a minimum allow to be writable.";
 };

 typedef TDomain {
 type Pointer;
 description
 "Denotes a kind of transport service.

 Some possible values, such as snmpUDPDomain, are defined
 in the SNMPv2-TM MIB module. Other possible values are
 defined in other MIB modules."
 reference
 "The SNMPv2-TM MIB module is defined in RFC 3417."
 };

 typedef TAddressOrZero {
 type OctetString (0..255);
 description
 "Denotes a transport service address.

 A TAddress value is always interpreted within the context
 of a TDomain value. Thus, each definition of a TDomain
 value must be accompanied by a definition of a textual
 convention for use with that TDomain. Some possible
 textual conventions, such as SnmpUDPAddress for
 snmpUDPDomain, are defined in the SNMPv2-TM MIB module.
 Other possible textual conventions are defined in other

Strauss & Schoenwaelder Experimental [Page 45]

RFC 3781 SMIng Mappings to SNMP May 2004

 MIB modules.

 A zero-length TAddress value denotes an unknown transport
 service address."
 reference
 "The SNMPv2-TM MIB module is defined in RFC 3417."
 };

 typedef TAddress {
 type TAddressOrZero (1..255);
 description
 "Denotes a transport service address.

 This type does not allow a zero-length TAddress value."
 };

};

7. Security Considerations

 This document presents an extension of the SMIng data definition
 language which supports the mapping of SMIng data definitions so that
 they can be used with the SNMP management framework. The language
 extension and the mapping itself has no security impact on the
 Internet.

8. Acknowledgements

 Since SMIng started as a close successor of SMIv2, some paragraphs
 and phrases are directly taken from the SMIv2 specifications
 [RFC2578], [RFC2579], [RFC2580] written by Jeff Case, Keith
 McCloghrie, David Perkins, Marshall T. Rose, Juergen Schoenwaelder,
 and Steven L. Waldbusser.

 The authors would like to thank all participants of the 7th NMRG
 meeting held in Schloss Kleinheubach from 6-8 September 2000, which
 was a major step towards the current status of this memo, namely
 Heiko Dassow, David Durham, Keith McCloghrie, and Bert Wijnen.

 Furthermore, several discussions within the SMING Working Group
 reflected experience with SMIv2 and influenced this specification at
 some points.

Strauss & Schoenwaelder Experimental [Page 46]

RFC 3781 SMIng Mappings to SNMP May 2004

9. References

9.1. Normative References

 [RFC3780] Strauss, F. and J. Schoenwaelder, "SMIng - Next Generation
 Structure of Management Information", RFC 3780, May 2004.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

9.2. Informative References

 [RFC3410] Case, J., Mundy, R., Partain, D. and B. Stewart,
 "Introduction and Applicability Statements for Internet
 Standard Management Framework", RFC 3410, December 2002.

 [RFC2578] McCloghrie, K., Perkins, D. and J. Schoenwaelder,
 "Structure of Management Information Version 2 (SMIv2)",
 STD 58, RFC 2578, April 1999.

 [RFC2579] McCloghrie, K., Perkins, D. and J. Schoenwaelder, "Textual
 Conventions for SMIv2", STD 59, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D. and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 60, RFC 2580,
 April 1999.

 [ASN1] International Organization for Standardization,
 "Specification of Abstract Syntax Notation One (ASN.1)",
 International Standard 8824, December 1987.

 [RFC3159] McCloghrie, K., Fine, M., Seligson, J., Chan, K., Hahn,
 S., Sahita, R., Smith, A. and F. Reichmeyer, "Structure of
 Policy Provisioning Information (SPPI)", RFC 3159, August
 2001.

 [IEEE754] Institute of Electrical and Electronics Engineers, "IEEE
 Standard for Binary Floating-Point Arithmetic", ANSI/IEEE
 Standard 754-1985, August 1985.

Strauss & Schoenwaelder Experimental [Page 47]

RFC 3781 SMIng Mappings to SNMP May 2004

 [RFC3418] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3418, December 2002.

 [RFC3416] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Version 2 of the Protocol Operations for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3416, December 2002.

Authors’ Addresses

 Frank Strauss
 TU Braunschweig
 Muehlenpfordtstrasse 23
 38106 Braunschweig
 Germany

 Phone: +49 531 391 3266
 EMail: strauss@ibr.cs.tu-bs.de
 URI: http://www.ibr.cs.tu-bs.de/

 Juergen Schoenwaelder
 International University Bremen
 P.O. Box 750 561
 28725 Bremen
 Germany

 Phone: +49 421 200 3587
 EMail: j.schoenwaelder@iu-bremen.de
 URI: http://www.eecs.iu-bremen.de/

Strauss & Schoenwaelder Experimental [Page 48]

RFC 3781 SMIng Mappings to SNMP May 2004

Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Strauss & Schoenwaelder Experimental [Page 49]

