
Network Working Group Y. Kawatsura
Request for Comments: 3867 Hitachi
Category: Informational M. Hiroya
 Technoinfo Service
 H. Beykirch
 Atos Origin
 November 2004

 Payment Application Programmers Interface (API) for v1.0
 Internet Open Trading Protocol (IOTP)

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004).

Abstract

 The Internet Open Trading Protocol (IOTP) provides a data exchange
 format for trading purposes while integrating existing pure payment
 protocols seamlessly. This motivates the multiple layered system
 architecture which consists of at least some generic IOTP application
 core and multiple specific payment modules.

 This document addresses a common interface between the IOTP
 application core and the payment modules, enabling the
 interoperability between these kinds of modules. Furthermore, such
 an interface provides the foundations for a plug-in-mechanism in
 actual implementations of IOTP application cores.

 Such interfaces exist at the Consumers’, the Merchants’ and the
 Payment Handlers’ installations connecting the IOTP application core
 and the payment software components/legacy systems.

Hans, et al. Informational [Page 1]

RFC 3867 Payment API for IOTP November 2004

Table of Contents

 1. Introduction . 3
 1.1. General payment phases 5
 1.2. Assumptions. 6
 2. Message Flow . 12
 2.1. Authentication Documentation Exchange. 15
 2.2. Brand Compilation. 17
 2.3. Brand Selection. 21
 2.4. Successful Payment 24
 2.5. Payment Inquiry. 29
 2.6. Abnormal Transaction Processing. 30
 2.6.1. Failures and Cancellations 30
 2.6.2. Resumption 32
 2.7. IOTP Wallet Initialization 33
 2.8. Payment Software Management. 34
 3. Mutuality. 34
 3.1. Error Codes. 38
 3.2. Attributes and Elements. 48
 3.3. Process States . 61
 3.3.1. Merchant . 61
 3.3.2. Consumer . 63
 3.3.3. Payment Handler. 65
 4. Payment API Calls. 66
 4.1. Brand Compilation Related API Calls. 66
 4.1.1. Find Accepted Payment Brand. 66
 4.1.2. Find Accepted Payment Protocol 68
 4.1.3. Get Payment Initialization Data. 70
 4.1.4. Inquire Authentication Challenge 72
 4.1.5. Authenticate 73
 4.1.6. Check Authentication Response. 74
 4.2. Brand Selection Related API Calls. 76
 4.2.1. Find Payment Instrument. 76
 4.2.2. Check Payment Possibility. 78
 4.3. Payment Transaction Related API calls. 80
 4.3.1. Start Payment Consumer 80
 4.3.2. Start Payment Payment Handler. 82
 4.3.3. Resume Payment Consumer. 84
 4.3.4. Resume Payment Payment Handler 85
 4.3.5. Continue Process 86
 4.3.6. Change Process State 88
 4.4. General Inquiry API Calls. 89
 4.4.1. Remove Payment Log 90
 4.4.2. Payment Instrument Inquiry 90
 4.4.3. Inquire Pending Payment. 92
 4.5. Payment Related Inquiry API Calls. 93
 4.5.1. Check Payment Receipt. 93
 4.5.2. Expand Payment Receipt 94

Hans, et al. Informational [Page 2]

RFC 3867 Payment API for IOTP November 2004

 4.5.3. Inquire Process State. 96
 4.5.4. Start Payment Inquiry. 97
 4.5.5. Inquire Payment Status 98
 4.6. Other API Calls. 99
 4.6.1. Manage Payment Software. 99
 5. Call Back Function .101
 6. Security Considerations.103
 7. References .103
 7.1. Normative References103
 7.2. Informative References104
 Acknowledgement. .105
 Authors’ Addresses .105
 Full Copyright Statement .106

1. Introduction

 Common network technologies are based on standardized and established
 Internet technologies. The Internet technologies provide mechanisms
 and tools for presentation, application development, network
 infrastructure, security, and basic data exchange.

 Due to the presence of already installed trading roles’ systems with
 their own interfaces (Internet shop, order management, payment,
 billing, and delivery management systems, or financial institute’s
 legacy systems), IOTP has been limited to the common external
 interface over the Internet. However, some of these internal
 interfaces might be also standardized for better integration of IOTP
 aware components with of the existing infrastructure and its cost
 effective reuse. For more information on IOTP, see [IOTP] and
 [IOTPBOOK].

 The typical Payment Handlers (i.e., financial institutes or near-bank
 organizations) as well as Merchants require an IOTP aware application
 that easily fits into their existing financial infrastructure. The
 Payment Handler might even insist on the reuse of special in-house
 solutions for some subtasks of the IOTP aware application, e.g.,
 reflecting their cryptography modules, gateway interfaces, or
 physical environment. Therefore, their IOTP aware implementation
 really requires such clear internal interfaces.

 More important, consumers demand modularization and clear internal
 interfaces: Their IOTP application aims at the support of multiple
 payment methods. Consumers prefer the flexible use of different
 seamless integrating payment methods within one trading application
 with nearly identical behavior and user interface. The existence of
 a well-defined interface enables payment software developers to bolt
 on their components to other developer’s general IOTP Application
 Core.

Hans, et al. Informational [Page 3]

RFC 3867 Payment API for IOTP November 2004

 Initially, this consideration leads to the two-level layered view of
 the IOTP software for each role, consisting of:

 o some generic IOTP system component, the so-called IOTP application
 core - providing IOTP based gateway services and generic business
 logic and

 o the trading roles’ specific back-end systems implementing the
 specific trading transaction types’ functionality.

 In order to isolate the changes on the infrastructure, the IOTP
 trading application has been three-layered:

 o the IOTP Application Core processes the generic parts of the IOTP
 transaction and holds the connection to the Internet,

 o the Existing Legacy System or Existing Payment Software which
 processes the actual transaction type, and particular payment
 transaction, and

 o the IOTP Middle-ware or IOTP Payment Bridge which glues the other
 two possibly incompatible components. It brokers between the
 specific interface of the Existing Legacy System and the
 standardized interfaces of the IOTP Application Core.

 As IOTP extends payment schemes to a trading scheme, primarily, this
 document focuses on payment modules, i.e., the interface between the
 IOTP Payment Bridge and the IOTP Application Core. It provides a
 standard method for exchanging payment protocol messages between the
 parties involved in a payment. But, it does not specify any
 interface for order or delivery processing.

 Such a Payment Application Programmers Interface (API) must suit for
 a broad range of payment methods: (1) software based like Credit Card
 SET or CyberCoin, (2) chip card based like Mondex or GeldKarte, and
 (3) mimicries of typical and traditional payment methods like money
 transfer, direct debit, deposit, withdrawal, money exchange and value
 points. It should support both payments with explicit consumer
 acknowledge and automatic repeated payments, which have been consumer
 approved in advance. For more information on SET, see [SET].

 The following discussion focuses on the Consumer’s point of view and
 uses the associated terminology. When switching to Merchants’ or
 Delivery Handlers’ IOTP aware applications, the payment related
 components should be implicitly renamed by Existing Legacy Systems to
 the IOTP Middle-ware.

Hans, et al. Informational [Page 4]

RFC 3867 Payment API for IOTP November 2004

 The next two sub-sections describe the general payment scenario and
 several assumptions about the coarsely sketched software components.

 Section 2 illustrates the payment transaction progress and message
 flow of different kinds of transaction behavior. Sections 3 to 4
 provide the details of the API functions and Section 5 elaborates the
 call back interface.

1.1. General payment phases

 The following table sketches the four logical steps of many payment
 schemes. The preceding agreements about the goods, payment method,
 purchase amount, or delivery rules are omitted.

 Payment State Party Example Behavior
 ------------- ----- ----------------

 Mutual Payment Handler Generation of identification
 Authentication request, solvency request, or
 and some nonce
 Initialization Consumer Responses to the requests and
 generation of own nonce

 Authorization Payment Handler Generation of the authorization
 request (for consumer)
 Consumer Agreement to payment (by
 reservation of the Consumer’s
 e-money)
 Payment Handler Acceptance or rejection of the
 agreement (consumer’s
 authorization response),
 generation of the authorization
 request (for issuer/acquirer),
 and processing of its response

 Capture Generation of the capture
 request (for issuer/acquirer)
 Consumer Is charged
 Payment Handler Acceptance or rejection of the
 e-money, close of the payment
 transaction

 Reversal On rejection (online/delayed):
 generation of the reversal data
 Consumer Receipt of the refund

Hans, et al. Informational [Page 5]

RFC 3867 Payment API for IOTP November 2004

 However, some payment schemes:

 o limit themselves to one-sided authentication,
 o perform off-line authorization without any referral to any
 issuer/acquirer,
 o apply capture processing in batch mode, or
 o do not distinguish between authorization and capture,
 o lack an inbound mechanism for reversals or implement a limited
 variant.

 This model applies not only to payments at the typical points of
 sales but extends to refunds, deposits, withdrawals, electronic
 cheques, direct debits, and money transfers.

1.2. Assumptions

 In outline, the IOTP Payment Bridge processes some input sequence of
 payment protocol messages being forwarded by the IOTP Application
 Core. It (1) disassembles the messages, (2) maps them onto the
 formats of the Existing Payment Software, (3) assembles its
 responses, and (4) returns another sequence of payment protocol
 messages that is mostly intended for transparent transmission by the
 IOTP Application Core to some IOTP aware remote party. Normally,
 this process continues between the two parties until the Payment
 Handler’s Payment API signals the payment termination.
 Exceptionally, each system component may signal failures.

 The relationship between the aforementioned components is illustrated
 in the following figure. These components might be related to each
 other in a flexible n-to-m-manner:

 o One IOTP Application Core may manage multiple IOTP Payment Bridges
 and the latter might be shared between multiple IOTP Application
 Cores.
 o Each Payment Bridge may manage multiple Existing Payment Software
 modules and the latter might be shared between multiple Payment
 Bridges.
 o Each Existing Payment Software may manage multiple payment schemes
 (e.g., SET) and the latter might be supported by multiple Existing
 Payment Software modules. For more information on SET see [SET].

 o Each payment scheme may support multiple payment instruments
 (e.g., particular card) or methods (e.g., Visa via SET) and the
 latter might be shared by multiple Existing Payment Software
 Components.

Hans, et al. Informational [Page 6]

RFC 3867 Payment API for IOTP November 2004

 +
 IOTP client (consumer) <---------------> IOTP server (merchant)
 (contains Internet (contains
 IOTP Application Core) IOTP Application Core)
 ^ ^
 | IOTP Payment | IOTP Payment
 | API | API
 v v
 IOTP Payment Bridge IOTP Payment Bridge
 ^ ^
 | Existing Payment APIs, e.g., |
 | SET, Mondex, etc. |
 v v
 Existing Payment Software Existing Payment Software
 +

 Figure 1: Relationship of the Components

 The Payment API considers the following transaction types of Baseline
 IOTP:

 o Baseline Purchase,
 o Baseline Refund,
 o Baseline Value Exchange,
 o Baseline Withdrawal, and
 o Baseline (Payment) Inquiry.

 For more information on Baseline IOTP, see [IOTP] and [IOTPBOOK].

 First, the authors’ vision of the IOTP aware application’s and its
 main components’ capabilities are clarified: On the one hand, the
 Payment API should be quite powerful and flexible for sufficient
 connection of the generic and specific components. On the other
 hand, the Payment API should not be overloaded with nice-to-haves
 being unsupported by Existing Payment Software.

 Despite the strong similarities on the processing of successful
 payments, failure resolution and inquiry capabilities differ
 extremely among different payment schemes. These aspects may even
 vary between different payment instrument using the same payment
 schemes. Additionally, the specific requirements of Consumers,
 Merchants and Payment Handlers add variance and complexity.
 Therefore, it is envisioned that the IOTP Application Core provides
 only very basic inquiry mechanisms while complex and payment scheme
 specific inquiries, failure analysis, and failure resolution are
 fully deferred to the actual Existing Payment Software - including
 the user interface.

Hans, et al. Informational [Page 7]

RFC 3867 Payment API for IOTP November 2004

 The IOTP Application Core processes payments transparently, i.e., it
 forwards the wrapped payment scheme specific messages to the
 associated IOTP Payment Bridge/Existing Payment Software. The
 Existing Payment Software might even use these messages for inbound
 failure resolution. It reports only the final payment status to the
 IOTP Application Core or some intermediate - might be also final -
 status on abnormal interruption.

 The IOTP Application Core implements the generic and payment scheme
 independent part of the IOTP transaction processing and provides the
 suitable user interface. Focusing on payment related tasks, it

 o manages the registered IOTP Payment Bridges and provides a
 mechanism for their registration - the latter is omitted by this
 document.

 o assumes that any IOTP Payment Bridge is a passive component, i.e.,
 it strictly awaits input data and generates one response to each
 request,

 o supports the payment negotiation (Consumer: selection of the
 actual payment instrument or method; Merchant: selection of the
 payment methods being offered to the Consumer) preceding the
 payment request,

 o requests additional payment specific support from the Existing
 Payment Software via the selected and registered the IOTP Payment
 Bridge,

 o initializes and terminates the Existing Payment Software via the
 IOTP Payment Bridge,

 o inquires authentication data (for subsequent request or response)
 from the Existing Payment Software, specific authentication
 component - omitted in this document - or Consumer (by a suitable
 user interface),

 o supervises the online transaction process and traces its progress,

 o stores the transaction data being exchanged over the IOTP wire -
 payment scheme specific data is handled transparently,

 o relates each payment transaction with multiple payment parameters
 (IOTP Transaction Identifier, Trading Protocol Options, Payment
 Instrument/Method, Offer Response, IOTP Payment Bridge, and Wallet
 Identifier, associated remote Parties). The relation might be

Hans, et al. Informational [Page 8]

RFC 3867 Payment API for IOTP November 2004

 lowered to the party’s Payment Identifier, IOTP Payment Bridge,
 Wallet Identifier, and the remote parties when the actual payment
 transaction has been successfully started.

 o implements a payment transaction progress indicator,

 o enables the inquiry of pending and completed payment transactions,

 o implements generic dialogs, e.g., brand selection, payment
 acknowledge, payment suspension / cancellation, receipt
 visualization, basic transaction inquiry, balance inquiry, or
 receipt validation,

 o defers payment specific processing, supervision, validation, and
 error resolution to the Existing Payment Software. It is
 expected, that the Existing Payment Software will try to resolve
 many errors first by the extended exchange of Payment Exchange
 messages. The most significant and visible failures arise from
 sudden unavailability or lapses of the local or opposing payment
 component.

 o supports the invocation of any Existing Payment Software in an
 interactive mode, which might be used (1) for the payment scheme
 specific post-processing of a (set of) payment transactions, (2)
 for the analysis of a payment instrument, (3) for the registration
 of a new payment instrument/scheme, or (4) re-configuration of a
 payment instrument/scheme.

 o exports call back functions for use by the IOTP Payment Bridge or
 Existing Payment Software for progress indication.

 In addition, the IOTP Application Core

 o manages the IOTP message components and IOTP message blocks
 exchanged during the transaction which may be referenced and
 accessed during the processing of subsequent messages, e.g., for
 signature verification. In particular, it stores named Packaged
 Content elements exchanged during payments.

 o manages several kinds of identifiers, i.e., transaction, message,
 component, and block identifiers,

 o implements a message caching mechanism,

 o detects time-outs at the protocol and API level reflecting the
 communication with both the IOTP aware remote party and the
 Payment API aware local periphery, e.g., chip card (reader) may
 raise time-outs.

Hans, et al. Informational [Page 9]

RFC 3867 Payment API for IOTP November 2004

 However, the IOTP Payment Bridge and Existing Payment Software do not
 have to rely on all of these IOTP Application Core’s capabilities.
 E.g., some Consumer’s Existing Payment Software may refuse the
 disclosure of specific payment instruments at brand selection time
 and may delay this selection to the "Check Payment Possibility"
 invocation using its own user interface.

 The IOTP Payment Bridge’s capabilities do not only deal with actual
 payments between the Consumer and the Payment Handler but extend to
 the following:

 o translation and (dis)assemblage of messages between the formats of
 the IOTP Payment API and those of the Existing Payment Software.
 Payment API requests and response are strictly 1-to-1 related.

 o Consumer’s payment instrument selection by the means of an
 unsecured/public export of the relationship of payment brands,
 payment protocols, and payment instruments (identifiers).
 Generally, this includes not just the brand (Mondex, GeldKarte,
 etc.) but also which specific instance of the instrument and
 currency to use (e.g., which specific Mondex card and which
 currency of all those available).

 However, some Existing Payment Software may defer the selection of
 the payment instrument to the actual payment carrying-out or it may
 even lack any management of payment instruments. E.g., chip card
 based payment methods may offer - Point of Sale like - implicit
 selection of the payment instrument by simple insertion of the chip
 card into the chip card reader or it interrogates the inserted card
 and requests an acknowledge (or selection) of the detected payment
 instrument(s).

 o payment progress checks, e.g., is there enough funds available to
 carry out the purchase, or enough funds left for the refund,

 o IOTP Payment Receipt checks which might be performed over its
 Packaged Content or by other means.

 o recoding of payment scheme specific receipts into a format which
 can be displayed to the user or printed,

 o cancellation of payment, even though it is not complete,

 o suspension and resumption of payment transactions. Two kinds of
 failures the Existing Payment Software might deal with are (1) the
 time-out of the network connection and (2) lack of funds. For
 resolution, the IOTP Application Core may try the suspension with
 a view to later possible resumption.

Hans, et al. Informational [Page 10]

RFC 3867 Payment API for IOTP November 2004

 o recording the payment progress and status on a database. E.g.,
 information about pending payments might be used to assist their
 continuation when the next payment protocol message is received.

 o payment transaction status inquiry, so that the inquirer - IOTP
 Application Core or User - can determine the appropriate next
 step.

 o balance inquiry or transaction history, e.g., consumers may
 interrogate their chip card based payment instrument or remotely
 administer some account in advance of a payment transaction
 acknowledge,

 o inquiry on abnormal interrupted payment transactions, which might
 be used by the IOTP Application Core to resolve these pending
 transactions at startup (after power failure).

 o payment progress indication. This could be used to inform the end
 user of details on what is happening with the payment.

 o payment method specific authentication methods.

 Existing Payment Software may not provide full support of these
 capabilities. E.g., some payment schemes may not support or may even
 prevent the explicit transaction cancellation at arbitrary phases of
 the payment process. In this case, the IOTP Payment Bridge has to
 implement at least skeletons that signal such lack of support by the
 use of specific error codes (see below).

 The Existing Payment Software’s capabilities vary extremely. It

 o supports payment scheme specific processing, supervision,
 validation, and error resolution. It is expected, that many
 errors are tried to be resolved first by the extended exchange of
 Payment Exchange messages.

 o provides hints for out-of-band failure resolution on failed
 inbound resolution - inbound resolution is invisible to the IOTP
 Application Core.

 o may implement arbitrary transaction data management and inquiry
 mechanisms ranging from no transaction recording, last transaction
 recording, chip card deferred transaction recording, simple
 transaction history to sophisticated persistent data management
 with flexible user inquiry capabilities. The latter is required
 by Payment Handlers for easy and cost effective failure
 resolution.

Hans, et al. Informational [Page 11]

RFC 3867 Payment API for IOTP November 2004

 o implements the payment scheme specific dialog boxes.

 Even the generic dialog boxes of the IOTP Application Core might be
 unsuitable: Particular (business or scheme) rules may require some
 dedicated appearance / structure / content or the dialog boxes, may
 prohibit the unsecured export of payment instruments, or may
 prescribe the pass phrase input under its own control.

2. Message Flow

 The following lists all functions of the IOTP Payment API:

 o Brand Compilation Related API Functions

 "Find Accepted Payment Brand" identifies the accepted payment brands
 for any indicated currency amount.

 "Find Accepted Payment Protocol" identifies the accepted payment
 protocols for any indicated currency amount (and brand) and returns
 payment scheme specific packaged content for brand selection
 purposes.

 This function might be used in conjunction with the aforementioned
 function or called without any brand identifier.

 "Get Payment Initialization Data" returns additional payment scheme
 specific packaged content for payment processing by the payment
 handler.

 "Inquire Authentication Challenge" returns the payment scheme
 specific authentication challenge value.

 "Check Authentication Response" verifies the returned payment scheme
 specific authentication response value.

 "Change Process State" is used (here only) for abnormal termination.
 (cf. Payment Processing Related API Functions).

 o Brand Selection Related API Functions

 "Find Payment Instrument" identifies which instances of a payment
 instrument of a particular payment brand are available for use in a
 payment.

 "Check Payment Possibility" checks whether a specific payment
 instrument is able to perform a payment.

Hans, et al. Informational [Page 12]

RFC 3867 Payment API for IOTP November 2004

 "Authenticate" forwards any payment scheme specific authentication
 data to the IOTP Payment Bridge for processing.

 "Change Process State" is used (here only) for abnormal termination.
 (cf. Payment Processing Related API Functions).

 o Payment Processing Related API Functions

 "Start or Resume Payment Consumer/Payment Handler" initiate or resume
 a payment transaction. There exist specific API functions for the
 two trading roles Consumer and Payment Handler.

 "Continue Process" forwards payment scheme specific data to the
 Existing Payment Software and returns more payment scheme specific
 data for transmission to the counter party.

 "Change Process State" changes the current status of payment
 transactions. Typically, this call is used for termination or
 suspension without success.

 o General Inquiry API Functions

 "Remove Payment Log" notifies the IOTP Payment Bridge that a
 particular entry has been removed from the Payment Log of the IOTP
 Application Core.

 "Payment Instrument Inquiry" retrieves the properties of Payment
 Instruments.

 "Inquire Pending Payment" reports any abnormal interrupted payment
 transaction known by the IOTP Payment Bridge.

 Payment Processing Related Inquiry API Functions

 "Check Payment Receipt" checks the consistency and validity of IOTP
 Payment Receipts, received from the Payment Handler or returned by
 "Inquire Process State" API calls. Typically, this function is
 called by the Consumer during the final processing of payment
 transactions. Nevertheless, this check might be advantageous both
 for Consumers and Payment Handlers on failure resolution.

 "Expand Payment Receipt" expands the Packaged Content of IOTP Payment
 Receipts as well as payment scheme specific payment receipts into a
 form which can be used for display or printing purposes.

 "Inquire Process State" responds with the payment state and the IOTP
 Payment Receipt Component. Normally, this function is called by the
 Payment Handler for final processing of the payment transaction.

Hans, et al. Informational [Page 13]

RFC 3867 Payment API for IOTP November 2004

 "Start Payment Inquiry" prepares the remote inquiry of the payment
 transaction status and responds with payment scheme specific data
 that might be needed by the Payment Handler for the Consumer
 initiated inquiry processing.

 "Inquire Payment Status" is called by the Payment Handler on Consumer
 initiated inquiry requests. This function returns the payment scheme
 specific content of the Inquiry Response Block.

 "Continue Process" and "Change Process State" (cf. Payment Processing
 Related API Calls)

 o Other API Functions

 "Manage Payment Software" enables the immediate activation of the
 Existing Payment Software. Further user input is under control of
 the Existing Payment Software.

 "Call Back" provides a general interface for the visualization of
 transaction progress by the IOTP Application Core.

 The following table shows which API functions must (+), should (#),
 or might (?) be implemented by which Trading Roles.

 API function Consumer Payment Handler Merchant
 ------------ -------- --------------- --------

 Find Accepted Payment Brand +
 Find Accepted Payment Protocol #
 Find Payment Instrument +

 Get Payment Initialization Data +
 Check Payment Possibility +

 Start Payment Consumer +
 Start Payment Payment Handler +
 Resume Payment Consumer #
 Resume Payment Payment Handler #

 Continue Process + +
 Inquire Process State + + ?
 Change Process State + + ?
 Check Payment Receipt + ?
 Expand Payment Receipt # ?

 Remove Payment Log ? ? ?

 Inquire Authentication Challenge ?

Hans, et al. Informational [Page 14]

RFC 3867 Payment API for IOTP November 2004

 Authenticate +
 Check Authentication Response ?

 Payment Instrument Inquiry ?
 Inquire Pending Payment # #
 Start Payment Inquiry ?
 Inquire Payment Status ?

 Manage Payment Software # ? ?

 Call Back #

 Table 1: Requirements on API Functions by the Trading Roles

 The next sections sketch the relationships and the dependencies
 between the API functions. They provide the informal description of
 the progress alternatives and depict the communication and
 synchronization between the general IOTP Application Core and the
 payment scheme specific modules.

2.1. Authentication Documentation Exchange

 This section describes how the functions in this document are used
 together to process authentication.

 +
 Authenticator Inquire Authentication Challenge(Alg1*) -> IPB
 Inq. Auth. Challenge Response(Alg1,Ch1) <- IPB
 . . .
 Inquire Authentication Challenge(Algn*) -> IPB
 Inq. Auth. Challenge Response(Algn,Chn) <- IPB
 Create and transmit Authentication Request Block
 Authenticatee Authenticate(Alg1, Ch1) -> IPB
 AuthenticateResponse(...) <- IPB
 . . .
 Authenticate(Algm, Chm) -> IPB
 AuthenticateResponse(Res) <- IPB
 Create and transmit Authentication Response Block
 Authenticator Check Authentication Response(Algm,Chm,Res)->IPB
 Check Auth. Response() <-IPB
 Create and transmit Authentication Status Block
 +

 Figure 2. Authentication Message Flows

Hans, et al. Informational [Page 15]

RFC 3867 Payment API for IOTP November 2004

 1. (Authenticator Process) None, one or multiple IOTP Payment Bridges
 (IPB) are requested for one or multiple authentication challenge
 values ("Inquire Authentication Challenge"). Each value is
 encapsulated in an IOTP Authentication Request Component. In
 addition, the IOTP Application Core may add payment scheme
 independent authentication methods. All of them form the final
 IOTP Authentication Request Block, which describes the set of
 authentication methods being supported by the authenticator and
 from which the Authenticatee has to choose one method.

 Note that the interface of the API function is limited to the
 response of exactly one algorithm per call. If the IOTP
 Application Core provides a choice of algorithms for input, this
 choice should be reduced successively by the returned algorithm
 ({Alg(i+1)*} is subset of {Algi*}).

 During the registration of new Payment Instruments, the IOTP
 Payment Bridge notifies the IOTP Application Core about the
 supported authentication algorithms.

 2. On the presence of an IOTP Authentication Block within the
 received IOTP message, the Authenticatee’s IOTP Application Core
 checks whether the IOTP transaction type in the current phase
 actually supports the authentication process.

 For each provided Authentication Request Component, the IOTP
 Application Core analyzes the algorithms’ names, the transaction
 context, and optionally user preferences in order to determine the
 system components which are capable to process the authentication
 request items. Such system components might be the IOTP
 Application Core itself or any of the registered IOTP Payment
 Bridges.

 Subsequently, the IOTP Application Core requests the responses to
 the supplied challenges from the determined system components in
 any order. The authentication trials stop with the first
 successful response, which is included in the IOTP Authentication
 Response Block.

 Alternatively, the IOTP Application might ask for a user
 selection. This might be appropriate, if two or more
 authentication algorithms are received that require explicit user
 interaction, like PIN or chip card insertion.

 The Authenticatee’s organizational data is requested by an IOTP
 Authentication Request Block without any content element. On
 failure, the authentication (sequence) might be retried, or the
 whole transaction might be suspended or cancelled.

Hans, et al. Informational [Page 16]

RFC 3867 Payment API for IOTP November 2004

 3. (Authenticator Process) The IOTP Application Core checks the
 presence of the IOTP Authentication Response Component in the
 Authentication Response Block and forwards its content to the
 generator of the associated authentication challenge for
 verification ("Check Authentication Response").

 On sole organizational data request, its presence is checked.

 Any verification must succeed in order to proceed with the
 transaction.

2.2. Brand Compilation

 The following shows how the API functions are used together so that
 the Merchant can (1) compile the Brand List Component, (2) generate
 the Payment Component, and (3) adjust the Order Component with
 payment scheme specific packaged content.

Hans, et al. Informational [Page 17]

RFC 3867 Payment API for IOTP November 2004

 +
 Merchant For each registered IOTP Payment Bridge
 | Find Accepted Payment Brand() -> IPB
 | Find Accepted Payment Brand Response (B*) <- IPB
 | Find Accepted Payment Protocol(B1) -> IPB
 | Find Accepted Payment Protocol Res.(P1*) <- IPB
 | . . .
 | Find Accepted Payment Protocol(Bn) -> IPB
 | Find Accepted Payment Protocol Res.(Pn*) <- IPB
 Create one Brand List Component, ideally sharing
 common Brand, Protocol Amount, Currency Amount,
 and Pay Protocol Elements
 Create Trading Protocol Options Block
 On brand independent transactions
 | Create Brand Selection Component, implicitly
 | Get Payment Initialization Data(B1,P1) -> IPB
 | Get Payment Initialization Data Res.() <- IPB
 | Optionally
 | | Inquire Process State() -> IPB
 | | Inquire Process State Response(State) <- IPB
 | Create Offer Response Block
 Transmit newly created Block(s)
 Consumer Consumer selects Brand (Bi)/Currency/Protocol (Pj)
 from those that will work and generates Brand
 Selection Component - at least logically
 On brand dependent transaction
 | Transmit Brand Selection Component
 Merchant On brand dependent transaction
 | Get Payment Initialization Data(Bi,Pj) -> IPB
 | Get Payment Initialization Data Res.() <- IPB
 | Optionally
 | | Inquire Process State() -> IPB
 | | Inquire Process State Response(State) <- IPB
 | Create Offer Response Block
 | Transmit newly created Block
 +

 Figure 3. Brand Compilation Message Flows

 1. The Merchant’s commerce server controls the shopping dialog with
 its own mechanisms until the Consumer checks out the shopping
 cart and indicates the payment intention. The notion shopping
 subsumes any non-IOTP based visit of the Merchant Trading Role’s
 (which subsumes Financial Institutes) web site in order to
 negotiate the content of the IOTP Order Component. The
 subsequent processing switches to the IOTP based form by the
 activation of the Merchant’s IOTP aware application.

Hans, et al. Informational [Page 18]

RFC 3867 Payment API for IOTP November 2004

 2. The IOTP Application Core inquires for the IOTP level trading
 parameters (Consumer’s shopping identifier, payment direction,
 initial currency amounts, discount rates, Merchant’s and Delivery
 Handler’s Net Locations, Non-Payment Handler’s Organizational
 Data, initial order information,).

 3. The registered IOTP Payment Bridges are inquired by the IOTP
 Application Core about the accepted payment brands ("Find
 Accepted Payment Brand"). Their responses provide most of the
 attribute values for the compilation of the Brand List
 Component’s Brand Elements. The IOTP Application Core might
 optionally match the returned payment brands with Merchant’s
 general preferences.

 The IOTP Application Core must provide any wallet identifiers, if
 they are required by the IOTP Payment Bridges which signal their
 need by specific error codes (see below). Any signaled error
 that could not be immediately solved by the IOTP Application Core
 should be logged - this applies also to the subsequent API calls
 of this section. In this case, the IOTP Application Core creates
 an IOTP Error Block (hard error), transmits it to the Consumer,
 and terminates the current transaction.

 4. The IOTP Application Core interrogates the IOTP Payment Bridges
 for each accepted payment brand about the supported payment
 protocols ("Find Accepted Payment Protocol"). These responses
 provide the remaining attribute values of the Brand Elements as
 well as all attribute values for the compilation of the Brand
 List Component’s Protocol Amount and Pay Protocol Elements.

 Furthermore, the organisational data about the Payment Handler is
 returned. The IOTP Application Core might optionally match the
 returned payment brands with Merchant’s general preferences.

 Alternatively, the IOTP Application Core might skip the calls of
 "Find Accepted Payment Brands" (cf. Step 3) and issue the "Find
 Accepted Payment Protocol" call without any Brand given on the
 input parameter list. In this case, the IOTP Payment Bridge
 responds to the latter call with the whole set of payment schemes
 supported w.r.t. the other input parameters.

 5. The steps 3 and 4 are repeated during IOTP Value Exchange
 transactions - these steps are omitted in the previous figure.

 6. The IOTP Application Core compiles the Brand List Component(s)
 and the IOTP Trading Protocol Options Block. It is recommended
 that the "equal" items returned by IOTP Payment Bridge function
 calls are shared due to the extensive linking capabilities within

Hans, et al. Informational [Page 19]

RFC 3867 Payment API for IOTP November 2004

 the Brand List Component. However, the compilation must consider
 several aspects in order to prevent conflicts - sharing detection
 might be textual matching (after normalization):

 o Packaged Content Elements contained in the Brand List Component
 (and subsequently generated Payment and Order Components) might
 be payment scheme specific and might depend on each other.

 o Currently, IOTP lacks precise rules for the content of the
 Packaged Content Element. Therefore, transaction / brand /
 protocol / currency amount (in)dependent data might share the
 same Packaged Content Element or might spread across multiple
 Packaged Content Elements.

 o The Consumer’s IOTP Application Core transparently passes the
 Packaged Content Elements to the IOTP Payment Bridges which
 might not be able to handle payment scheme data of other
 payment schemes, accurately.

 The rules and mechanisms of how this could be accomplished are
 out of the scope of this document. Furthermore, this document
 does not define any further restriction to the IOTP
 specification.

 7. The IOTP Application Core determines whether the IOTP message can
 be enriched with an Offer Response Block. This is valid under
 the following conditions:

 o All payment alternatives share the attribute values and
 Packaged Content Elements of the subsequently generated IOTP
 Payment and Order Components.

 o The subsequently generated data does not depend on any IOTP
 BrandSelInfo Elements that might be reported by the consumer
 within the TPO Selection Block in the brand dependent variant.

 If both conditions are fulfilled, the IOTP Application Core might
 request the remaining payment scheme specific payment
 initialization data from the IOTP Payment Bridge ("Get Payment
 Initialization Data") and compile the IOTP Offer Response Block.

 Optionally, the IOTP Application Core might request the current
 process state from the IOTP Payment Bridge and add the inferred
 order status to the IOTP Offer Response Block. Alternatively,
 IOTP Application might determine the order status on its own.

 As in step 6, the rules and mechanisms of how this could be
 accomplished are out of the scope of this document.

Hans, et al. Informational [Page 20]

RFC 3867 Payment API for IOTP November 2004

 8. The IOTP Application Core compiles the IOTP TPO Message including
 all compiled IOTP Blocks and transmits the message to the
 Consumer. The IOTP Application Core terminates if an IOTP Offer
 Response Block has been created.

 9. The Consumer performs the Brand Selection Steps (cf. Section 2.3)
 and responds with a TPO Selection Block if no IOTP Offer Response
 Block has been received. Otherwise, the following step is
 skipped.

 10. On brand dependent transactions, the IOTP Application Core
 requests the remaining payment scheme specific payment
 initialization data from the IOTP Payment Bridge ("Get Payment
 Initialization Data"), compiles the IOTP Offer Response Block,
 transmits it to the Consumer, and terminates. Like Step 7, the
 IOTP Application Core might access the current process state of
 the IOTP Payment Bridge for the compilation of the order status.

 Any error during this process raises an IOTP Error Block.

2.3. Brand Selection

 This section describes the steps that happen mainly after the
 Merchant’s Brand Compilation (in a brand independent transaction).
 However, these steps might partially interlace the previous process
 (in a brand dependent transaction).

 +
 Merchant Merchant generates Brand List(s) containing
 Brands, Payment Protocols and Currency Amounts
 On brand independent transactions
 | Merchant generates Offer Response Block
 Consumer Compile set(s) of Brands B/Protocols P
 for each set
 | Find Payment Instrument(B, P, C) -> IPB
 | Find Payment Instrument Response (PI*) <- IPB
 Consumer selects Brand/Currency/Payment Instrument
 from those that will work and generates Brand
 Selection Component
 For the Selection
 | Get Payment Initialization Data(B,C,PI,P) -> IPB
 | Get Payment Initialization Data Response()<- IPB
 On brand dependent transaction
 | Generate and transmit TPO Selection Block
 Merchant On brand dependent transaction
 | Merchant checks Brand Selection and generates
 | and transmits Offer Response Block
 +

Hans, et al. Informational [Page 21]

RFC 3867 Payment API for IOTP November 2004

 Figure 4. Brand Selection Message Flows

 1. The Merchant’s commerce server controls the shopping dialog with
 its own mechanisms until the Consumer checks out the shopping cart
 and indicates his payment intention. The subsequent processing
 switches to the IOTP based form by the activation of the
 Merchant’s IOTP aware application.

 2. The IOTP Application Core compiles the IOTP Trading Protocol
 Options Block which contains the IOTP Brand List Component(s)
 enumerating Merchant’s accepted payment brands and payment
 protocols and initiates the Brand Selection process.

 3. This first IOTP message activates the Consumer’s IOTP aware
 application, e.g., the Web browser invokes a helper application
 (e.g., Java applet or external application). Its IOTP Application
 Core

 o infers the accepted payment brands, payment protocols, payment
 direction, currencies, payment amounts, any descriptions etc.,
 and their relationships from the IOTP message,

 o determines the registered IOTP Payment Bridges,

 o compiles one or multiple sets of brand and protocol such that
 the join of all sets describes exactly the payment alternatives
 being offered by the Merchant.

 o inquires payment (protocol) support and the known payment
 instruments from each registered IOTP Payment Bridge for each
 compiled set ("Find Payment Instrument"). However, some IOTP
 Payment Bridges may refuse payment instrument distinction.

 The payment protocol support may differ between payment
 instruments if the IOTP Payment Bridge supports payment instrument
 distinction.

 These API calls are used to infer the payment alternatives at the
 startup of any payment transaction (without user unfriendly
 explicit user interaction).

 The IOTP Application Core must provide wallet identifiers, if they
 are requested by the IOTP Payment Bridges which signal their need
 by specific error codes (see below).

 It is recommended that the IOTP Application Core manages wallet
 identifiers. But for security reasons, it should store pass
 phrases in plain text only in runtime memory. Developers of IOTP

Hans, et al. Informational [Page 22]

RFC 3867 Payment API for IOTP November 2004

 Payment Bridges and payment software modules should provide a thin
 and fast implementation - without lengthy initialization processes
 - for this initial inquiry step.

 4. The IOTP Application Core verifies the Consumer’s payment
 capabilities with the Merchant’s accepted payment brands and
 currencies,

 o displays the valid payment instruments and payment instrument
 independent payment brands (brand and protocol) together with
 their purchase parameters (payment direction, currency,
 amount), and

 o requests the Consumer’s choice or derives it automatically from
 any configured preferences. Any selection ties one IOTP
 Payment Bridge with the following payment transaction.

 The handling and resolution of unavailable IOTP Payment Bridges
 during the inquiry in Step 3 is up to the IOTP Application Core.
 It may skip these IOTP Payment Bridges or may allow user supported
 resolution.

 Furthermore, it may offer the registration of new payment
 instruments when the Consumer is asked for payment instrument
 selection.

 5. The IOTP Application Core interrogates the fixed IOTP Payment
 Bridge whether the payment might complete with success ("Check
 Payment Possibility"). At this step, the IOTP Payment Bridge may
 issue several signals, e.g.,

 o payment can proceed immediately,
 o required peripheral inclusive of some required physical payment
 instrument (chip card) is unavailable,
 o (non-IOTP) remote party (e.g., issuer, server wallet) is not
 available,
 o wallet identifier or pass phrase is required,
 o expired payment instrument (or certificate), insufficient
 funds, or
 o physical payment instrument unreadable.

 In any erroneous case, the user should be notified and offered
 accurate alternatives. Most probably, the user might be offered

 o to resolve the problem, e.g., to insert another payment
 instrument or to verify the periphery,
 o to proceed (assuming its success),
 o to cancel the whole transaction, or

Hans, et al. Informational [Page 23]

RFC 3867 Payment API for IOTP November 2004

 o to suspend the transaction, e.g., initiating a nested
 transaction for uploading an electronic purse.

 If the payment software implements payment instrument selection on
 its own, it may request the Consumer’s choice at this step.

 If the check succeeds, it returns several IOTP Brand Selection
 Info Elements.

 6. The Steps 2 to 5 are repeated and possibly interlaced for the
 selection of the second payment instrument during IOTP Value
 Exchange transactions - this is omitted in the figure above.

 7. The IOTP Brand Selection Component is generated and enriched with
 the Brand Selection Info elements. This component is transmitted
 to the Merchant inside a TPO Selection Block if the received IOTP
 message lacks the IOTP Offer Response Block. The Merchant will
 then respond with an IOTP Offer Response Block (following the
 aforementioned compilation rules).

2.4. Successful Payment

 An example of how the functions in this document are used together to
 effect a successful payment is illustrated in the Figure 5. In the
 figure 5, PS0, PS1, ..., and PSn indicate the nth PayScheme Packaged
 Content data, and [] indicates optional.

 (Technically, two payments happen during IOTP Value Exchange
 transactions.)

 +
 Consumer Start Payment Consumer(Amount,[PS0]...) -> IPB
 Start Payment Cons. Res.([PS1], CS=Cont.) <- IPB
 Create and transmit Payment Request Block
 Payment Handler Start Payment Pay. Handler(Amount, [PS1]) -> IPB
 Start Payment PH Response(PS2, CS=Cont.) <- IPB
 Create and transmit Payment Exchange Block
 Consumer Continue Process(PS2) -> IPB
 Continue Process Response(PS3, CS=Cont.) <- IPB

 ... CONTINUE SWAPPING PAYMENT EXCHANGES UNTIL ...

 Payment Handler Continue Process Response([PSn], CS=End) <- IPB
 Request any local payment receipt
 | Inquire Process State() -> IPB
 | Inquire Proc. State Resp.(State, [Rcp.])<- IPB
 Create and transmit Payment Response Block
 Terminate transaction, actively

Hans, et al. Informational [Page 24]

RFC 3867 Payment API for IOTP November 2004

 | Change Process State(State) -> IPB
 | Change PS Response(State=CompletedOK) <- IPB
 Consumer On receipt of final payment scheme data
 | Continue Process(PSn) -> IPB
 | Continue Process Response(CS=End) <- IPB
 Check Payment Receipt(Receipt) -> IPB
 Check Payment Receipt Response() <- IPB
 Request any local payment receipt
 | Inquire Process State() -> IPB
 | Inquire Proc. State Resp.(State, [Rcp.])<- IPB
 Terminate transaction, actively
 | Change Process State(State) -> IPB
 | Change PS Response(State=CompletedOk) <- IPB
 +

 Figure 5. Example Payment Message Flows

 1. After Brand Selection and receipt of the IOTP Offer Response
 Block, the Consumer switches from communicating with the Merchant
 to communicating with the Payment Handler.

 This might be a milestone requiring the renewed Consumer’s
 agreement about the payment transaction’s continuation.
 Particularly, this is a good moment for payment suspension (and
 even cancellation), which will be most probably supported by all
 payment schemes. Simply, because the actual payment legacy
 systems have not yet been involved in the current transaction.

 Such an agreement might be explicit per transaction or automatic
 based on configured preferences, e.g., early acknowledgments for
 specific payment limits.

 It is assumed, that the transaction proceeds with minimal user
 (Consumer and Payment Handler) interaction and that its progress
 is controlled by the IOTP Application Core and IOTP Payment
 Bridge.

 2. In order to open the actual payment transaction, the IOTP
 Application Core issues the "Start Payment Consumer" request
 towards the IOTP Payment Bridge. This request carries the whole
 initialization data of the payment transaction being referred to
 by the IOTP Payment Bridge for subsequent consistency checks:

 o payment brand and its description from the selected Brand
 Element of the IOTP Brand List Component,
 o payment instrument from preceding inquiry step,

Hans, et al. Informational [Page 25]

RFC 3867 Payment API for IOTP November 2004

 o further payment parameters (currency, amount, direction,
 expiration) from the selected Currency Amount element, Brand
 List Component, and Payment Component of the IOTP Offer
 Response Block,
 o payment protocol from the selected IOTP Pay Protocol Element,
 o order details contained in the IOTP Order Component which might
 be payment scheme specific,
 o payment scheme specific data inclusive of the payment protocol
 descriptions from the IOTP Protocol Amount Element, and IOTP
 Pay Protocol Element, and
 o payment scheme specific data inclusive of the payment protocol
 descriptions, in which the name attribute includes the prefix
 as "Payment:" from the Trading Role Data Component.

 Generally, the called API function re-does most checks of the
 "Check Payment Possibility" call due to lack of strong
 dependencies between both requests: There might be a significant
 delay between both API requests.

 The called API function may return further payment scheme specific
 data being considered as payment specific initialization data for
 the Payment Handler’s IOTP Payment Bridge.

 If the fixed Existing Payment Software implements payment
 instrument selection on its own, it may request the Consumer’s
 choice at this step.

 The IOTP Payment Bridge reports lack of capability quite similarly
 to the "Check Payment Possibility" request to the IOTP Application
 Core. The Consumer may decide to resolve the problem, to suspend,
 or to cancel the transaction, but this function call must succeed
 in order to proceed with the transaction.

 Developers of payment modules may decide to omit payment
 instrument related checks like expiration date or refunds
 sufficiency, if such checks are part of the specific payment
 protocol.

 If the IOTP Payment Bridge requests wallet identifiers or pass
 phrases anywhere during the payment process, they should be
 requested by this API function, too. It is recommended that the
 IOTP Application Core stores plain text pass phrases only in
 runtime memory.

 Finally, the IOTP Application Core generates the IOTP Payment
 Request Block, inserts any returned payment scheme data, and
 submits it to the Payment Handler’s system.

Hans, et al. Informational [Page 26]

RFC 3867 Payment API for IOTP November 2004

 3. The Payment Handler’s IOTP Application Core opens the payment
 transaction calling the "Start Payment Payment Handler" API
 function. The payment brand, its description, payment protocol,
 payment specific data, payment direction, currency and payment
 amount are determined quite similar to the Consumer’s IOTP
 Application Core. Furthermore, the content of the IOTP Payment
 Scheme Component and the IOTP Brand Selection Info Elements are
 passed to this function.

 On success, the Payment Handler’s IOTP Payment Bridge responds
 with payment scheme specific data. On failures, this non-
 interactive server application has to resolve any problems on its
 own or to give up aborting the payment transaction. However, the
 Consumer may restart the whole payment transaction. Anyway, the
 payment log file should reflect any trials of payments.

 Eventually, the Payment Handler informs the Consumer about the
 current IOTP Process State using the IOTP Payment Response or IOTP
 Error Block.

 Note that the "Start Payment Payment Handler" call might return
 the Continuation Status "End" such that payment processing
 proceeds with Step 7.

 4. The IOTP Application Core verifies the presence of the Payment
 Exchange Block in the IOTP message and passes the contained
 payment scheme specific data to the fixed IOTP Payment Bridge
 ("Continue Process") which returns the next IOTP Payment Scheme
 Component.

 This Payment Scheme Component is encapsulated in an IOTP Payment
 Exchange Block and transmitted to the Payment Handler.

 5. The Payment Handler’s IOTP Application Core verifies the presence
 of the Payment Exchange Block and passes the contained payment
 scheme specific data to the fixed IOTP Payment Bridge ("Continue
 Process") which returns the next IOTP Payment Scheme Component for
 encapsulation and transmission to the Consumer.

 6. The payment process continues with IOTP Payment Exchange Block
 exchanges, carrying the payment scheme specific data. Each party
 (1) submits the embedded payment scheme specific data
 transparently to the appropriate IOTP Payment Bridge calling the
 "Continue Process" API function, (2) wraps the returned payment
 scheme specific data into an IOTP Payment Exchange Block, and (3)
 transmits this block to the counter party.

Hans, et al. Informational [Page 27]

RFC 3867 Payment API for IOTP November 2004

 However, the processing of the payment scheme specific data may
 fail for several reasons. These are signaled by specific error
 codes which are transformed to IOTP Payment Response Blocks
 (generated by Payment Handler) or IOTP Error Blocks (both parties
 may generate them) and transmitted to the counter party.

 7. Eventually, the Payment Handler’s IOTP Payment Bridge recognizes
 the termination of the payment transaction and reports this by the
 continuation status "End" on the output parameter of "Continue
 Process" (or "Start Payment Payment Handler"). Then, the IOTP
 Application Core issues the "Inquire Process State" API call and
 verifies whether an IOTP Payment Receipt Component has been
 returned. The IOTP Application Core wraps the payment receipt,
 the status response, and the optional payment scheme specific data
 in an IOTP Payment Response Block and transmits this block to the
 Consumer.

 However, any of these API calls may fail or any response might be
 incomplete (e.g., lack of payment receipt). Then, the Consumer
 has to be notified about the failed processing by an IOTP Error
 Block.

 Finally, the Payment Handler terminates the payment transaction
 with the "Change Process State" API call without awaiting any
 further response from the Consumer. Further failures are not
 reported to the Consumer.

 Note that it might be possible that the Consumer’s IOTP Payment
 Bridge has returned the previous payment scheme specific data with
 the continuation status "End". Even in the absence of this
 knowledge - this status is not exchanged between the Consumer and
 the Payment Handler - the Payment Handler must not supply any
 further payment scheme specific data. Such data will be rejected
 by the Consumer’s IOTP Payment Bridge.

 8. The Consumer passes the optional payment scheme specific data and
 the payment receipt to the fixed IOTP Payment Bridge by "Continue
 Process" and "Check Payment Receipt" API calls.

 Afterwards, the IOTP Application Core issues the "Inquire Process
 State" API call and verifies whether extensions to the payment
 receipt have been returned.

 Finally, the transaction is terminated by calling the "Change
 Process State" API function which verifies and synchronizes the
 reported payment status with the local one and signals any
 inconsistencies. Any Inconsistency and returned status text
 should be displayed to the Consumer.

Hans, et al. Informational [Page 28]

RFC 3867 Payment API for IOTP November 2004

 At this point, the payment transaction has already been closed by
 the Payment Handler. Therefore, any failure has to be resolved
 locally or out-of-band.

2.5. Payment Inquiry

 In Baseline IOTP, Payment inquiries are initiated by the Consumer in
 order to verify the current payment progress and process state at the
 remote Payment Handler. In the figure 6, PS1 and PS2 indicate the
 first and second PayScheme Packaged Content data, and [] indicates
 optional.

 +
 Consumer Start Payment Inquiry() -> IPB
 Start Payment Inquiry Response([PS1]) <- IPB
 Create and transmit Inquiry Request Trading Block
 Payment Handler Inquire Payment Status([PS1]) -> IPB
 Inquire Payment Status Res.(State, [PS2]) -> IPB
 Create and transmit Inquiry Response Trading
 Block
 Consumer If Payment Scheme Data present
 | Continue Process(PS2) -> IPB
 | Continue Process Response(CS=End) <- IPB
 Change Process State(State) -> IPB
 Change Process State Response(State) <- IPB
 +

 Figure 6. Remote Process State Inquiry

 1. The Consumer might initiate a payment inquiry once the payment
 transaction has been opened by the IOTP Application Core, i.e., at
 any time after the initial submission of the IOTP Payment Request
 Block. The IOTP Application Core requests any additional specific
 payment scheme data from the IOTP Payment Bridge which has been
 fixed during brand selection (cf. Section 2.3) using the "Start
 Payment Inquiry" API request.

 Erroneous API responses should be reported to the Consumer and
 valid alternatives (typically retry and cancellation) should be
 presented by the IOTP Application Core.

 This request might perform the complete initialization, e.g.,
 availability check of periphery or pass phrase supplement, and the
 IOTP Payment Bridge reports lack of capability quite similarly to
 the "Check Payment Possibility" request to the IOTP Application
 Core.

Hans, et al. Informational [Page 29]

RFC 3867 Payment API for IOTP November 2004

 If the IOTP Payment Bridge requests wallet identifiers or pass
 phrases anywhere during the payment process, they should be
 requested by this API function, too. It is recommended that the
 IOTP Application Core store plain text pass phrases only in
 runtime memory.

 The IOTP Application Core encapsulates any Payment Scheme
 Component in an IOTP Inquiry Request Block and submits the block
 to the Payment Handler.

 2. The Payment Handler analyses the IOTP Inquire Request Block, maps
 the Transaction Identifier to payment related attributes (brand,
 consumer and payment identifiers), determines the appropriate IOTP
 Payment Bridge, and forwards the request to the this IOTP Payment
 Bridge ("Inquire Payment Status"). The IOTP Application Core
 transforms the response to an IOTP Inquiry Response Block and
 transmits it to the Consumer.

 3. On receipt of the respective IOTP Inquiry Response Block the
 Consumer’s IOTP Application Core submits any encapsulated payment
 scheme specific data to the IOTP Payment Bridge for verification
 ("Continue Process").

 4. The IOTP Application Core passes the reported payment status
 (except textual descriptions) to the IOTP Payment Bridge ("Change
 Process State") for verification purposes and payment status
 change. The IOTP Payment Bridge reports any inconsistencies as
 well as the final payment status to the IOTP Application Core.

 Any additional information that might be of interest to the
 Consumer has to be displayed by the IOTP Payment Bridge or
 Existing Payment Software on their own.

2.6. Abnormal Transaction Processing

2.6.1. Failures and Cancellations

 The IOTP specification distinguishes between several classes of
 failures:

 o Business and technical errors
 o Error depths of transport, message and block level
 o Transient errors, warnings, and hard errors.

 Any IOTP Payment API has to deal with the receipt of failure
 notifications by and failure responses. This proposal has borrowed
 the basic mechanisms for error reporting between the IOTP Application
 Core and the IOTP Payment Bridge from the actual protocol: Business

Hans, et al. Informational [Page 30]

RFC 3867 Payment API for IOTP November 2004

 errors are reported by Status Components within IOTP Response Blocks
 while technical errors are signaled by Error Components within IOTP
 Error Blocks.

 Cancellations are mimicked as specific business errors which might be
 initiated by each trading party.

 Preferring slim interfaces, this IOTP Payment API introduces one
 additional Error Code value for business error indication - errors
 can be raised on every API call. On receipt of this value, the IOTP
 Application Core has to infer further details by the issuance of the
 API function call "Inquire Process State".

 +
 Any Party Issue some API request -> IPB
 Error Response(Error Code) <- IPB
 On "Business Error" response
 | Inquire Process State() -> IPB
 | Inquire P.S. Resp.(State, Receipt) <- IPB
 Analyze local process state and try to resolve
 with optional user interaction
 If Process State Change needed
 | Change Process State (State) -> IPB
 | Change Process State Response(State) <- IPB
 If counter party’s notification required
 | Create Error or Cancel Block (, add to next
 | message,) and transmit it to counter party
 +

 Figure 7. Error Response from IPB

 The specific Completion Codes "ConsCancelled", "MerchCancelled", and
 "PaymCancelled" - returned by "Inquire Process State" - determine
 that the IOTP Cancel Block has to be created instead of an IOTP Error
 Block.

 The rules for determining the required behavior of the IOTP
 Application Core are given in the IOTP specification.

 Note that any payment (intermediate) termination, i.e., failures,
 cancellations, and even successes are always reported to the IOTP
 Payment Bridge by the API function "Change Process State". This API
 function does both status changes and consistency checking /
 synchronization. Any suspicion of inconsistency should be reported
 by the IOTP Payment Bridge for display by the IOTP Application Core.

Hans, et al. Informational [Page 31]

RFC 3867 Payment API for IOTP November 2004

 +
 Any Party Error Block or Cancel Block Received
 If Change Process State required
 | Change Process State (State) -> IPB
 | Change Process State Response(State) <- IPB
 +

 Figure 8. Error Notification from counter party

 Not every failure might be visible at the IOTP layer, e.g., the
 processing of payment transactions might temporarily be hampered by
 intermediate failures at the payment scheme or protocol transport
 layer which might be resolved by the actual components.

 However, final failures or cancellations have to be reported at the
 IOTP layer. E.g., communication time-outs and heavily faulty
 communication channels may disable the transaction.

 Any system component may implement time-out recognition and use the
 aforementioned API mechanisms for the notification of process state
 changes. But, time-outs may happens while communicating with both
 the counter party and local system components, like chip card readers
 or IOTP Payment Bridges. Anyway, the Consumer’s IOTP Application
 Core should notify the Consumer about the resolution alternatives,
 i.e., retry, suspension, and cancellation.

2.6.2. Resumption

 Payment transaction resumption may apply at different steps of a
 payment transaction:

 o The Consumer’s and Payment Handler’s view of the transaction might
 not be synchronized: Due to different time-out values the payment
 transaction may not have been suspended by the counter party.

 Any "Resume Payment ..." API function responds with an Error Code
 on non-suspended payment transaction that signals a business
 error. Afterwards the IOTP Application Core has to issue the
 "Inquire Process State" API call for further analysis of the
 process state.

 o One IOTP message sent by one party might not be processed
 successfully or even received by the counter party. This needs to
 be handled by the actual payment scheme. It is expected that the
 IOTP Application Core will not recognize anything.

Hans, et al. Informational [Page 32]

RFC 3867 Payment API for IOTP November 2004

 o IOTP does not provide any specific signal for payment resumption.
 On receipt of every IOTP Payment Exchange Block, the IOTP
 Application Core has to decide whether this Block belongs to a
 pending transaction or to a suspended transaction that should be
 resumed. The IOTP Application Core might call the "Inquire
 Process State" API function to update any lack of knowledge.

 Any "Resume Payment" API function responds with an Error Code on
 non-suspended payment transaction that signals a business error.
 Similar, the "Continue Process" API function should report
 business errors on non-pending payment transactions.

 o The payment transaction may not have been created at the Payment
 Handler (early suspension and failed data transmission). In that
 case, the IOTP Application Core should respond with a business
 error that signals the repetition of the payment transaction (by
 the Consumer).

 Any "Resume Payment", "Continue Process" or "Inquire Process
 State" API function should return with an Error Code
 "AttValIllegal" on non-existent payment transaction whereby the
 further Error Attribute "Names" denote the payment identifier.

 o The IOTP Application Core should always request fresh payment
 scheme specific data on resumption - for synchronization purposes
 with the Existing Payment Software. Old data in the cache that
 has not been sent to the counter party should not be accessed.

 If the Consumer does not reconnect within an acceptable amount of
 time, the Payment Handler’s system may perform local failure
 resolution in order to close the transaction and to retain resources
 for other transactions ("Change Process State"). If the Consumer
 reconnect afterwards, an IOTP Payment Response or IOTP Error Block
 could be generated.

2.7. IOTP Wallet Initialization

 At startup or on explicit user request the IOTP Application Core
 should check its IOTP Payment Bridges’ internal status by searching
 for pending payment transactions.

 1. The IOTP Application Core interrogates the registered IOTP Payment
 Bridges about pending payment transactions. The IOTP Application
 Core may store indicators for pending transactions and use them
 for driving any subsequent inquiry ("Inquire Pending Payment").

Hans, et al. Informational [Page 33]

RFC 3867 Payment API for IOTP November 2004

 2. If one or more IOTP Payment Bridges report the presence of pending
 transactions, the IOTP Application Core may try to suspend
 ("Change Process State") or resume (only Consumer: "Resume Payment
 Consumer") the pending transactions (on user request).

 The IOTP Payment Bridge may deny the processing of any new payment
 transactions until the pending transactions have been processed.
 Such denials are signaled by the error code "Business Error".

2.8. Payment Software Management

 The IOTP Application Core provides only a simple and generic
 interface for the registration of new payment methods / instruments
 ("Manage Payment Software"). It receives the initial user request
 and defers the actual registration to the corresponding IOTP Payment
 Bridge.

 The IOTP Application Core may also activate the Existing Payment
 Software for further payment instrument and wallet administration.

3. Mutuality

 The Payment API is formalized using the eXtensible Markup Language
 (XML). It defines wrapper elements for both the input parameters and
 the API function’s response. In particular, the response wrapper
 provides common locations for Error Codes and Error Descriptions.

 It is anticipated that this description reflects the logical
 structure of the API parameter and might be used to derive
 implementation language specific API definitions.

 XML definition:

 <!ELEMENT IotpPaymentApiRequest (
 FindAcceptedPaymentBrand |
 FindAcceptedPaymentProtocol |
 GetPaymentInitializationData |
 FindPaymentInstrument |
 CheckPaymentPossiblity |
 StartPaymentConsumer |
 StartPaymentPaymentHandler |
 ResumePaymentConsumer |
 ResumePaymentPaymentHandler |
 ContinueProcess |
 InquireProcessState |
 ChangeProcessState |
 InquireAuthChallenge |
 Authenticate |

Hans, et al. Informational [Page 34]

RFC 3867 Payment API for IOTP November 2004

 CheckAuthResponse |
 CheckPaymentReceipt |
 ExpandPaymentReceipt |
 RemovePaymentLog |
 PaymentInstrumentInquiry |
 InquirePendingPayment |
 ManagePaymentSoftware |
 StartPaymentInquiry |
 InquirePaymentStatus |
 CallBack)>

 <!ATTLIST IotpPaymentApi
 xml:lang NMTOKEN #IMPLIED
 ContentSoftwareID CDATA #IMPLIED
 xmlns CDATA #FIXED
 "http://www.iotp.org/2000/08/PaymentAPI" >

 <!ELEMENT IotpPaymentApiResponse (ErrorResponse?, (
 FindAcceptedPaymentBrandResponse |
 FindAcceptedPaymentProtocolResponse |
 GetPaymentInitializationDataResponse |
 FindPaymentInstrumentResponse |
 CheckPaymentPossiblityResponse |
 StartPaymentConsumerResponse |
 StartPaymentPaymentHandlerResponse |
 ResumePaymentConsumerResponse |
 ResumePaymentPaymentHandlerResponse |
 ContinueProcessResponse |
 InquireProcessStateResponse |
 ChangeProcessStateResponse |
 InquireAuthChallengeResponse |
 AuthenticateResponse |
 CheckAuthResponseResponse |
 CheckPaymentReceiptResponse |
 ExpandPaymentReceiptResponse |
 RemovePaymentLogResponse |
 PaymentInstrumentInquiryResponse |
 InquirePendingPaymentResponse |
 ManagePaymentSoftwareResponse |
 StartPaymentInquiryResponse |
 InquirePaymentStatusResponse |
 CallBackResponse)?)>

 <!ATTLIST IotpPaymentApiResponse
 xml:lang NMTOKEN #IMPLIED
 ContentSoftwareID CDATA #IMPLIED
 xmlns CDATA #FIXED
 "http://www.iotp.org/2000/08/PaymentAPI" >

Hans, et al. Informational [Page 35]

RFC 3867 Payment API for IOTP November 2004

 <!ELEMENT ErrorResponse (ErrorLocation+,PaySchemePackagedContent*) >
 <!ATTLIST ErrorResponse
 xml:lang NMTOKEN #IMPLIED
 ErrorCode NMTOKEN #REQUIRED
 ErrorDesc CDATA #REQUIRED
 Severity(Warning |
 TransientError |
 HardError) #REQUIRED
 MinRetrySecs CDATA #IMPLIED
 SwVendorErrorRef CDATA #IMPLIED >

 Most of the attribute items are intended for immediate insertion in
 the IOTP Error Block. The attribute values of the Error Location
 elements attribute have to enriched and transformed into Error
 Location Elements of the Error Component (cf. IOTP Specification).

 Attributes (cf. IOTP Specification):

 xml:lang Defines the language used by attributes or
 child elements within this component, unless
 overridden by an xml:lang attribute on a child
 element.

 ContentSoftwareId Contains information which identifies the
 software that generated the content of the
 element. Its purpose is to help resolve
 interoperability problems that might occur as
 a result of incompatibilities between messages
 produced by different software. It is a single
 text string in the language defined by
 "xml:lang". It must contain, as a minimum
 problems that might occur as a result of

 o the name of the software manufacturer,
 o the name of the software,
 o the version of the software, and
 o the build of the software.

 ErrorCode Contains an error code which indicates the
 nature of the error in the message in error.
 Valid values for the Error Code are given in
 the following section. This mnemonic enables
 the automatic failure resolution of the IOTP
 Application Core which analyzes the error code
 value in order to determine the continuation
 alternatives.

Hans, et al. Informational [Page 36]

RFC 3867 Payment API for IOTP November 2004

 ErrorDesc Contains a description of the error in the
 language defined by xml:lang. The content of
 this attribute is defined by the
 vendor/developer of the software that
 generated the Error Response Element.
 It is intended for user display and provides
 detailed explanations about the failure and
 its (out-of-band) resolution alternatives.

 Severity Indicates the severity of the error. Valid
 values are:

 o Warning. This indicates that although there
 is a message in error the IOTP Transaction
 can still continue.

 o TransientError. This indicates that the
 error in the message in error may be
 recovered if the message in error that is
 referred to by the "Names" attribute is
 resent.

 o HardError. This indicates that there is an
 unrecoverable error in the message in error
 and the IOTP Transaction must stop.

 MinRetrySecs This attribute should be present if "Severity"
 is set to "TransientError". It is the minimum
 number of whole seconds which the IOTP aware
 application which received the message
 reporting the error should wait before
 resending the message in error identified by
 the "ErrorLocation" attribute.

 If Severity is not set to
 "TransientError" then the value of this
 attribute is ignored.

 SwVendorErrorRef This attribute is a reference whose value is
 set by the vendor/developer of the software
 that generated the Error Element. It should
 contain data that enables the vendor to
 identify the precise location in their
 software and the set of circumstances that
 caused the software to generate a message
 reporting the error.

Hans, et al. Informational [Page 37]

RFC 3867 Payment API for IOTP November 2004

 Content:

 ErrorLocation This identifies, where possible, the
 element and attribute in the message
 in error that caused the Error
 Element to be generated. If the
 "Severity" of the error is not
 "TransientError", more that one
 "ErrorLocation" may be specified as
 appropriate depending on the nature
 of the error and at the discretion of
 the vendor/developer of the IOTP
 Payment Bridge.

 Its definition coincides with the
 IOTP specification whereby the
 attributes "IotpMsgRef", "BlkRef" and
 "CompRef" are left blank,
 intentionally.

 PaySchemePackagedContent cf. Table 5

3.1. Error Codes

 The following table lists the valid values for the ErrorCode
 attribute of the Error Response Element. The first sentence of the
 error description contains the default text that can be used to
 describe the error when displayed or otherwise reported. Individual
 implementations may translate this into alternative languages at
 their discretion. However, not every error code may apply to every
 API call. An Error Code must not be more than 14 characters long.
 The Error Codes have been taken from the IOTP Specification and
 extended by some additional codes which are highlighted by a
 preceding asterisk.

 Generally, if the corrupt values have been user supplied, the IOTP
 Application Core might prompt for their correction. If the renewal
 fails or if the IOTP Application Core skips any renewals and some
 notification has to be send to the counter-party, the error code is
 encapsulated within an IOTP Error Block.

 However, the IOTP server application reports business errors -
 visible at the IOTP layer - in the Status Component of the respective
 Response Block.

 The IOTP Application Core may add the attributes (and values) within
 the ErrorLocation elements that are omitted by the IOTP Payment
 Bridge.

Hans, et al. Informational [Page 38]

RFC 3867 Payment API for IOTP November 2004

 The following table mentions any modification from this general
 processing for particular error values. Furthermore, it contains
 hints for developers of IOTP Application Core software components
 about the processing of error codes. Conversely, developers of IOTP
 Payment Bridges get impressions about the expected behavior of the
 IOTP Application Core.

 The IOTP Payment API assumes that the IOTP Application Core
 implements the dialog boxes needed for error resolution. But it does
 not assume, that the IOTP Payment Bridge actually relies on them.
 Instead, the IOTP Payment Bridge may try resolution on its own, may
 implement specific dialog boxes, and may signal only final failures.

 Note: This abstract document assumes that the API parameters are
 exchanged XML encoded. Therefore, several error values might
 disappear in lower level language specific derivations.

 Error Value Error Description
 ----------- -----------------

 Reserved Reserved. This error is reserved by the
 vendor/developer of the software. Contact
 the vendor/developer of the software for
 more information (see the SoftwareId
 attribute of the Message Id element in the
 Transaction Reference Block [IOTP]).

 XmlNotWellFrmd XML not well formed. The XML document is not
 well formed. See [XML] for the meaning of
 "well formed".

 XmlNotValid XML not valid. The XML document is well
 formed but the document is not valid. See
 [XML] for the meaning of "valid".
 Specifically:

 o the XML document does not comply with the
 constraints defined in the IOTP document
 type declaration, and
 o the XML document does not comply with the
 constraints defined in the document type
 declaration of any additional [XML-NS]
 that are declared.

 The Names attribute might refer some
 attributes and elements of the input
 parameter list.

Hans, et al. Informational [Page 39]

RFC 3867 Payment API for IOTP November 2004

 (*)ElNotValid Element not valid. Invalid element in terms
 of prescribed syntactical characteristics.

 The ElementRef attributes of ErrorLocation
 elements might refer to the corresponding
 elements (if they have ID attributes).

 The IOTP Application Core has to replace the
 error code with "XmlNotValid" before
 transmission to the counterparty.

 ElUnexpected Unexpected element. Although the XML
 document is well formed and valid, an
 element is present that is not expected in
 the particular context according to the
 rules and constraints contained in this
 specification.

 The ElementRef attributes of ErrorLocation
 elements might refer to the corresponding
 elements (if they have ID attributes).

 ElNotSupp Element not supported. Although the document
 is well formed and valid, an element is
 present that

 o is consistent with the rules and
 constraints contained in this
 specification, but
 o is not supported by the IOTP Aware
 Application which is processing the IOTP
 Message.

 The ElementRef attributes of ErrorLocation
 elements might refer to the corresponding
 elements (if they have ID attributes).

 ElMissing Element missing. Although the document is
 well formed and valid, an element is missing
 that should have been present if the rules
 and constraints contained in this
 specification are followed.

 The ElementRef attributes of ErrorLocation
 elements might refer to the corresponding
 elements (if they have ID attributes).

Hans, et al. Informational [Page 40]

RFC 3867 Payment API for IOTP November 2004

 ElContIllegal Element content illegal. Although the
 document is well formed and valid, the
 element contains values which do not conform
 the rules and constraints contained in this
 specification.

 The ElementRef attributes of ErrorLocation
 elements might refer to the corresponding
 element (if they have ID attributes).

 The IOTP Application Core has to replace the
 Error Code with "ElNotSupp" before
 transmission to the counter party, if the
 ErrorLocation elements refer to
 non-PackagedContent element.

 EncapProtErr Encapsulated protocol error. Although the
 document is well formed and valid, the
 Packaged Content of an element contains data
 from an encapsulated protocol which contains
 errors.

 The ElementRef attributes of ErrorLocation
 elements might refer to the corresponding
 element (if they have ID attributes).

 AttUnexpected Unexpected attribute. Although the XML
 document is well formed and valid, the
 presence of the attribute is not expected in
 the particular context according to the
 rules and constraints contained in this
 specification.

 The AttName attributes of ErrorLocation
 elements might refer to the corresponding
 attribute tags.

 (*)AttNotValid Attribute not valid. Invalid attribute value
 in terms of prescribed syntactical
 characteristics.

 The AttName attributes of ErrorLocation
 elements might refer to the corresponding
 attribute tags.

 The IOTP Application Core has to replace the
 error code with "XmlNotValid" before
 transmission to the counter party.

Hans, et al. Informational [Page 41]

RFC 3867 Payment API for IOTP November 2004

 AttNotSupp Attribute not supported. Although the XML
 document is well formed and valid, and the
 presence of the attribute in an element is
 consistent with the rules and constraints
 contained in this specification, it is not
 supported by the IOTP Aware Application
 which is processing the IOTP Message.

 AttMissing Attribute missing. Although the document is
 well formed and valid, an attribute is
 missing that should have been present if the
 rules and constraints contained in this
 specification are followed.

 The AttName attributes of ErrorLocation
 elements might refer to the corresponding
 attribute tags.

 If the attribute is required by the IOTP
 Document Type Declaration (#REQUIRED) the
 hints for non-valid attributes should be
 adopted, otherwise these for illegal
 attribute values.

 AttValIllegal Attribute value illegal. The attribute
 contains a value which does not conform to
 the rules and constraints contained in this
 specification.

 The AttName attributes of ErrorLocation
 elements might refer to the corresponding
 attribute tags - valid values are:

 BrandId: illegal/unknown Brand Identifier -
 If the brand is not recognized/known by any
 IOTP Payment Bridge, the IOTP Application
 Core may offer the registration of a new
 Payment Instrument.

 PaymentInstrumentId: illegal/unknown
 Payment Instrument Identifier - This
 indicates a serious communication problem if
 the attribute value has been reported by the
 same "wallet" on a previous inquiry
 requests. The IOTP Application Core has to
 replace the error code with
 "UnknownError" before transmission to the
 counter party.

Hans, et al. Informational [Page 42]

RFC 3867 Payment API for IOTP November 2004

 WalletId: illegal/unknown Wallet Identifier
 - It is assumed that the wallet identifier
 is checked before the pass phrase. On
 invalid wallet identifiers, the IOTP
 Application Core may open the dialog in
 order to request the correct wallet
 identifier. In addition, any pass phrase may
 be supplied by the user. The dialog should
 indicate the respective payment brand(s).
 The IOTP Application Core has to replace the
 error code with "UnknownError" before
 transmission to the counter party.

 Passphrase: illegal/unknown Pass Phrase -
 The IOTP Application Core may open the
 dialog in order to request the correct pass
 phrase. If the pass phrase is wallet
 identifier specific the dialog should
 display the wallet identifier. The IOTP
 Application Core has to replace the error
 code with "TransportError" before
 transmission to the counter party.

 Action: illegal / unknown / unsupported
 Action

 PropertyTypeList: lists contains illegal /
 unknown / unsupported Property Types - The
 IOTP Application Core tries only the local
 resolution but does never transmit any IOTP
 Error Block to the counter party.

 CurrCode: illegal/unknown/unsupported
 Currency Code

 CurrCodeType: illegal/unknown/unsupported
 Currency Code Type

 Amount: illegal/unknown/unsupported Payment
 Amount

 PayDirection: illegal/unknown/unsupported
 Payment Direction

 ProtocolId: illegal/unknown/unsupported
 Protocol Identifier

Hans, et al. Informational [Page 43]

RFC 3867 Payment API for IOTP November 2004

 OkFrom: illegal/unknown/unsupported OkFrom
 Timestamp

 OkTo: illegal/unknown/unsupported OkTo
 Timestamp

 ConsumerPayId: illegal/unknown Consumer
 Payment Identifier

 PaymentHandlerPayId: illegal/unknown Payment
 Handler Payment Identifier

 PayId: illegal/unknown Payment Identifier

 AttValNotRecog Attribute Value Not Recognized. The
 attribute contains a value which the IOTP
 Aware Application generating the message
 reporting the error could not recognize.

 The AttName attributes of ErrorLocation
 elements might refer to the corresponding
 attribute tags.

 MsgTooLarge Message too large. The message is too large
 to be processed by the IOTP Payment Bridge
 (or IOTP Application Core).

 ElTooLarge Element too large. The element is too large
 to be processed by the IOTP Payment Bridge
 (or IOTP Application Core).

 The ElementRef attributes of ErrorLocation
 elements might refer to the corresponding
 elements.

 ValueTooSmall Value too small or early. The value of all
 or part of an element content or an
 attribute, although valid, is too small.

 The ErrorLocation elements might refer to
 the corresponding attribute tags or
 elements.

 ValueTooLarge Value too large or in the future. The value
 of all or part of an element content or an
 attribute, although valid, is too large.

Hans, et al. Informational [Page 44]

RFC 3867 Payment API for IOTP November 2004

 The ErrorLocation elements might refer to
 the corresponding attribute tags or
 elements.

 ElInconsistent Element Inconsistent. Although the document
 is well formed and valid, according to the
 rules and constraints contained in this
 specification:

 o the content of an element is inconsistent
 with the content of other elements or
 their attributes, or

 o the value of an attribute is inconsistent
 with the value of one or more other
 attributes.

 The Error Description may contain further
 explanations.

 The ErrorLocation elements might refer to
 the corresponding attribute tags or elements
 that are inconsistent.

 TransportError Transport Error. This error code is used to
 indicate that there is a problem with the
 transport mechanism that is preventing the
 message from being received. It is typically
 associated with a "Transient Error".

 The connection to some periphery or the
 counter party could not be established,
 is erroneous, or has been lost.

 The Error Description may contain further
 narrative explanations, e.g., "chip card
 does not respond", "remote account manager
 unreachable", "Internet connection to xyz
 lost", "no Internet connection available",
 "no modem connected", or "serial port to
 modem used by another application". This
 text should be shown to the end user. If
 timeout has occurred at the Consumer this
 text should be shown and the Consumer may
 decide how to proceed - alternatives are
 retry, payment transaction suspension, and
 cancellation.

Hans, et al. Informational [Page 45]

RFC 3867 Payment API for IOTP November 2004

 MsgBeingProc Message Being Processed. This error code is
 only used with a Severity of Transient
 Error. It indicates that the previous
 message, which may be an exchange message or
 a request message, is being processed and,
 if no response is received by the time
 indicated by the "MinRetrySecs" attribute,
 then the original message should be resent.

 SystemBusy System Busy. This error code is only used
 with a Severity of Transient Error. It
 indicates that the IOTP Payment Bridge or
 Existing Payment Software that received the
 API request is currently too busy to handle
 it. If no response is received by the time
 indicated by the "MinRetrySecs" attribute,
 then the original message should be resent.

 The Error Description may provide further
 explanations, e.g., "wallet / chip card
 reader is unavailable or locked by another
 payment transaction", "payment gateway is
 overloaded", "unknown chip card reader", or
 "unrecognized chip card inserted, change
 chip card".

 The Consumer’s IOTP Application Core may
 display the error description and ask the
 Consumer about the continuation -
 alternatives are retry, payment transaction
 suspension, and cancellation.

 UnknownError Unknown Error. Indicates that the
 transaction cannot complete for some reason
 that is not covered explicitly by any of the
 other errors. The Error description
 attribute should be used to indicate the
 nature of the problem.

 The ErrorLocation elements might refer to
 the corresponding attribute tags or elements
 that are inconsistent.

 (*)SyntaxError Syntax Error. An (unknown) syntax error has
 occurred.

Hans, et al. Informational [Page 46]

RFC 3867 Payment API for IOTP November 2004

 The ErrorLocation elements might refer to
 the corresponding attribute tags or elements
 that are inconsistent.

 The IOTP Application Core has to replace the
 error code with "XmlNotValid" or
 "UnknownError" before transmission to the
 counter party.

 (*)ReqRefused Request refused. The API request is
 (currently) refused by the IOTP Payment
 Bridge. The error description may provide
 further explanations, e.g., "wallet / chip
 card reader is unavailable or locked by
 another payment transaction", "payment
 gateway is overloaded", "unknown chip card
 reader", or "unrecognized chip card
 inserted, change chip card".

 The Consumer’s IOTP Application Core may
 display the error description and ask the
 Consumer about the continuation -
 alternatives are retry, payment transaction
 suspension, and cancellation. Denials due to
 invalid Process States should be signaled by
 "BusinessError". Typically, this kind of
 error is not passed to the counter party’s
 IOTP Application Core. Otherwise, it maps to
 "TransportError" or "UnknownError".

 (*)ReqNotSupp Request not supported. The API
 function(ality) has not been implemented in
 the IOTP Payment Bridge. Typically, this
 kind of error is not passed to the
 counter party’s IOTP Application Core.
 Otherwise, it maps to "TransportError" or
 "UnknownError".

 (*)BusError Business Error. The API request has been
 rejected because some payment transaction
 has an illegal payment status.
 Particularly, this error code is used to
 signal any raise of payment business layered
 failures.

 The ErrorLocation elements may refer to
 payment transactions using the party’s
 Payment Identifier - it defaults to the

Hans, et al. Informational [Page 47]

RFC 3867 Payment API for IOTP November 2004

 current transaction or might contain the
 current payment transaction party’s Payment
 Identifier - identified by the ElementRef
 attribute while the AttName attribute is
 fixed with "PayId".

 The IOTP Application Core must inquire the
 IOTP Payment Bridge about the actual Process
 State which actually encodes the business
 error ("Inquire Process State").
 This error code must not be
 passed to the counter party’s IOTP
 Application Core.

 Table 2: Common Error Codes

 The IOTP Payment Bridge may also use the error description in order
 to notify the Consumer about further necessary steps for failure
 resolution, e.g., "Sorry, your payment transaction failed.
 Unfortunately, you have been charged, please contact your issuer."

3.2. Attributes and Elements

 The following table explains the XML attributes in alphabetical order
 - any parenthesized number after the attribute tag is a recommended
 maximal length of the attribute value in characters:

 Attribute Description
 --------- -----------

 Amount (11) Indicates the payment amount to be paid in
 AmountFrom(11) whole and fractional units of the currency.
 AmountTo (11) For example $245.35 would be expressed
 "245.35". Note that values smaller than the
 smallest denomination are allowed. For
 example one tenth of a cent would be
 "0.001".

 AuthenticationId An identifier specified by the
 authenticator which, if returned by the
 organization that receives the
 authentication request, will enable the
 authenticator to identify which
 authentication is being referred to.

Hans, et al. Informational [Page 48]

RFC 3867 Payment API for IOTP November 2004

 BrandId (128) This contains a unique identifier for the
 brand (or promotional brand). It is used to
 match against a list of Payment Instruments
 which the Consumer holds to determine
 whether or not the Consumer can pay with the
 Brand.

 Values of BrandId are managed under
 procedure being described in the IOTP
 protocol specification.

 BrandLogoNetLocn The net location which can be used to
 download the logo for the organization (cf.
 IOTP Specification).

 The content of this attribute must conform
 to [URL].

 BrandName This contains the name of the brand, for
 example "MasterCard Credit". This is the
 description of the Brand which is displayed
 to the consumer in the Consumer’s language
 defined by "xml:lang". For example it might
 be "American Airlines Advantage Visa". Note
 that this attribute is not used for matching
 against the payment instruments held by the
 Consumer.

 BrandNarrative This optional attribute is
 used by the Merchant to indicate some
 special conditions or benefit which would
 apply if the Consumer selected that brand.
 For example "5% discount", "free shipping
 and handling", "free breakage insurance for
 1 year", "double air miles apply", etc.

 CallBackFunction A function which is called whenever there is
 a change of Process State or payment
 progress, e.g., for display updates. However,
 the IOTP Payment Bridge may use its own
 mechanisms and dialog boxes.

 CallBackLanguageList
 A list of language codes which contain, in
 order of preference, the languages in which
 the text passed to the Call Back function
 will be encoded.

Hans, et al. Informational [Page 49]

RFC 3867 Payment API for IOTP November 2004

 CompletionCode (14) Indicates how the process completed.
 It is required if ProcessState is set to
 "Failed" otherwise it is ignored. Valid
 values as well as recovery options are given
 in the IOTP specification.

 The IOTP Payment Bridge may also use the
 Status Description to notify the Consumer
 about further necessary steps in order to
 resolve some kind of business failures,
 e.g.,

 o "sorry, your payment transaction failed.
 Unfortunately, you have been charged,
 please contact your issuer."
 o "insufficient capacity left (on your
 stored value card) for refund",
 o "payment failed/chip card error/internal
 error, please contact your payment
 instrument’s issuer"

 ConsumerDesc A narrative description of the Consumer.

 ConsumerPayId (14) An unique identifier specified by the
 Consumer that, if returned by the Payment
 Handler in another Payment Scheme Component
 or by other means, enables the Consumer to
 identify which payment is being referred to.

 This unique identifier is generated by the
 IOTP Application Core and submitted to the
 IOTP Payment Bridge on every API call. It
 may equal the Payment Handler Payment
 Identifiers but need not necessarily be so.

 The uniqueness extends to multiple payment
 instruments, payment brands, payment
 protocols, wallet identifiers, and even
 multiple IOTP Payment Bridges.

 ContStatus During payment progress, this status value
 indicates whether the payment needs to be
 continued with further IOTP Payment Scheme
 Component exchanges with the remote party.
 "End" indicates that the reported payment
 scheme data is the last data to be exchanged
 with the counter party.

Hans, et al. Informational [Page 50]

RFC 3867 Payment API for IOTP November 2004

 ContentSoftwareId This contains information that identifies
 the software that generated the content of
 the element. Its purpose is to help resolve
 interoperability problems that might occur
 as a result of incompatibilities between
 messages produced by different software. It
 is a single text string in the language
 defined by xml:lang. It must contain, as a
 minimum:

 o the name of the software manufacturer,
 o the name of the software,
 o the version of the software, and
 o the build of the software.

 CurrCodeType (14) Indicates the domain of the CurrCode. This
 attribute is included so that the currency
 code may support nonstandard currencies
 such as frequent flyer point, trading
 stamps, etc. Its values may be

 o ISO-4217-A, the default, indicates the
 currency code is the three-letter
 alphabetic code that conform to ISO-4217
 [ISO4217].
 o IOTP indicates that the values of
 CurrCode are managed under the procedure
 described in [IOTP].

 CurrCode (14) A code which identifies the currency to be
 used in the payment. The domain of valid
 currency codes is defined by "CurrCodeType"

 MerchantPayId (14) An private identifier specified by the
 Merchant which will enable the Merchant to
 identify which payment is being referred to.
 It is a pure private item and is never sent
 to any other party. It is provided by the
 IOTP Payment Bridge on payment preparation
 during brand compilation.

 Cf. To "ConsumerPayId" for note about
 uniqueness.

Hans, et al. Informational [Page 51]

RFC 3867 Payment API for IOTP November 2004

 MerchantOrgId (64) A local item that might refer to some
 specific shop in a multi shop environment.
 This item is optional and might enrich the
 Wallet Identifier which itself can be used
 for the same purpose.

 Name Distinguishes between multiple occurrences
 of Packaged Content Elements at the same
 point in IOTP. For example:

 <ABCD>
 <PackagedContent Name=’FirstPiece’>
 snroasdfnas934k
 </PackagedContent>
 <PackagedContent Name=’SecondPiece’>
 dvdsjnl5poidsdsflkjnw45
 </PackagedContent>
 </ABCD>

 The "Name" attribute may be omitted, for
 example if there is only one Packaged
 Content element.

 OkFrom (30) The date and time in UTC Format range
 OkTo (30) indicated by the merchant in which the
 Payment Handler may accept the payment.
 For more information, see [UTC].

 Passphrase (32) Payment wallets may use pass phrase
 protection for transaction data and payment
 instruments’ data. However, it is assumed
 that there exists a public and customizable
 payment instrument identifier such that
 these identifiers together with their
 relationship to payment brands, payment
 protocols, payment directions, and currency
 amounts can be queried by the IOTP
 application without any pass phrase
 knowledge.

 PayDirection Indicates the direction in which the
 payment for which a Brand is being selected
 is to be made. Its values may be:

 o Debit: The sender of the Payment Request
 Block (e.g., the Consumer) to which this
 Brand List relates will make the payment
 to the Payment Handler, or

Hans, et al. Informational [Page 52]

RFC 3867 Payment API for IOTP November 2004

 o Credit: The sender of the Payment Request
 Block to which this Brand List relates
 will receive a payment from the Payment
 Handler.

 PayId (14) This attribute is introduced for API
 simplification:

 o The Consumer has to identify PayId and
 ConsumerPayId.

 o The Merchant has to identify PayId and
 MerchantPayId.

 o The Payment Handler has to identify PayId
 and Payment Handler Pay Id.

 PayInstId This contains the unique identifier used
 internally by the IOTP Payment
 Bridge/Existing Payment Software.

 PayInstName This contains the user-defined name of the
 payment instrument. There exist no
 (technical) constraints like uniqueness. The
 "xml:lang" attribute denotes the language
 encoding of its value.

 PaymentHandlerDesc A narrative description of the Payment
 Handler.

 PaymentHandlerPayId An unique identifier specified by the
 (14) Payment Handler that, if returned by the
 Consumer in another Payment Scheme Component
 or by other means, enables the Payment
 Handler to identify which payment is being
 referred to. It is required whenever it is
 known.

 Cf. To "ConsumerPayId" for note about
 uniqueness.

 PaymentInstrumentId An identifier for a specific payment
 (32) instrument, e.g., "credit card", "Mondex card
 for English Pounds". This identifier is
 fully customizable. It is assumed, that it
 does not contain confidential information or
 even an indication of it. The payment

Hans, et al. Informational [Page 53]

RFC 3867 Payment API for IOTP November 2004

 instrument identifier is unique within each
 payment brand. It is displayed to the
 Consumer during brand selection.

 PayReceiptNameRefs Optionally contains element references to
 (32) other elements (containing payment scheme
 specific data) that together make up the
 receipt. Note that each payment scheme
 defines in its supplement the elements that
 must be referenced

 The IOTP Application Core should save all
 the components referenced so that the
 payment receipt can be reconstructed when
 required.

 PayReqNetLocn The Net Location indicating where an
 unsecured Payment Request message should be
 sent if this protocol choice is used.

 The content of this attribute must conform
 to [URL] and depends on the Transport
 Mechanism.

 PercentComplete (3) A number between 0 and 100 which indicates
 the progress of the payment transaction. The
 values range between 0 and 99 for pending
 and suspended transactions.

 ProcessState Contains a Process State Code that
 indicates the current state of the process
 being carried out. Valid values are:

 o NotYetStarted. The Payment Request Block
 has been received but processing of the
 Payment Request has not yet started

 o InProgress. The payment transaction is
 pending. The processing of the (Payment)
 Request Block has started but it is not
 yet complete.

 o (*)Suspended: The payment transaction has
 been suspended and can be resumed.

 This process state is mapped to
 "InProgress", if it is passed to the
 counter party’s IOTP Application Core.

Hans, et al. Informational [Page 54]

RFC 3867 Payment API for IOTP November 2004

 o CompletedOk. The processing of the (Payment)
 Request Block and any following Payment
 Exchange Blocks has completed successfully.

 o Failed. The payment processing has finally
 failed for a Business Error.

 o ProcessError. This value is only used
 when the Status Component is being used in
 connection with an Inquiry Request Trading
 Block. It indicates there was a Technical
 Error in the Request Block which is being
 processed or some internal processing
 error. Each party’s IOTP Payment Bridge
 uses this value in order to notify the
 IOTP Application Core about the presence
 of technical errors.

 PropertyType (14) The property type defines codes used for
 interrogation of specific properties about a
 payment instrument. They are unique for each
 payment brand. The predefined property "all"
 is used on general inquiries. However, these
 property types are not used during normal
 payment processing. E.g., they may apply to
 payment brand specific transactions or
 out-of-band failure resolution.

 PropertyDesc The property description carries the
 respective human readable property (value)’s
 description.

 PropertyValue The actual property value intends automatic
 post processing.

 ProtocolBrandId (64)This is an identifier to be used with a
 particular payment protocol. For example,
 SET and EMV have their own well defined, yet
 different, values for the Brand identifier
 to be used with each protocol. The valid values
 of this attribute are defined in the
 supplement for the payment protocol
 identified by "ProtocolId" that describes
 how the payment protocol works with IOTP.
 Identifier maps to at most one Protocol
 Brand Identifier.

Hans, et al. Informational [Page 55]

RFC 3867 Payment API for IOTP November 2004

 ProtocolId (64) An identifier for a specific payment
 protocol and version, e.g., "SETv1.0",
 "ecash". Valid values are defined by
 supplements to the IOTP specification and
 they are unique within each payment brand.

 ProtocolIds A sequence of Protocol Identifiers

 ProtocolName A narrative description of the payment
 protocol and its version in the language
 identified by "xml:lang". For example
 "Secure Electronic Transaction Version 1.0".
 Its purpose is to help provide information
 on the payment protocol being used if
 problems arise.

 SecPayReqNetLocn The Net Location indicating where a secured
 Payment Request message should be sent if
 this protocol choice is used.

 A secured payment involves the use of a
 secure channel such as [TLS] in order
 to communicate with the Payment Handler.

 The content of this attribute must conform
 to [URL].

 ReceiverOrgId The Organization Identification which
 receives the payment bridge processing
 Trading Role Data PackagedContent.

 StatusDesc (256) An optional textual description of the
 current process state in the language
 identified by "xml:lang" that should be
 displayed to the Consumer. The usage of this
 attribute is defined in the payment
 supplement for the payment method being
 used. Particularly, it provides hints for
 out-of-band failure resolution. Its length
 is limited to 256 characters.

 StyleSheetNetLocn This contains the net location to a style
 sheet with visualisation rules for XML
 encoded data.

 TimeStamp (30) The date and time in UTC Format when the
 payment transaction has been started.
 For more information on UTC, see [UTC].

Hans, et al. Informational [Page 56]

RFC 3867 Payment API for IOTP November 2004

 WalletId (32) Many existing payment wallet software are
 multiple wallet capable. The Wallet
 Identifier selects the actual wallet. It is
 assumed, that the wallet identifier is a
 public item, that might be stored by the
 IOTP Application Core.

 xml:lang Defines the language used by the Process
 State Description attribute (cf. IOTP
 Specification)

 Table 3: Attributes

 The following table explains the XML elements in alphabetical order:

 Element Description
 ------- -----------

 Algorithm This contains information which describes
 an Algorithm that may be used to generate
 the Authentication response.

 The algorithm that may be used is
 identified by the Name attribute (cf. IOTP
 Specification).

 AuthReqPackagedContent The Authentication Request Packaged
 Content originates from a Authentication
 (Data/Response) Component’s content
 whereby the outermost element tags are
 prefixed with "AuthReq". Its declaration
 coincides with the Packaged Content’s
 declaration (cf. IOTP Specification). It
 encapsulates the authentication challenge
 value. The content of this information is
 defined in the supplement for a payment
 protocol.

 AuthResPackagedContent The Authentication Response Packaged
 Content originates from a Authentication
 Response Component’s content whereby the
 outermost element tags are prefixed with
 "AuthRes".

 Its declaration coincides with the
 Packaged Content’s declaration (cf. IOTP
 Specification). It encapsulates the

Hans, et al. Informational [Page 57]

RFC 3867 Payment API for IOTP November 2004

 authentication response value. The
 content of this information is defined in
 the supplement for a payment protocol.

 BrandPackagedContent Container for further payment brand
 description. Its content originates from
 a Brand Element content whose outermost
 element tags are prefixed with "Brand".
 Its declaration coincides with the
 Packaged Content’s declaration (cf. IOTP
 Specification).

 BrandSelBrandInfoPackagedContent
 This contains any additional data that
 may be required by a particular payment
 brand. It forms the content of the Brand
 Selection Brand Info Element.

 BrandSelProtocolAmountInfoPackagedContent
 This contains any additional data that
 may be required by a particular payment
 brand in the format. It forms the content
 of the Brand Selection Protocol Amount
 Info Element.

 BrandSelCurrencyAmountInfoPackagedContent
 This contains any additional data that is
 payment brand and currency specific in
 the format. It forms the content of the
 Brand Selection Currency Amount Info
 Element.

 MerchantData Any merchant related data that might be
 used by the IOTP Payment Bridge for
 different purposes, e.g., it might
 contain IDs to access some mall data,
 but not cryptographic keys. Its Packaged
 declaration coincides with the Content’s
 declaration (cf. IOTP Specification).

 PackagedContent Generic Container for non-IOTP data (cf.
 IOTP Specification).

 PayProtocolPackagedContent
 The Pay Protocol Packaged Content
 originates from a Pay Protocol
 Element’s content whereby the outermost
 element tags are prefixed with

Hans, et al. Informational [Page 58]

RFC 3867 Payment API for IOTP November 2004

 "PayProtocol". It contains information
 about the protocol which is used by
 the payment protocol. The content of
 this information is defined in the
 supplement for a payment protocol. Its
 declaration coincides with the Packaged
 Content’s declaration (cf. IOTP
 Specification).

 PaySchemePackagedContent
 The PayScheme Packaged Content originates
 from a Payment Scheme Component’s content
 whereby the outermost element tags are
 prefixed with "PayScheme". Its
 declaration coincides with the Packaged
 Content’s declaration (cf. IOTP
 Specification). It carries the payment
 specific data. The content of this
 information is defined in the supplement
 for a payment protocol.

 ProtocolAmountPackagedContent
 The Protocol Amount Packaged Content
 originates from a Protocol Amount
 Element’s content whereby the outermost
 element tags are prefixed with "Amount".
 Its declaration coincides with the
 Packaged Content’s declaration (cf. IOTP
 Specification). It contains information
 about the protocol which is used by the
 payment protocol. The content of this
 information is defined in the supplement
 for a payment protocol.

 ProtocolBrandPackagedContent
 The Protocol Brand Packaged Content
 originates from a Protocol Brand
 Element’s content whereby the outermost
 element tags are prefixed with
 "ProtocolBrand". Its declaration
 coincides with the Packaged Content’s
 declaration (cf. IOTP Specification). It
 contains information about the brand
 which might be used by the payment
 protocol. The content of this information
 is defined in the supplement for a
 payment protocol.

Hans, et al. Informational [Page 59]

RFC 3867 Payment API for IOTP November 2004

 ResponsePackagedContent
 Container for authentication response
 data. Its content originates from a
 Authentication Response Component’s
 Packaged Content whose outermost element
 tags are prefixed with "Response". Its
 declaration coincides with the Packaged
 Content’s declaration (cf. IOTP
 Specification).

 TradingRoleDataPackagedContent
 The TradingRoleData Packaged Content
 originates from a TradingRoleData
 Component’s content whereby the outermost
 element tags are prefixed with
 "TradingRoleData". Its declaration
 coincides with the Packaged Content’s
 declaration (cf. IOTP Specification). It
 contains information from Merchant to
 Payment Handler via Consumer about the
 protocol which is used by the payment.
 The content of this information is
 defined in the supplement for a payment
 protocol. The Name attribute in this
 packaged contents must include prefix as
 "Payment:" to indicate that the payment
 bridge processes this, for example
 "Payment:SET-OD". See [SET/IOTP] for
 more information.

 The element’s declaration coincides with
 the Packaged Content’s declaration (cf.
 IOTP Specification).

 Table 4: Elements

 XML definition:

 <!ENTITY % AuthReqPackagedContent "PackagedContent">
 <!ENTITY % AuthResPackagedContent "PackagedContent">

 <!ENTITY % BrandPackagedContent "PackagedContent">
 <!ENTITY % BrandSelInfoPackagedContent "PackagedContent">
 <!ENTITY % BrandSelProtocolAmountPackagedContent
 "PackagedContent">
 <!ENTITY % BrandSelCurrencyAmountPackagedContent
 "PackagedContent">
 <!ENTITY % ProtocolAmountPackagedContent

Hans, et al. Informational [Page 60]

RFC 3867 Payment API for IOTP November 2004

 "PackagedContent">
 <!ENTITY % PayProtocolPackagedContent "PackagedContent">
 <!ENTITY % TradingRoleDataPackagedContent "PackagedContent">
 <!ENTITY % MerchantData "PackagedContent">
 <!ENTITY % PaySchemePackagedContent "PackagedContent">

3.3. Process States

 The IOTP Payment API supports six different attribute values that
 encode the transaction status from the IOTP’s point of view, i.e.,
 the appropriate point of view at the interface between the IOTP
 Application Core and IOTP Payment Bridge. This point of view does
 not completely mimic the more detailed view on the actual payment by
 the actual Existing Payment Software or IOTP Payment Bridge.

 The following three tables distinguish between the Merchant’s,
 Consumer’s, and Payment Handlers’ environment. They extend the
 aforementioned explanations towards the mapping between IOTP process
 states and the internal payment scheme related states of the Existing
 Payment Software/IOTP Payment Bridge.

3.3.1. Merchant

 The Merchant’s point of view of payment is limited to the local
 payment initiation being interlaced with order processing because
 IOTP assigns the actual payment processing to the Payment Handler.

 ProcessState Description
 ------------ -----------

 NotYetStarted The Payment Transaction exists within the
 IOTP Application Core, i.e., the
 Merchant’s shop has already signaled to
 the IOTP Application Core that an IOTP
 transaction has been initiated by the
 Consumer.

 However, neither any API call has been
 issued to the IOTP Payment Bridge nor has
 the IOTP Order Request has been created.

 InProgress The IOTP Application changes the process
 state to this value when it issues the
 first API call to the Payment Bridge
 during Brand List compilation.

Hans, et al. Informational [Page 61]

RFC 3867 Payment API for IOTP November 2004

 This value indicates that the Payment
 Bridge might have some knowledge about
 the expected payment or might have
 performed some preparatory tasks (even
 with the Payment Handler out-of-band to
 IOTP).

 However, this value does not indicate
 that any IOTP Order Request has been
 created and transmitted to the Consumer.

 Suspended The IOTP transaction has been suspended
 before the order request block has been
 transmitted to the Consumer.

 Implicitly, the payment is also deferred.

 CompletedOk The IOTP Order Request has been
 successfully created and transmitted to
 the Consumer. Actually, this process
 state indicates only that the order
 processing has been finished.

 But it contains no indication about the
 status of the actual payment, which is
 accepted by the Payment Handler.

 However, successful order processing
 signals the IOTP Application Core that a
 payment with some specific parameters is
 expected within the near future. And this
 signal might be used by the Existing
 Payment Software for similar purposes.
 This attribute might be interpreted as
 successful preparation of the payment
 system.

 Particularly, it is expected that the
 Existing Payment Software maps this IOTP
 status value to some other internal
 value, e.g., "NotYetStarted", that is more
 accurate from its point of view.

 As IOTP provides no communication channel
 between the Merchant and Payment Handler,
 any change of payment process state will

Hans, et al. Informational [Page 62]

RFC 3867 Payment API for IOTP November 2004

 be initiated out-of-band to IOTP, e.g., by
 electronic statements of account or
 payment scheme specific mechanisms.

 Failed The IOTP transaction, i.e., order
 processing, has failed for some
 (business) reason and it is known that no
 payment will occur.

 This indication might be used to clear
 all data about this transaction within
 the Existing Payment Bridge (by
 "RemovePaymentLog" or
 "ChangeProcessState") or to reverse any
 preparation (with the Payment Handler
 out-of-band to IOTP).

 However, the ideal point of view of IOTP
 suspects that the actual payment
 transaction has been neither started nor
 initiated.

 ProcessError The IOTP transaction, i.e., order
 processing, has failed for some
 (technical) reason and it is known that
 no payment will occur.

 This indication might be used to clear
 all data about this transaction within
 the Existing Payment Bridge (by
 "RemovePaymentLog" or
 "ChangeProcessState") or to reverse any
 preparation (with the Payment Handler
 out-of-band to IOTP).

 However, the ideal point of view of IOTP
 suspects that the actual payment
 transaction has been neither started nor
 initiated.

 Table 5: Merchant

3.3.2. Consumer

 The Consumer’s IOTP Application Core restricts its point of view to
 the payment transaction. It is assumed that the IOTP Payment Bridge
 handles the preceding brand selection process in a stateless manner.

Hans, et al. Informational [Page 63]

RFC 3867 Payment API for IOTP November 2004

 ProcessState Description
 ------------ -----------

 NotYetStarted This encodes the initial process state of
 any IOTP payment transaction. This value
 is set during brand selection but it
 normally will not change during the whole brand
 selection process.

 InProgress With the issuance of the Start Payment
 Consumer API call, the IOTP Application
 Core changes the process state to this
 value.

 Suspended The payment transaction has been
 suspended. Suspension may occur anywhere
 during brand selection (with the
 Merchant) or payment processing (with the
 Payment Handler). On resumption, the IOTP
 Application Core and the IOTP Payment
 Bridge have to use other internal data to
 decide whether brand selection or actual
 payment processing needs to be continued,
 i.e., whether the process state needs to
 be reset to "NotYetStarted" or
 "InProgress".

 Note that the Payment API assumes
 stateless brand selection by the IOTP
 Payment Bridge. Typically, any suspension
 during brand selection requires the
 repetition of the whole process. Hereby,
 the IOTP Application Core might need to
 consider any already negotiated
 conditions in a brand depended purchase
 (brand, protocol).

 CompletedOk The successful payment has been
 acknowledged by the Payment Handler, i.e.,
 the successful IOTP Payment Response has
 been received.

 Implicitly, this implies successful order
 processing.

Hans, et al. Informational [Page 64]

RFC 3867 Payment API for IOTP November 2004

 Failed The IOTP transaction, i.e., order or
 payment processing, has failed for some
 (business) reason. In either case it is
 known that the payment will not succeed.

 ProcessError The IOTP transaction, i.e., order or
 payment processing, has failed for some
 (technical) reason.

 However, the local process state might be
 different from that of Payment Handler.

 Table 6: Consumer

3.3.3. Payment Handler

 The Payment Handler is responsible for the actual payment processing.
 New payment transactions are reported by the Consumer with the
 transmission of new IOTP Payment Request Blocks. IOTP Payment
 Exchange Block are send by the Consumer for payment transaction
 continuation and resumption.

 ProcessState Description
 ------------ -----------

 NotYetStarted This encodes the initial process state of
 any payment transaction. Typically, this
 value will last for a short amount of
 time.

 InProgress The IOTP Application Core changes the
 process state changes to "InProgress"
 when the Payment Handler starts with the
 actual processing of the IOTP Payment
 Request Block.

 Note that this does not assume that the
 "StartPaymentPaymentHandler" API function
 has been called.

 Suspended The payment transaction has been
 suspended.

 CompletedOk The payment has been processed,
 successfully, i.e., the IOTP Payment
 Response Block was created and
 transmitted to the Consumer.

Hans, et al. Informational [Page 65]

RFC 3867 Payment API for IOTP November 2004

 Failed The payment transaction, has finally
 failed for some (business) reason.

 Note that this value encodes the payment
 state reported by the IOTP Payment Bridge
 on "InquireProcessState". It neither
 reflects whether the payment receipt has
 been inquired nor whether the IOTP
 Payment Response Block has been created
 and submitted to the Consumer.

 ProcessError The payment transaction, has finally
 failed for some (technical) reason.

 Note that this value encodes the payment
 state reported by the IOTP Payment
 Bridge. It does not reflect whether some
 IOTP Error Block has been created and
 submitted to the Consumer.

 Table 7: Consumer

4. Payment API Calls

4.1. Brand Compilation Related API Calls

4.1.1. Find Accepted Payment Brand

 This API function determines the payment brands being accepted by the
 Payment Handler on behalf of the Merchant.

 Input Parameters

 o Payment Direction - provided by the IOTP Application Core
 o Currency Code and Currency - provided by the IOTP Application
 Core
 o Payment Amount - provided by the IOTP Application Core
 o Merchant Payment Identifier - Merchant’s unique private
 reference to the payment transaction
 o Merchant Organisation Identifier - used for distinction between
 multiple merchants that share the some IOTP merchant system
 o Wallet Identifier - managed by the IOTP Application Core
 o Merchant Data - specific data used by the IOTP Payment Bridge
 which is managed in the IOTP Application Core.

Hans, et al. Informational [Page 66]

RFC 3867 Payment API for IOTP November 2004

 XML definition:

 <!ELEMENT FindAcceptedPaymentBrand (MerchantData*) >
 <!ATTLIST FindAcceptedPaymentBrand
 PayDirection (Debit|Credit) #REQUIRED
 CurrCodeType NMTOKEN ’ISO4217-A’
 CurrCode CDATA #REQUIRED
 Amount CDATA #REQUIRED
 MerchantPayId CDATA #REQUIRED
 MerchantOrgId CDATA #IMPLIED
 WalletID CDATA #IMPLIED >

 Output Parameters

 o Payment Brand Identifier - for insertion in the Brand List
 Component’s Brand Element
 o Payment Brand Name and language annotation - for insertion in
 the Brand List Component’s Brand Element
 o Payment Brand Logo Net Location - for insertion in the Brand
 List Component’s Brand Element
 o Payment Brand Narrative Description - for insertion in the
 Brand List Component’s Brand Element
 o (Brand) Packaged Content - further payment brand description
 for insertion in the Brand List Component’s Brand Element

 The Existing Payment Software returns an empty list of brand items,
 if it does not support any payment brand/payment protocol combination
 for the given payment parameters.

 XML definition:

 <!ELEMENT FindAcceptedPaymentBrandResponse (BrandItem*) >
 <!ELEMENT BrandItem (BrandPackagedContent*) >
 <!ATTLIST BrandItem
 BrandId CDATA #REQUIRED
 xml:lang NMTOKEN #IMPLIED
 BrandName CDATA #REQUIRED
 BrandLogoNetLocn CDATA #REQUIRED
 BrandNarrative CDATA #IMPLIED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

Hans, et al. Informational [Page 67]

RFC 3867 Payment API for IOTP November 2004

4.1.2. Find Accepted Payment Protocol

 This API function determines the instances of payment protocols (and
 optionally the payment brands) being accepted by the Payment Handler
 on behalf of the Merchant. The function might be called in two
 variants:

 o With the Brand Identifier set on the input parameter list: The
 function responds with the payment protocols that fits to the
 submitted brand.

 o Without any Brand Identifier - that allows the omission of the
 "Find Accepted Payment Brand" API call (cf. Section 4.1.1): This
 function responds with both the supported brand identifiers and
 the payment protocols being specified by the Brand Elements.

 Input Parameters

 o Brand Identifier - returned by "Find Accepted Payment Brand"
 o Payment Direction
 o Currency Code and Currency
 o Payment Amount
 o Merchant Payment Identifier - Merchant’s unique private
 reference to the payment transaction
 o Merchant Organisation Identifier - used for distinction between
 multiple merchants that share the some IOTP merchant system
 o Wallet Identifier - managed by the IOTP Application Core
 o (Brand) Packaged Content - further payment brand description;
 returned by "Find Accepted Payment Brand"; this elements are
 only provided if the Brand Identifier is set
 o Merchant Data - specific data used by the IOTP Payment Bridge
 which is managed in the IOTP Application Core.

 XML definition:

 <!ELEMENT FindAcceptedPaymentProtocol (BrandPackagedContent*,
 MerchantData?) >
 <!ATTLIST FindAcceptedPaymentProtocol
 BrandId CDATA #IMPLIED
 PayDirection (Debit|Credit) #REQUIRED
 CurrCodeType NMTOKEN ’ISO4217-A’
 CurrCode CDATA #REQUIRED
 Amount CDATA #REQUIRED
 MerchantPayId CDATA #REQUIRED
 MerchantOrgId CDATA #IMPLIED
 WalletID CDATA #IMPLIED >

Hans, et al. Informational [Page 68]

RFC 3867 Payment API for IOTP November 2004

 Output Parameters

 o Payment Protocol Identifier - for insertion in the Brand List
 Component’s Pay Protocol Element
 o Protocol Brand Identifier - for insertion in the Protocol Brand
 Element of the Brand List Component’s Brand Element
 o Payment Protocol Name and language annotation- for insertion in
 the Brand List Component’s Pay Protocol Element
 o Payment Request Net Location - for insertion in the Brand List
 Component’s Pay Protocol Element
 o Secured Payment Request Net Location - for insertion in the
 Brand List Component’s Pay Protocol Element
 o Brand Item List (cf. Section 4.1.1) - there must be at least
 one element if no brand identifier has been provided on the
 input parameter list.
 o (Protocol Amount) Packaged Content - for insertion in the Brand
 List Component’s Protocol Amount Element
 o (Pay Protocol) Packaged Content - for insertion in the Brand
 List Component’s Pay Protocol Element
 o Currency Amount element - quite similar to the definition in
 [IOTP], that contain
 - refined Currency Code and Currency - for insertion in the
 Brand List Component’s Currency Amount Element
 - refined Payment Amount - for insertion in the Brand List
 Component’s Currency Amount Element
 o Brand - there must be at least one element in each Protocol
 Item if no brand identifier has been provided on the input
 parameter list.

 XML definition:

 <!ELEMENT FindAcceptedPaymentProtocolResponse (ProtocolItem+,
 BrandItem*) >
 <!ELEMENT ProtocolItem (ProtocolAmountPackagedContent*,
 PayProtocolPackagedContent*
 CurrencyAmount+, Brand*,ProtocolBrand*)>
 <!ATTLIST ProtocolItem
 ProtocolId CDATA #REQUIRED
 ProtocolBrandId CDATA #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 ProtocolName CDATA #REQUIRED
 PayReqNetLocn CDATA #IMPLIED
 SecPayReqNetLocn CDATA #IMPLIED >

 <!ELEMENT Brand EMPTY >
 <!ATTLIST Brand
 BrandId CDATA #REQUIRED >

Hans, et al. Informational [Page 69]

RFC 3867 Payment API for IOTP November 2004

 <!ELEMENT CurrencyAmount EMPTY >
 <!ATTLIST CurrencyAmount
 CurrCodeType NMTOKEN ’ISO4217-A’
 CurrCode CDATA #IMPLIED
 Amount CDATA #IMPLIED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.1.3. Get Payment Initialization Data

 This API function provides the remaining initialization data being
 required by the Consumer’s or Payment Handler’s Existing Payment
 Software. This function might be called both for "brand dependent"
 and "brand independent" transaction types. In either case, this
 function is called with one particular brand.

 Input Parameters

 o Brand Identifier - returned by "Find Accepted Payment Brand"
 o Merchant Payment Identifier - Merchant’s unique private
 reference to the payment transaction
 o Payment Direction
 o Currency Code and Currency - from the Brand List Component’s
 Currency Amount Element
 o Payment Amount - from the Brand List Component’s Currency
 Amount Element
 o Payment Protocol Identifier - from the Brand List Component’s
 Pay Protocol Element
 o Protocol Brand Identifier - from the Protocol Brand Element
 which relates to the selected Brand Element, if any
 o (TradingRoleData) Receiver Organization Identifier
 o OkFrom, OkTo - identical to the entries of the Order Component

 Merchant Payment Identifier

 o Merchant Organisation Identifier - used for distinction between
 multiple merchants that share the some IOTP merchant system
 o Wallet Identifier and/or Pass Phrase

 Protocol Brand Element

 o (Brand) Packaged Content - further payment brand description,
 from the Brand List Component’s Brand Element
 o (Protocol Amount) Packaged Content - further payment protocol
 description, from the Brand List Component’s Protocol Amount
 Element

Hans, et al. Informational [Page 70]

RFC 3867 Payment API for IOTP November 2004

 o (Pay Protocol) Packaged Content - further payment protocol
 description, from the Brand List Component’s Pay Protocol
 Element
 o (Protocol Brand) Packaged Content - further brand information,
 from the Protocol Brand Element of the Brand List Component
 which relates to the selected Brand Element, if any
 o (Order) Packaged Content - further order description, from the
 Order Element
 o three Brand Selection Info Packaged Content elements - copied
 from the Brand Selection Component on brand dependent purchases
 o Brand - additional data about the payment brand
 o Protocol Amount - additional data about the payment protocol
 o Currency Amount - additional payment brand and currency
 specific data
 o Merchant Data - specific data used by the IOTP Payment Bridge
 which is managed in the IOTP Application Core.

 XML definition:

 <!ELEMENT GetPaymentInitializationData (ProtocolBrand?
 BrandPackagedContent*
 ProtocolAmountPackagedContent*,
 PayProtocolPackagedContent*,
 OrderPackagedContent*,
 BrandSelBrandInfoPackagedContent*,
 BrandSelProtocolAmountInfoPackagedContent*,
 BrandSelCurrencyAmountInfoPackagedContent*,
 MerchantData*) >
 <!ATTLIST GetPaymentInitializationData
 BrandId CDATA #REQUIRED
 MerchantPayId CDATA #REQUIRED
 PayDirection (Debit|Credit) #REQUIRED
 CurrCodeType NMTOKEN ’ISO4217-A’
 CurrCode CDATA #REQUIRED
 Amount CDATA #REQUIRED
 ProtocolId CDATA #REQUIRED
 OkFrom CDATA #REQUIRED
 OkTo CDATA #REQUIRED
 ReceiverOrgId CDATA #IMPLIED
 MerchantOrgId CDATA #IMPLIED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

Hans, et al. Informational [Page 71]

RFC 3867 Payment API for IOTP November 2004

 Output Parameters

 o OkFrom, OkTo - for insertion in the Payment Component
 o (TradingRoleData) Packaged Content - further payment protocol
 description; the Name Attribute of the packaged Content
 element must include "Payment:" as the prefix,
 for example "Payment:SET-OD". For more information, see
 [SET/IOTP].
 o (Order) Packaged Content - defaults to the supplied order
 packaged content if omitted.

 XML definition:

 <!ELEMENT GetPaymentInitializationDataResponse
 (OrderPackagedContent*,
 TradingRoleDataPackagedContent*) >
 <!ATTLIST GetPaymentInitializationDataResponse
 OkFrom CDATA #IMPLIED
 OkTo CDATA #IMPLIED>

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.1.4. Inquire Authentication Challenge

 This API function inquires any payment protocol specific
 authentication challenge value from the IOTP Payment Bridge. In
 Baseline IOTP this API function is called by the Merchant (or
 Financial Institution). The IOTP Application Core may propose a
 choice of algorithms to the IOTP Payment Bridge. However, the IOTP
 Payment Bridge may ignore the proposal and select some other
 algorithm.

 The inquiry is assumed to be stateless. E.g., the IOTP Application
 Core may check the returned algorithm and stop transaction processing
 without notifying the IOTP Payment Bridge.

 The IOTP Application Core may issue several API calls to the IOTP
 Payment Bridge to build up the IOTP Authentication Request Block.
 Any subsequently submitted choice of algorithms should be constrained
 by the accepted algorithms from earlier API responses.

 The IOTP Payment Bridge responds with the Business Error Code if it
 does not provide any (more) authentication algorithms and challenges.

Hans, et al. Informational [Page 72]

RFC 3867 Payment API for IOTP November 2004

 Input Parameters

 o Authentication Identifier - the authenticator may provide its
 payment identifier, i.e., Payment Handler or Merchant Payment
 Identifier.
 o Wallet Identifier and/or Pass Phrase
 o set of pre-selected algorithms for authentication

 XML definition:

 <!ELEMENT InquireAuthChallenge (Algorithm*) >
 <!ATTLIST InquireAuthChallenge
 AuthenticationId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 o list of Authentication Challenge Packaged Contents - for
 insertion into the IOTP Authentication Request Component
 o Algorithm Element - for insertion into the IOTP Authentication
 Request Component

 XML definition:

 <!ELEMENT InquireAuthChallengeResponse (AuthReqPackagedContent*,
 Algorithm) >

4.1.5. Authenticate

 The Consumer’s IOTP Application Core defers payment protocol specific
 authentication processing and the current challenge value to the
 active IOTP Payment Bridge. Alternative authentication algorithms
 might be tried sequentially or offered to the user for selection.

 Note that the IOTP Application Core has to consider both the current
 context and the algorithm in order to determine the responsible IOTP
 Payment Bridge.

 Failed authentication is reported by the Business Error Code which
 might trigger the inquiry of the details ("Inquire Process State").
 Final failures might be encoded by the process state "Failed".

Hans, et al. Informational [Page 73]

RFC 3867 Payment API for IOTP November 2004

 Input Parameters

 o Authentication Identifier
 o Wallet Identifier and/or Pass Phrase
 o Authentication Challenge Packaged Content - copied from the
 IOTP Authentication Request Component
 o Algorithm Element - copied from the IOTP Authentication Request
 Component

 XML definition:

 <!ELEMENT Authenticate (Algorithm, AuthReqPackagedContent*) >
 <!ATTLIST Authenticate
 AuthenticationId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 o Authentication Response Packaged Content - for insertion into
 the IOTP Authentication Response Component

 XML definition:

 <!ELEMENT AuthenticateResponse (AuthResPackagedContent*) >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.1.6. Check Authentication Response

 This API function verifies the Consumer’s payment protocol specific
 authentication response. In Baseline IOTP this API function is
 called by the Merchant (or the Financial Institution). It is called
 only if the counter party has responded with an IOTP Authentication
 Response Component within the Authentication Response Block. Of
 course, the IOTP Application Core traces the need of such an
 response.

 Due to the authentication’s statelessness, all parameters (algorithm,
 challenge and response) are submitted to the IOTP Payment Bridge.
 Authentication failure is reported by a Process State different from
 "CompletedOK".

Hans, et al. Informational [Page 74]

RFC 3867 Payment API for IOTP November 2004

 Input Parameters

 o Authentication Identifier
 o Wallet Identifier and/or Pass Phrase
 o Authentication Challenge Packaged Content - generated by
 previous "Inquire Authentication Challenge" API call
 o Algorithm Element
 o Authentication Response Packaged Content - copied from the
 Authentication Response Component

 XML definition:

 <!ELEMENT CheckAuthResponse (Algorithm, AuthReqPackagedContent*,
 AuthResPackagedContent*) >
 <!ATTLIST CheckAuthResponse
 AuthenticationId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 o Current Process (Authentication) State
 o Completion Code
 o Status Description and its language annotation

 XML definition:

 <!ELEMENT CheckAuthResponseResponse EMPTY >
 <!ATTLIST CheckAuthResponseResponse
 ProcessState (NotYetStarted |
 InProgress |
 Suspended |
 CompletedOk |
 Failed |
 ProcessError)#REQUIRED
 CompletionCode NMTOKEN #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 StatusDesc CDATA #IMPLIED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

Hans, et al. Informational [Page 75]

RFC 3867 Payment API for IOTP November 2004

4.2. Brand Selection Related API Calls

4.2.1. Find Payment Instrument

 This API function determines which instances of a Payment Brand,
 e.g., two Mondex cards, are present. The same physical card may even
 represent multiple payment instruments.

 The IOTP Application Core supplies possible payment brand and payment
 protocol to the IOTP Payment Bridge that has to be considered when
 the IOTP Payment Bridge searches for appropriate payment instruments.
 This set represents the (sub)set of payment alternatives being
 supported by the Merchant. If the IOTP Application Cote has multiple
 possible payment brand/protocol, it can call this function in turn.

 The Existing Payment Software responds with PayInstrument Elements
 with empty PayInstId attributes if it does not distinguish between
 different payment instruments for the particular payment
 alternatives.

 Note that the Payment API assumes that the values of the attributes
 BrandId, ProtocolId, ProtocolBrandId and the currency amount suffice
 for the determination of the appropriate Packaged Content Element
 that will be transmitted to the Payment Handler later on.

 Input Parameters

 o Brand Identifier - copied from the Brand List Component’s Brand
 Element
 o Payment Protocol Identifier and associated Protocol Brand
 Identifier
 o Payment Direction - copied from the Brand List Component
 o Currency Code and Currency - copied from the Currency Amount
 Element
 o Payment Amount - copied from the Currency Amount Element
 o Consumer Payment Identifier - Consumer’s unique reference to
 the current payment transaction
 o Wallet Identifier - managed by the IOTP Application Core
 o (Brand) Packaged Content - further payment brand description;
 copied from the Brand List Component’s Brand Element
 o (Protocol Brand) Element - further information; copied from the
 Protocol Brand Element of the Brand List Component which
 relates to the Consumer selected Brand Element, if any.
 o (Protocol Amount) Packaged Content - further payment protocol
 description, copied from the Brand List Component’s Protocol
 Amount Element

Hans, et al. Informational [Page 76]

RFC 3867 Payment API for IOTP November 2004

 o Element (Protocol) Packaged Content - further payment protocol
 description, copied from the Brand List Component’s Pay
 Protocol Element

 XML definition:

 <!ELEMENT FindPaymentInstrument (BrandPackagedContent*,
 ProtocolBrand?,
 PayProtocolPackagedContent*,
 ProtocolAmountPackagedContent*) >
 <!ATTLIST FindPaymentInstrument
 BrandId CDATA #REQUIRED
 ProtocolId CDATA #REQUIRED
 PayDirection (Debit|Credit) #REQUIRED
 CurrCodeType NMTOKEN ’ISO4217-A’
 CurrCode CDATA #REQUIRED
 Amount CDATA #REQUIRED
 ConsumerPayId CDATA #REQUIRED
 WalletID CDATA #IMPLIED >

 Output Parameters

 o The known Payment Instrument Identifiers, these are internal
 values
 o The user-defined names of the payment instrument and their
 language encoding

 The Existing Payment Software responds with an empty list of
 identifiers, either if it does not distinguish between different
 payment instruments or if there are no registered payment
 instruments available despite brand support for at least one
 (unspecified) payment protocol. In the latter case, the IOTP
 Payment Bridge has to request the registration of a suitable
 payment instrument at a subsequent step of the payment process.

 XML definition:

 <!ELEMENT FindPaymentInstrumentResponse (PayInstrument*) >
 <!ELEMENT PayInstrument EMPTY >
 <!ATTLIST PayInstrument
 Id CDATA #REQUIRED
 xml:lang NMTOKEN #IMPLIED
 PayInstName CDATA #REQUIRED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

Hans, et al. Informational [Page 77]

RFC 3867 Payment API for IOTP November 2004

4.2.2. Check Payment Possibility

 This API function checks whether a payment (both debit and credit)
 can go ahead. It can be used, for example, to check

 o if there are sufficient funds available in a particular currency
 for an electronic cash payment brand,
 o whether there is sufficient value space left on the payment
 instrument for payment refund,
 o whether required system resources are available and properly
 configured, e.g., serial ports or baud rate,
 o whether environment requirements are fulfilled, e.g., chip card
 reader presence or Internet connection.

 If the payment method is based on external components, e.g., magnetic
 stripe or chip cards, and the check accesses the medium, the existing
 payment method should not mutually exclusive lock system resources,
 e.g., serial port or modem, that may also be required by other
 Existing Payment Software, e.g., multiple payment software components
 may share the same card reader. If this happens for API internal
 request processing, the function has to unlock these components prior
 to return. Otherwise, the payment may not proceed if the Consumer
 cancels immediately and decides to use another payment instrument.
 In this event the previous IOTP Payment Bridge is not notified about
 the change.

 This function call happens immediately after the Consumer’s payment
 instrument selection. For example, if the payment instrument is a
 chip card, that is not inserted in the chip card reader, the Consumer
 may be prompted for its insertion. However, the Consumer should be
 able to hit some ’skip’ button, if the payment check is part of the
 actual payment protocol, too. Finally, the IOTP Payment Bridge may
 provide only a subset of these capabilities or may even directly
 generate a successful response without any checks.

 Input Parameters

 o Brand Identifier - user selection
 o Payment Instrument Identifier - user selection
 o Currency Code and Currency Code Type - copied from the selected
 Currency Amount Element
 o Payment Amount - copied from the selected Currency Amount Element
 o Payment Direction - copied from the selected Trading Protocol
 Option Block
 o Protocol Identifier - copied from the selected Pay Protocol
 Element

Hans, et al. Informational [Page 78]

RFC 3867 Payment API for IOTP November 2004

 o Protocol Brand Identifier - copied from the selected Protocol
 Brand Element of the Brand List Component which relates to the
 selected Brand Element, if any
 o Consumer Payment Identifier - Consumer’s unique reference to the
 current payment transaction
 o Wallet Identifier and/or Pass Phrase
 o (Brand) Packaged Content - copied from the selected Brand Element
 o (Protocol Amount) Packaged Content - copied from the selected
 Protocol Amount Element
 o (Protocol) Packaged Content - copied from the selected Pay
 Protocol Element
 o (Protocol Brand) Packaged Content - copied from the selected
 Protocol Brand Element of the Brand List Component which relates
 to the selected Brand Element, if any

 XML definition:

 <!ELEMENT CheckPaymentPossibility (BrandPackagedContent*,
 ProtocolBrand?
 ProtocolAmountPackagedContent*,
 PayProtocolPackagedContent*>
 <!ATTLIST CheckPaymentPossibility
 BrandId CDATA #REQUIRED
 PaymentInstrumentId CDATA #IMPLIED
 PayDirection (Debit|Credit) #REQUIRED
 CurrCodeType NMTOKEN ’ISO4217-A’
 CurrCode CDATA #REQUIRED
 Amount CDATA #REQUIRED
 ProtocolId CDATA #REQUIRED
 ConsumerPayId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 o three Brand Selection Info Packaged Content elements - for
 insertion into the Brand Selection component
 o Brand - additional data about the payment brand
 o Protocol Amount - additional data about the payment protocol
 o Currency Amount - additional payment brand and currency specific
 data

Hans, et al. Informational [Page 79]

RFC 3867 Payment API for IOTP November 2004

 XML definition:

 <!ELEMENT CheckPaymentPossibilityResponse
 (BrandSelBrandInfoPackagedContent*,
 BrandSelProtocolAmountInfoPackagedContent*,
 BrandSelCurrencyAmountInfoPackagedContent*) >
 <!ATTLIST CheckPaymentPossibilityResponse >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.3. Payment Transaction Related API calls

 These Payment API calls may be made either by the Consumer’s or
 Payment Handler’s IOTP Application Core.

4.3.1. Start Payment Consumer

 This API function initiates the actual payment transaction at the
 Consumer side. The IOTP Payment Bridge and the Existing Payment
 Software perform all necessary initialization and preparation for
 payment transaction processing. This includes the reservation of
 external periphery. E.g., 1) the Consumer’s chip card reader needs
 to be protected against access from other software components, 2) the
 insertion of the chip card may be requested, 3) the Internet
 connection may be re-established, or 4) the Payment Handler may open
 a mutual exclusive session to the security hardware.

 The IOTP Payment Bridge monitors the payment progress and stores the
 current payment states such that resumption - even after power
 failures - remains possible. Note that the IOTP Application Core
 supplies only a subset of the following input parameter to the
 associated resumption API function and refers to the payment
 transaction through the party’s payment identifier.

 Input Parameters

 o Brand Identifier - copied from the selected Brand Element
 o Payment Instrument Identifier - the user selection
 o Currency Code and Currency - copied from the selected Currency
 Amount Element
 o Payment Amount - copied from the selected Currency Amount
 Element
 o Payment Direction - copied from the Brand List Component
 o Protocol Identifier - copied from the selected Payment Protocol
 Element

Hans, et al. Informational [Page 80]

RFC 3867 Payment API for IOTP November 2004

 o Protocol Brand Element - further information; copied from the
 Protocol Brand Element of the Brand List Component which
 relates to the selected Brand Element, if any
 o OkFrom, OkTo - copied from the Payment Component
 o Consumer Payment Identifier - Consumer’s unique reference to
 the current payment transaction
 o Wallet Identifier and/or Pass Phrase
 o Call Back Function - used for end user notification/logging
 purposes
 o Call Back Language List. This list is required if the Call Back
 Function is set
 o (Brand) Packaged Content - further payment brand description;
 copied from the selected Brand Element’s content
 o (Protocol Amount) Packaged Content - further payment protocol
 description; copied from the selected Protocol Amount Element’s
 content
 o (Payment Protocol) Packaged Content - further payment protocol
 description; copied from the selected Pay Protocol Element’s
 content
 o (Order) Packaged Content - further order description, copied
 from the Order Component

 XML definition:

 <!ELEMENT StartPaymentConsumer (BrandPackagedContent*,
 ProtocolBrand?
 ProtocolAmountPackagedContent*,
 PayProtocolPackagedContent*,
 OrderPackagedContent*) >
 <!ATTLIST StartPaymentConsumer
 BrandId CDATA #REQUIRED
 PaymentInstrumentId CDATA #IMPLIED
 CurrCodeType NMTOKEN ’ISO4217-A’
 CurrCode CDATA #REQUIRED
 Amount CDATA #REQUIRED
 PayDirection (Debit|Credit) #REQUIRED
 ProtocolId CDATA #REQUIRED
 ProtocolBrandId CDATA #IMPLIED
 OkFrom CDATA #REQUIRED
 OkTo CDATA #REQUIRED
 ConsumerPayId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED
 CallBackFunction CDATA #IMPLIED
 CallBackLanguageList NMTOKENS #IMPLIED >

Hans, et al. Informational [Page 81]

RFC 3867 Payment API for IOTP November 2004

 Output Parameters

 o Continuation Status
 o (Payment Scheme) Packaged Content - for insertion into the
 Payment Scheme Component of the IOTP Payment Request Block

 The IOTP Application Core is allowed to reissue this request several
 times on failed analyses of the response.

 XML definition:

 <!ELEMENT StartPaymentConsumerResponse
 (PaySchemePackagedContent*) >
 <!ATTLIST StartPaymentConsumerResponse
 ContStatus (End|Continue) #REQUIRED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.3.2. Start Payment Payment Handler

 This API function initializes the Consumer initiated payment
 transaction at the Payment Handler’s side. Similar to the Consumer’s
 system, the IOTP Payment Bridge and the Existing Payment Software
 perform all necessary initialization and preparation for payment
 transaction processing.

 Input Parameters

 o Brand Identifier - copied from the Consumer selected Brand
 Element
 o Consumer Payment Identifier - copied from the Payment Scheme
 Component
 o Currency Code and Currency - copied from the Consumer selected
 Currency Amount Element
 o Payment Amount - copied from the Consumer selected Currency
 Amount Element
 o Payment Direction - copied from the Brand List Component
 o Protocol Identifier - copied from the Consumer selected
 Payment Protocol Element
 o Protocol Brand Identifier - copied from the Brand Protocol
 Element of the Brand List Component which relates to the
 Consumer selected Brand Element, if any
 o OkFrom, OkTo - copied from the Payment Component
 o Payment Handler Payment Identifier - Payment Handler’s unique
 reference to the current payment transaction
 o Merchant Organisation Identifier - copied from the Merchant’s
 Organisation Element

Hans, et al. Informational [Page 82]

RFC 3867 Payment API for IOTP November 2004

 o Wallet Identifier - renaming to till identifier neglected -
 and/or Pass Phrase
 o Call Back Function - used for end user notification/logging
 purposes
 o Call Back Language List. This list is required if the call
 back function is set
 o (Brand) Packaged Content - further payment brand description;
 copied from the Consumer selected Brand Element’s content
 o (Protocol Brand) Packaged Content - further information; copied
 from the Protocol Brand Element of the Brand List Component
 which relates to the Consumer selected Brand Element, if any.
 o (Protocol Amount) Packaged Content - further payment protocol
 description; copied from the Consumer selected Protocol Amount
 Element’s content
 o (Protocol) Packaged Content - further payment protocol
 description; copied from the Consumer selected Pay Protocol
 Element’s content
 o (TradingRoleData) Packaged Content - further payment protocol
 description; the Name Attribute of the packaged contents must
 include "Payment:" as the prefix, for example "Payment:SET-OD".
 For more information, see [SET/IOTP].
 o Three Brand Selection Info Packaged Content Elements - copied
 from the Brand Selection Component
 o Brand - additional data about the payment brand
 o Protocol Amount - additional data about the payment protocol
 o Currency Amount - additional payment brand and currency
 specific data
 o (Payment Scheme) Packaged Content.

 XML definition:

 <!ELEMENT StartPaymentPaymentHandler (BrandPackagedContent*,
 ProtocolBrand?,
 ProtocolAmountPackagedContent*,
 PayProtocolPackagedContent*,
 BrandSelBrandInfoPackagedContent*,
 BrandSelProtocolAmountInfoPackagedContent*,
 BrandSelCurrencyAmountInfoPackagedContent*,
 TradingRoleDataPackagedContent*,
 PaySchemePackagedContent*) >
 <!ATTLIST StartPaymentPaymentHandler
 BrandId CDATA #REQUIRED
 ConsumerPayId CDATA #IMPLIED
 CurrCodeType NMTOKEN ’ISO4217-A’
 CurrCode CDATA #REQUIRED
 Amount CDATA #REQUIRED
 PayDirection (Debit|Credit) #REQUIRED
 ProtocolId CDATA #REQUIRED

Hans, et al. Informational [Page 83]

RFC 3867 Payment API for IOTP November 2004

 OkFrom CDATA #REQUIRED
 OkTo CDATA #REQUIRED
 PaymentHandlerPayId CDATA #REQUIRED
 MerchantOrgId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED
 CallBackFunction CDATA #IMPLIED
 CallBackLanguageList NMTOKENS #IMPLIED >

 Output Parameters

 o Continuation Status
 o (Payment Scheme) Packaged Content - for insertion into the
 Payment Scheme Component of the IOTP Payment Exchange Block

 The response message must contain payment schema data if the
 continuation status signals "Continue". The IOTP Application Core is
 allowed to reissue this request several times on failed analyses of
 the response.

 XML definition:

 <!ELEMENT StartPaymentPaymentHandlerResponse
 (PaySchemePackagedContent*) >
 <!ATTLIST StartPaymentPaymentHandlerResponse
 ContStatus (End|Continue) #REQUIRED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.3.3. Resume Payment Consumer

 This API function resumes a previously suspended payment at the
 Consumer side. Resumption includes the internal inquiry of the
 payment transaction data, e.g., payment amount, protocol identifier,
 and the whole initialization as it has been applied on the "Start
 Payment Consumer" API request.

 It is up to the IOTP Application Core to decide whether an IOTP
 Payment Request Block or a IOTP Payment Exchange Block needs to be
 generated. One indicator might be the receipt of a previous IOTP
 Payment Exchange Block from the Payment Handler, e.g., the knowledge
 of the Payment Handler Payment Identifier.

 Input Parameters

 o Consumer Payment Identifier
 o Wallet Identifier and/or Pass Phrase

Hans, et al. Informational [Page 84]

RFC 3867 Payment API for IOTP November 2004

 o Call Back Function - used for end user notification/logging
 purposes

 XML definition:

 <!ELEMENT ResumePaymentConsumer EMPTY >
 <!ATTLIST ResumePaymentConsumer
 ConsumerPayId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED
 CallBackFunction CDATA #IMPLIED
 CallBackLanguageList NMTOKENS #IMPLIED >

 Output Parameters

 o Continuation Status
 o (Payment Scheme) Packaged Content - for insertion in the
 Payment Scheme Component of the next IOTP message (Payment
 Exchange or Request Block).

 The IOTP Application Core is allowed to reissue this request several
 times on failed analyses of the response. However, the IOTP Payment
 Bridge might reject the resumption request by using the "AttNotSupp"
 Error Code "naming" the Consumer Payment Identifier attribute. Then
 the Consumer has to apply normal error processing to the current
 (sub-)transaction and to issue a new Payment Request Block to the
 Payment Handler.

 XML definition:

 <!ELEMENT ResumePaymentConsumerResponse
 (PaySchemePackagedContent*) >
 <!ATTLIST ResumePaymentConsumerResponse
 ContStatus (End|Continue) #REQUIRED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.3.4. Resume Payment Payment Handler

 This API function resumes a payment at the Payment Handler side.

 Input Parameters

 o Payment Handler Payment Identifier
 o Wallet Identifier - renaming to till identifier neglected - and
 Pass Phrase

Hans, et al. Informational [Page 85]

RFC 3867 Payment API for IOTP November 2004

 o Call Back Function - used for end user notification/logging
 purposes
 o Call Back Language List. This list is required if the Call Back
 Function is set
 o (Payment Scheme) Packaged Content - copied from the Payment
 Scheme Component of the received IOTP message (Payment Exchange
 or Request Block).

 XML definition:

 <!ELEMENT ResumePaymentPaymentHandler
 (PaySchemePackagedContent*) >
 <!ATTLIST ResumePaymentPaymentHandler
 PaymentHandlerPayId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED
 CallBackFunction CDATA #IMPLIED
 CallBackLanguageList NMTOKENS #IMPLIED >

 Output Parameters

 o Continuation Status
 o (Payment Scheme) Packaged Content - for insertion in the
 Payment Scheme Component of the next Payment Exchange Block.

 The response message contains payment schema specific data if the
 continuation status signals "Continue". The IOTP Application Core is
 allowed to reissue this request several times on failed analyses of
 the response.

 XML definition:

 <!ELEMENT ResumePaymentPaymentHandlerResponse
 (PaySchemePackagedContent*) >
 <!ATTLIST ResumePaymentPaymentHandlerResponse
 ContStatus (End|Continue) #REQUIRED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.3.5. Continue Process

 This API function passes one specific IOTP Payment Scheme Component,
 i.e., the encapsulated Packaged Content elements, received from the
 counter party (e.g., Consumer) to the IOTP Payment Bridge and
 responds with the next IOTP Payment Scheme Component for submission
 to the counter party.

Hans, et al. Informational [Page 86]

RFC 3867 Payment API for IOTP November 2004

 Input Parameters

 o Payty’s Payment Identifier
 o Process (Transaction) Type which distinguishes between Payments
 and Inquiries.
 o Wallet Identifier and/or Pass Phrase
 o (Payment Scheme) Packaged Content - copied from the Payment
 Scheme Component of the received Payment Exchange Block or from
 the Error Block.

 Each party should set the payment identifier with the local
 identifier (Consumer: ConsumerPayId; Merchant: MerchantPayId; Payment
 Handler: PaymentHandlerPayId).

 XML definition:

 <!ELEMENT ContinueProcess (PaySchemePackagedContent+) >
 <!ATTLIST ContinueProcess
 PayId CDATA #REQUIRED
 ProcessType (Payment | Inquiry) ’Payment’
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 o Continuation Status
 o (Payment Scheme) Packaged Content - for insertion in the
 Payment Scheme Component of the next Payment Exchange Block or
 final Payment Response Block

 The response message contains payment schema data if the continuation
 status signals "Continue". The IOTP Payment Bridge must signal
 "End", if the payment scheme data was received within an IOTP Error
 Block containing an Error Component with severity HardError.

 XML definition:

 <!ELEMENT ContinueProcessResponse (PaySchemePackagedContent*) >
 <!ATTLIST ContinueProcessResponse
 ContStatus (End|Continue) #REQUIRED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

Hans, et al. Informational [Page 87]

RFC 3867 Payment API for IOTP November 2004

4.3.6. Change Process State

 The IOTP Application Core changes the current payment status by this
 request. The IOTP Payment Bridge may be notified about business
 level normal termination, cancellation, suspension, and processing
 errors. Notification happens by requesting the intended process
 state.

 The IOTP Payment Bridge processes the status change and reports the
 result.

 The IOTP Application Core has to analyze any returned process status
 in order to check whether the IOTP Payment Bridge has agreed to or
 declined the status switch. E.g., the submitted Process State
 "CompleteOk" may lead to the Payment Status "Failed" if the payment
 transaction has already failed.

 Transaction Suspension is notified by the newly introduced Process
 State "Suspended". The other attribute values have been taken from
 the IOTP specification.

 This API function might be called by the Consumer, Merchant, or
 Payment Handler for each payment transaction anytime after the
 issuance of "FindPaymentInstrument" to the IOTP Payment Bridge by the
 Consumer, the issuance of "FindAcceptedPaymentBrand" by the Merchant,
 or the issuance of "StartPaymentPaymentHandler" by the Payment
 Handler.

 The Process States "CompletedOk", "Failed", and "ProcessError" are
 final in the sense that they can not be changed on subsequent calls.
 However, the API function should not return with an error code if
 such an incompatible call has been issued. Instead it should report
 the old unchanged Process State.

 Unknown payment transactions are reported by the Error Code
 "AttValInvalid" pointing to the PayId attribute.

 Input Parameters

 o Party’s Payment Identifier
 o intended Payment Status
 o intended Completion Code
 o Process (Transaction) Type which distinguishes between Payments
 and Inquiries.
 o Wallet Identifier and/or Pass Phrase

Hans, et al. Informational [Page 88]

RFC 3867 Payment API for IOTP November 2004

 XML definition:

 <!ELEMENT ChangeProcessState EMPTY >
 <!ATTLIST ChangeProcessState
 PayId CDATA #REQUIRED
 ProcessState (NotYetStarted |
 InProgress |
 Suspended |
 CompletedOk |
 Failed |
 ProcessError) #REQUIRED
 CompletionCode NMTOKEN #IMPLIED
 ProcessType (Payment | Inquiry) ’Payment’
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 o Process State and Percent Complete
 o Completion Code
 o Status Description and its language annotation

 XML definition:

 <!ELEMENT ChangeProcessStateResponse EMPTY >
 <!ATTLIST ChangeProcessStateResponse
 ProcessState (NotYetStarted |
 InProgress |
 Suspended |
 CompletedOk |
 Failed |
 ProcessError) #REQUIRED
 PercentComplete CDATA #IMPLIED
 CompletionCode NMTOKEN #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 StatusDesc CDATA #IMPLIED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.4. General Inquiry API Calls

 The following calls are not necessarily assigned to a payment
 transaction and may be issued at any time. There are no dependencies
 on any other calls.

Hans, et al. Informational [Page 89]

RFC 3867 Payment API for IOTP November 2004

4.4.1. Remove Payment Log

 The IOTP Application Core notifies the IOTP Payment Bridge and/or the
 corresponding Existing Payment Software via IOTP Payment Bridge that
 any record in the Payment Log file, that deals with the listed
 payment transaction, might be removed.

 Input Parameters

 o Party’s Payment Identifier
 o Wallet Identifier and/or Pass Phrase

 XML definition:

 <!ELEMENT RemovePaymentLog EMPTY >
 <!ATTLIST RemovePaymentLog
 PayId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 XML definition:

 <!ELEMENT RemovePaymentLogResponse EMPTY >
 <!ATTLIST RemovePaymentLogResponse >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.4.2. Payment Instrument Inquiry

 This API function retrieves the properties of the Payment Instrument.
 The Payment Instrument Identifier could be omitted if this identifier
 is derived by other means, e.g., by analysis of the currently
 inserted chip card. If the Payment instrument could not uniquely
 determined, the IOTP Payment Bridge may provide suitable dialogs for
 user input.

 E.g., this API function might be used during problem resolution with
 the Customer Care Provider of the issuer of the payment instrument,
 in order to inquire payment instrument specific values.

 Input parameters

 o Brand Identifier
 o Payment Instrument Identifier
 o Protocol Identifier

Hans, et al. Informational [Page 90]

RFC 3867 Payment API for IOTP November 2004

 o Wallet Identifier and/or Pass Phrase
 o Property Type List - sequence of values whose language is
 identified by xml:lang
 o (Brand) PackagedContent Content - further payment brand
 description
 o Protocol Brand Content - further payment brand information
 o (Protocol Amount) PackagedContent Content - further payment
 protocol description
 o (Pay Protocol) PackagedContent Content - further payment
 protocol description

 The codes in the property type list are of two types:

 o generic codes which apply to all payment methods but might be
 unavailable
 o Payment Brand specific codes.

 Generic codes for the Property Type List are:

 Property Type Meaning
 Balance Current balance
 Limit Maximum balance
 PaymentLimit Maximum payment transaction limit
 Expiration Expiration date
 Identifier Issuer assigned identifier of the payment
 instrument. Usually, it does not match with
 the API’s payment instrument identifier.
 LogEntries Number of stored payment transaction
 entries. The entries are numbered from 0
 (the most recent) to some non-negative
 value for the oldest entry.
 PayAmountn Payment Amount of the n-th recorded payment
 transaction, n may negative
 PayPartyn Remote party of the n-th payment recorded
 transaction, n may negative
 PayTimen Time of the n-th payment recorded
 transaction, n may negative

 XML definition:

 <!ELEMENT PaymentInstrumentInquiry (BrandPackagedContent*,
 ProtocolBrand?,
 ProtocolAmountPackagedContent*,
 PayProtocolPackagedContent*) >
 <!ATTLIST PaymentInstrumentInquiry
 BrandId CDATA #REQUIRED
 PaymentInstrumentId CDATA #IMPLIED
 ProtocolId CDATA #REQUIRED

Hans, et al. Informational [Page 91]

RFC 3867 Payment API for IOTP November 2004

 PropertyTypeList NMTOKENS #REQUIRED
 xml:lang NMTOKEN #IMPLIED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output parameters

 o a list of zero or more unavailable property values whose
 language are identified by xml:lang.
 o a list of zero or more sets of "Properties Types", "Property
 Values" and "Property Descriptions"

 XML definition:

 <!ELEMENT PaymentInstrumentInquiryResponse
 (PaymentInstrumentProperty*) >
 <!ATTLIST PaymentInstrumentInquiryResponse
 xml:lang NMTOKEN #REQUIRED
 UnavailablePropertyList NMTOKENS #IMPLIED >
 <!ELEMENT PaymentInstrumentProperty EMPTY >
 <!ATTLIST PaymentInstrumentProperty
 PropertyType NMTOKEN #REQUIRED
 PropertyValue CDATA #REQUIRED
 PropertyDesc CDATA #REQUIRED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.4.3. Inquire Pending Payment

 This API function reports the party’s payment identifiers of any
 pending payment transactions that the IOTP Payment Bridge/Existing
 Payment Software recommends be completed or suspended prior to the
 processing of new payment transactions. It does not respond with
 further transaction details. These have to be requested with
 "Inquire Process State".

 Note that the IOTP Payment Bridge has to respond without the benefit
 of any pass phrase if there exist no pending payment transaction.
 But if there are some pending payment transactions, the IOTP Payment
 Bridge may refuse the immediate response and may instead request the
 appropriate pass phase from the IOTP Application Core.

 Input Parameters

 o Wallet Identifier and/or Passphrase

Hans, et al. Informational [Page 92]

RFC 3867 Payment API for IOTP November 2004

 XML definition:

 <!ELEMENT InquirePendingPayment EMPTY >
 <!ATTLIST InquirePendingPayment
 WalletId CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 o Party’s Payment Identifier

 XML definition:

 <!ELEMENT InquirePendingPaymentResponse (PaymentId*) >

 <!ELEMENT PaymentId EMPTY >
 <!ATTLIST PaymentId
 PayId CDATA #REQUIRED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.5. Payment Related Inquiry API Calls

4.5.1. Check Payment Receipt

 This function is used by the Consumer and might be used by the
 Payment Handler to check the consistency, validity, and integrity of
 IOTP payment receipts which might consist of Packaged Content
 Elements

 o from the IOTP Payment Receipt Component - provided by the Payment
 Handler’s "Inquire Process State" API call shortly before payment
 completion,

 o from Payment Scheme Components being exchanged during the actual
 payment, or

 o being returned by the Consumer’s "Inquire Process State" API call
 shortly before payment completion

 The IOTP Application Core has to check the PayReceiptNameRefs
 attribute of the IOTP Payment Receipt Component and to supply exactly
 the Packaged Content Elements being referred to.

 Failed verification is returns a business error.

Hans, et al. Informational [Page 93]

RFC 3867 Payment API for IOTP November 2004

 Note that this Payment API assumes that any payment receipt builds
 upon a subset of elements with reference to [IOTP]. Furthermore, the
 Packaged Content Element have to be distinguishable by their Name
 attribute.

 Input Parameters

 o Party’s Payment Identifier
 o Wallet Identifier and/or Pass Phrase
 o All Packaged Content Elements in the payment receipt

 XML definition:

 <!ELEMENT CheckPaymentReceipt (PackagedContent*) >
 <!ATTLIST CheckPaymentReceipt
 PayId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 XML definition:

 <!ELEMENT CheckPaymentReceiptResponse EMPTY >
 <!ATTLIST CheckPaymentReceiptResponse >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.5.2. Expand Payment Receipt

 This API function expands any IOTP payment receipt into a form which
 may be used for display or printing purposes. "Check Payment
 Receipt" should be used first if there is any question of the payment
 receipt containing errors.

 The same conventions apply to the input parameter as for "Check
 Payment Receipt" (cf. Section 4.5.1).

 Input Parameters

 o Party’s Payment Identifier
 o Wallet Identifier and/or Pass Phrase
 o All Packaged Content Elements that build the payment receipt

Hans, et al. Informational [Page 94]

RFC 3867 Payment API for IOTP November 2004

 XML definition:

 <!ELEMENT ExpandPaymentReceipt (PackagedContent*) >
 <!ATTLIST ExpandPaymentReceipt
 PayId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 o Brand Identifier
 o Protocol specific Brand Identifier
 o Payment Instrument Identifier
 o Currency Code and Currency Code Type
 o Payment Amount
 o Payment Direction
 o Time Stamp - issuance of the receipt
 o Protocol Identifier
 o Protocol specific Transaction Identifier - this is an internal
 reference number which identifies the payment
 o Consumer Description, Payment Handler Description, and a
 language annotation
 o Style Sheet Net Location
 o Payment Property List. A list of type/value/description triples
 which contains additional information about the payment which
 is not covered by any of the other output parameters; property
 descriptions have to consider the language annotation.

 The Style Sheet Net Location refers to a Style Sheet (e.g., [XSLT])
 that contains presentation information about the reported XML encoded
 data.

 XML definition:

 <!ELEMENT ExpandPaymentReceiptResponse (PaymentProperty*) >
 <!ATTLIST ExpandPaymentReceiptResponse
 BrandId CDATA #IMPLIED
 PaymentInstrumentId CDATA #IMPLIED
 Amount CDATA #IMPLIED
 CurrCodeType NMTOKEN #IMPLIED
 CurrCode CDATA #IMPLIED
 PayDirection (Debit|Credit) #IMPLIED
 TimeStamp CDATA #IMPLIED
 ProtocolId CDATA #IMPLIED
 ProtocolBrandId CDATA #IMPLIED
 ProtocolTransId CDATA #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 ConsumerDesc CDATA #IMPLIED

Hans, et al. Informational [Page 95]

RFC 3867 Payment API for IOTP November 2004

 PaymentHandlerDesc CDATA #IMPLIED
 StyleSheetNetLocn CDATA #IMPLIED>

 <!ELEMENT PaymentProperty EMPTY >
 <!ATTLIST PaymentProperty
 PropertyType NMTOKEN #REQUIRED
 PropertyValue CDATA #REQUIRED
 PropertyDesc CDATA #REQUIRED >

 The Existing Payment Software should return as many attributes as
 possible from the supplied IOTP Payment Receipt. The payment
 supplement defines the attribute values for the payment properties.

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.5.3. Inquire Process State

 This API function returns the current payment state and optionally
 further Packaged Content Elements that form the payment receipt.
 Called by the Payment Handler, the IOTP Payment Bridge might respond
 with data intended for inclusion in the IOTP Payment Receipt
 Component’s Packaged Content. When the Consumer calls this function
 shortly before payment completion, it may respond with further items
 of the payment receipt. Such items might be created by a chip card.

 Input Parameters

 o Party’s Payment Identifier
 o Wallet Identifier and/or Pass Phrase

 XML definition:

 <!ELEMENT InquireProcessState EMPTY >
 <!ATTLIST InquireProcessState
 PayId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 o Current Process State and Percent Complete
 o Completion Code
 o Status Description and its language annotation
 o Payment Receipt Name References to all Packaged Content
 Elements that build the payment receipt (cf. Section 4.5.1),
 even if they have not been created so far (Consumer’s share)

Hans, et al. Informational [Page 96]

RFC 3867 Payment API for IOTP November 2004

 o Any Packaged Content Element being available that form the
 payment receipt

 The IOTP provides a linking capability to the payment receipt
 delivery. Instead of encapsulating the whole payment specific data
 into the packaged content of the payment receipt, other Payment
 Scheme Components’ Packaged Content might be referred to.

 XML definition:

 <!ELEMENT InquireProcessStateResponse
 (PackagedContent*) >
 <!ATTLIST InquireProcessStateResponse
 ProcessState (NotYetStarted |
 InProgress |
 Suspended |
 CompletedOk |
 Failed |
 ProcessError) #REQUIRED
 PercentComplete CDATA #IMPLIED
 CompletionCode NMTOKEN #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 StatusDesc CDATA #IMPLIED
 PayReceiptNameRefs NMTOKENS #IMPLIED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.5.4. Start Payment Inquiry

 This API function responds with any additional payment scheme
 specific data that is needed by the Payment Handler for Consumer
 initiated payment transaction inquiry processing. Probably, the IOTP
 Payment Bridge (or the corresponding Existing Payment Software) has
 to determine the payment related items that were provided with the
 "Start Payment Consumer" API function call.

 Input Parameters

 o Consumer Payment Identifier
 o Wallet Identifier and/or Pass Phrase

Hans, et al. Informational [Page 97]

RFC 3867 Payment API for IOTP November 2004

 XML definition:

 <!ELEMENT StartPaymentInquiry EMPTY >
 <!ATTLIST StartPaymentInquiry
 ConsumerPayId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 o (Payment Scheme) Packaged Content - intended for insertion in
 the Payment Scheme Component of the Inquiry Request Block

 XML definition:

 <!ELEMENT StartPaymentInquiryResponse
 (PaySchemePackagedContent*) >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.5.5. Inquire Payment Status

 The Payment Handler calls this API function for Consumer initiated
 inquiry processing. It differs from the previous "Inquire Process
 State" API function by the optional inclusion of payment scheme
 specific data. The response may encapsulate further details about
 the payment transaction.

 Input Parameters

 o Payment Handler Payment Identifier
 o Wallet Identifier and/or Pass Phrase
 o (Payment Scheme) Packaged Content - copied from the Inquiry
 Request Block’s Payment Scheme Component

 XML definition:

 <!ELEMENT InquirePaymentStatus (PaySchemePackagedContent*) >
 <!ATTLIST InquirePaymentStatus
 PaymentHandlerPayId CDATA #REQUIRED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 o Current Process State
 o Completion Code

Hans, et al. Informational [Page 98]

RFC 3867 Payment API for IOTP November 2004

 o Status Description and its language annotation
 o (Payment Scheme) Packaged Content - intended for insertion in
 the Payment Scheme Component of the Inquiry Response Block

 XML definition:

 <!ELEMENT InquirePaymentStatusResponse
 (PaySchemePackagedContent*) >
 <!ATTLIST InquirePaymentStatusResponse
 PaymentHandlerPayId CDATA #REQUIRED
 ProcessState (NotYetStarted |
 InProgress |
 Suspended |
 CompletedOk |
 Failed |
 ProcessError) #REQUIRED
 CompletionCode NMTOKEN #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 StatusDesc CDATA #IMPLIED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

4.6. Other API Calls

4.6.1. Manage Payment Software

 The following API function notifies the IOTP Payment Bridge about the
 intended registration, modification, or deletion of a payment
 instrument. The actual processing is up to the IOTP Payment Bridge.

 This API request may also be used to activate the IOTP Payment Bridge
 (and the corresponding Existing Payment Software) for general
 administration purposes.

 Input Parameters

 o Brand Identifier
 o Protocol Identifier
 o Any action code:
 o New - add new payment method / instrument
 o Update - change the payment method’s / instrument’s data
 o Delete - delete a payment method / instrument
 o Wallet Identifier and/or Pass Phrase
 o (Brand) Packaged Content - further payment brand description
 o (Pay Protocol) Packaged Content - further payment protocol
 description

Hans, et al. Informational [Page 99]

RFC 3867 Payment API for IOTP November 2004

 o (Protocol Amount) Packaged Content - further payment protocol
 description

 If the Action attribute is set, the Brand and Protocol Identifier
 have to also be set. The IOTP Payment Bridge has to provide the
 required user dialogs and selection mechanisms. E.g., updates and
 deletions may require the selection of the payment instrument. A new
 wallet might be silently generated on the supplement of a new Wallet
 Identifier or after an additional end user acknowledge. The IOTP
 Application Core should not provide any pass phrases for new wallets.
 Instead, the IOTP Payment Bridge has to request and verify them,
 which may return their value to the IOTP Application Core in plain
 text. In addition, the IOTP Payment Bridge returns the supported
 authentication algorithms when a new brand and protocol pair has been
 registered.

 If the "Action" attribute is omitted, the IOTP Payment Bridge which
 is responsible for the Existing Payment Software pops up in a general
 interactive mode.

 XML definition:

 <!ELEMENT ManagePaymentSoftware (BrandPackagedContent*,
 ProtocolAmountPackagedContent*,
 PayProtocolPackagedContent*) >
 <!ATTLIST ManagePaymentSoftware
 BrandId CDATA #IMPLIED
 ProtocolId CDATA #IMPLIED
 Action (New |
 Update |
 Delete) #IMPLIED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED >

 Output Parameters

 o An action code:
 o New - added new wallet
 o Update - changed wallet’s configuration
 o Delete - removed a wallet
 o Wallet Identifier and/or Pass Phrase

 The IOTP Payment Bridge does not return any information about the set
 of registered payment instruments because these data items are
 dynamically inferred during the brand selection process at the
 beginning of each IOTP transaction. However, the IOTP Application
 Core has to be notified about new wallets and should be notified
 about updated and removed wallets (identifier). Alternatively,

Hans, et al. Informational [Page 100]

RFC 3867 Payment API for IOTP November 2004

 removed wallets can be implicitly detected during the next brand
 selection phase. Updated wallets do no affect the processing of the
 IOTP Application Core. The IOTP Payment Bridge should only support
 the addition of at most one wallet because it is not able to report
 multiple additions at once back to the IOTP Application Core.

 XML definition:

 <!ELEMENT ManagePaymentSoftwareResponse EMPTY >
 <!ATTLIST ManagePaymentSoftwareResponse
 Action (New |
 Update |
 Delete) #IMPLIED
 WalletID CDATA #IMPLIED
 Passphrase CDATA #IMPLIED
 AuthNames NMTOKENS #REQUIRED >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

5. Call Back Function

 This API function, called by the IOTP Payment Bridge, is used to
 provide information for Consumer or Payment Handler notification
 about the progress of the payment transaction.

 Its use is illustrated in the diagram below.

 +
 IOTP Application ----calls----
 | Core | |
 display | | v
 to <---------- Call Back <--calls--- Payment
 user | | Software

 +

 Figure 9. Call Back Function

 Whenever this function is called, the content of the status
 description should be made available to the user. For example on a
 status bar, a pop up window, etc.

 A reference to the Call Back function is passed as an input parameter
 to the "Start Payment X" and "Resume Payment X" API function.
 Afterwards, this function might be called whenever the status changes
 or progress needs to be reported.

Hans, et al. Informational [Page 101]

RFC 3867 Payment API for IOTP November 2004

 Input Parameters

 o the software identifier of the caller
 o Party’s Payment Identifier
 o Process State and Percent Complete
 o Completion Code
 o Status Description and its language annotation, text which
 provides information about the progress of the call. It should be
 displayed or made available to, for example, the Consumer.

 Examples of Status Description could be:

 o "Paying 12.30 USD to XYZ Inc"
 o "Payment completed"
 o "Payment aborted"

 The valid languages are announced in the Call Back Language List
 attribute in "Start Payment X" and "Resume Payment X" API function
 calls.

 XML definition:

 <!ELEMENT CallBack EMPTY >
 <!ATTLIST CallBack
 ContentSoftwareID CDATA #IMPLIED
 PayId CDATA #REQUIRED
 ProcessState (NotYetStarted |
 InProgress |
 Suspended |
 CompletedOk |
 Failed |
 ProcessError) #IMPLIED
 PercentComplete CDATA #IMPLIED
 CompletionCode NMTOKEN #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 StatusDesc CDATA #IMPLIED >

 Output Parameters

 XML definition:

 <!ELEMENT CallBackResponse EMPTY >
 <!ATTLIST CallBackResponse <!-- see below --> >

 Tables 4 and 5 explain the attributes and elements; Table 3
 introduces the Error Codes.

Hans, et al. Informational [Page 102]

RFC 3867 Payment API for IOTP November 2004

 Basically, the call back function accepts all input arguments or
 rejects the whole request. It may even accept malformed requests.

 Some payment schemes may support or require that the Consumer might
 be able to cancel the payment at any time. The Call Back function
 can be used to facilitate this by returning the cancellation request
 on the next call (using the Business Error Code and Completion Code
 "ConsCancelled").

 Vice versa the Payment Handler’s Application Core might use the
 similar mechanism to signal its IOTP Payment Bridges any exceptional
 need for a fast shutdown. These IOTP Payment Bridges may initiate
 the appropriate steps for terminating/cancelling all pending payment
 transactions.

 Note that the "Change Process State" API function provides the second
 mechanism for such kind of notification. Therefore, the IOTP Payment
 Bridge or Existing Payment Software may ignore the details of the
 "Call Back" response.

6. Security Consideration

 The IOTP Payment APIs only supports security using pass phrase to
 access to payment Wallet. These can be protected over TLS, which
 provides stronger security at the transport layer, but
 implementations are out the scope of this document.

 See also security consideration section of [IOTP].

7. References

7.1. Normative References

 [IOTP] Burdett, D., "Internet Open Trading Protocol - IOTP
 version 1.0", RFC 2801, April 2000.

 [ISO4217] ISO 4217: Codes for the Representation of Currencies.
 Available from ANSI or ISO.

 [URL] Berners-Lee, T., Masinter, L. and M. McCahill, "Uniform
 Resource Locators (URL)", RFC 1738, December 1994.

 [UTC] Universal Time Coordinated. A method of defining time
 absolutely relative to Greenwich Mean Time (GMT).
 Typically of the form: "CCYY-MM- DDTHH:MM:SS.sssZ+n" where
 the "+n" defines the number of hours from GMT. See ISO
 DIS8601.

Hans, et al. Informational [Page 103]

RFC 3867 Payment API for IOTP November 2004

 [XML] Extensible Mark Up Language (XML) 1.0 (Third Edition). A
 W3C recommendation. See http://www.w3.org/TR/REC-xml

 [XML-NS] Namespaces in XML Recommendation. T. Bray, D. Hollander,
 A. Layman. Janaury 1999. http://www.w3.org/TR/REC-xml-
 names

 [XSLT] Extensible Style Language Transformations 1.0, November
 1999, See http://www.w3.org/TR/xslt

7.2. Informative References

 [IOTPBOOK] D. Burdett, D.E. Eastlake III, and M. Goncalves, Internet
 Open Trading Protocol, McGraw-Hill, 2000. ISBN 0-07-
 135501-4.

 [SET] SET Secure Electronic Transaction(TM) , Version 1.0, May
 31, 1997
 Book 1: Business Description
 Book 2: Programmer’s Guide
 Book 3: Formal Protocol Definition

 [SET/IOTP] Kawatsura, Y., "Secure Electronic Transaction (SET)
 Supplement for the v1.0 Internet Open Trading Protocol
 (IOTP)", RFC 3538, June 2003.

 [TLS] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, January 1999.

Hans, et al. Informational [Page 104]

RFC 3867 Payment API for IOTP November 2004

Acknowledgement

 The contributions of Werner Hans of Atos Origin are gratefully
 acknowledged.

Authors’ Addresses

 Hans-Bernhard Beykirch

 EMail: hbbeykirch@web.de

 Yoshiaki Kawatsura
 Hitachi, Ltd.
 890 Kashimada Saiwai-ku Kawasaki-shi
 Kanagawa, Japan 212-8567

 EMail: ykawatsu@itg.hitachi.co.jp

 Masaaki Hiroya
 Technoinfo Service, Inc.
 333-2-718 Uchikoshi-machi
 Hachioji-shi
 Tokyo 192-0911 JAPAN

 EMail: hiroya@st.rim.or.jp

Hans, et al. Informational [Page 105]

RFC 3867 Payment API for IOTP November 2004

Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Hans, et al. Informational [Page 106]

