
Network Working Group D. Robinson
Request for Comments: 3875 K. Coar
Category: Informational The Apache Software Foundation
 October 2004

 The Common Gateway Interface (CGI) Version 1.1

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004).

IESG Note

 This document is not a candidate for any level of Internet Standard.
 The IETF disclaims any knowledge of the fitness of this document for
 any purpose, and in particular notes that it has not had IETF review
 for such things as security, congestion control or inappropriate
 interaction with deployed protocols. The RFC Editor has chosen to
 publish this document at its discretion. Readers of this document
 should exercise caution in evaluating its value for implementation
 and deployment.

Abstract

 The Common Gateway Interface (CGI) is a simple interface for running
 external programs, software or gateways under an information server
 in a platform-independent manner. Currently, the supported
 information servers are HTTP servers.

 The interface has been in use by the World-Wide Web (WWW) since 1993.
 This specification defines the ’current practice’ parameters of the
 ’CGI/1.1’ interface developed and documented at the U.S. National
 Centre for Supercomputing Applications. This document also defines
 the use of the CGI/1.1 interface on UNIX(R) and other, similar
 systems.

Robinson & Coar Informational [Page 1]

RFC 3875 CGI Version 1.1 October 2004

Table of Contents

 1. Introduction. 4
 1.1. Purpose . 4
 1.2. Requirements . 4
 1.3. Specifications . 4
 1.4. Terminology . 5

 2. Notational Conventions and Generic Grammar. 5
 2.1. Augmented BNF . 5
 2.2. Basic Rules . 6
 2.3. URL Encoding . 7

 3. Invoking the Script . 8
 3.1. Server Responsibilities 8
 3.2. Script Selection . 9
 3.3. The Script-URI . 9
 3.4. Execution . 10

 4. The CGI Request . 10
 4.1. Request Meta-Variables 10
 4.1.1. AUTH_TYPE. 11
 4.1.2. CONTENT_LENGTH 12
 4.1.3. CONTENT_TYPE 12
 4.1.4. GATEWAY_INTERFACE. 13
 4.1.5. PATH_INFO. 13
 4.1.6. PATH_TRANSLATED. 14
 4.1.7. QUERY_STRING 15
 4.1.8. REMOTE_ADDR. 15
 4.1.9. REMOTE_HOST. 16
 4.1.10. REMOTE_IDENT 16
 4.1.11. REMOTE_USER. 16
 4.1.12. REQUEST_METHOD 17
 4.1.13. SCRIPT_NAME. 17
 4.1.14. SERVER_NAME. 17
 4.1.15. SERVER_PORT. 18
 4.1.16. SERVER_PROTOCOL. 18
 4.1.17. SERVER_SOFTWARE. 19
 4.1.18. Protocol-Specific Meta-Variables 19
 4.2. Request Message-Body 20
 4.3. Request Methods . 20
 4.3.1. GET. 20
 4.3.2. POST . 21
 4.3.3. HEAD . 21
 4.3.4. Protocol-Specific Methods. 21
 4.4. The Script Command Line. 21

Robinson & Coar Informational [Page 2]

RFC 3875 CGI Version 1.1 October 2004

 5. NPH Scripts . 22
 5.1. Identification . 22
 5.2. NPH Response . 22

 6. CGI Response. 23
 6.1. Response Handling. 23
 6.2. Response Types . 23
 6.2.1. Document Response. 23
 6.2.2. Local Redirect Response. 24
 6.2.3. Client Redirect Response 24
 6.2.4. Client Redirect Response with Document 24
 6.3. Response Header Fields 25
 6.3.1. Content-Type 25
 6.3.2. Location . 26
 6.3.3. Status . 26
 6.3.4. Protocol-Specific Header Fields. 27
 6.3.5. Extension Header Fields. 27
 6.4. Response Message-Body. 28

 7. System Specifications . 28
 7.1. AmigaDOS . 28
 7.2. UNIX . 28
 7.3. EBCDIC/POSIX . 29

 8. Implementation. 29
 8.1. Recommendations for Servers. 29
 8.2. Recommendations for Scripts. 30

 9. Security Considerations 30
 9.1. Safe Methods . 30
 9.2. Header Fields Containing Sensitive Information 31
 9.3. Data Privacy . 31
 9.4. Information Security Model 31
 9.5. Script Interference with the Server. 31
 9.6. Data Length and Buffering Considerations 32
 9.7. Stateless Processing 32
 9.8. Relative Paths . 33
 9.9. Non-parsed Header Output 33

 10. Acknowledgements. 33

 11. References. 33
 11.1. Normative References. 33
 11.2. Informative References. 34

 12. Authors’ Addresses. 35

 13. Full Copyright Statement. 36

Robinson & Coar Informational [Page 3]

RFC 3875 CGI Version 1.1 October 2004

1. Introduction

1.1. Purpose

 The Common Gateway Interface (CGI) [22] allows an HTTP [1], [4]
 server and a CGI script to share responsibility for responding to
 client requests. The client request comprises a Uniform Resource
 Identifier (URI) [11], a request method and various ancillary
 information about the request provided by the transport protocol.

 The CGI defines the abstract parameters, known as meta-variables,
 which describe a client’s request. Together with a concrete
 programmer interface this specifies a platform-independent interface
 between the script and the HTTP server.

 The server is responsible for managing connection, data transfer,
 transport and network issues related to the client request, whereas
 the CGI script handles the application issues, such as data access
 and document processing.

1.2. Requirements

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL NOT’,
 ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’ and ’OPTIONAL’ in this
 document are to be interpreted as described in BCP 14, RFC 2119 [3].

 An implementation is not compliant if it fails to satisfy one or more
 of the ’must’ requirements for the protocols it implements. An
 implementation that satisfies all of the ’must’ and all of the
 ’should’ requirements for its features is said to be ’unconditionally
 compliant’; one that satisfies all of the ’must’ requirements but not
 all of the ’should’ requirements for its features is said to be
 ’conditionally compliant’.

1.3. Specifications

 Not all of the functions and features of the CGI are defined in the
 main part of this specification. The following phrases are used to
 describe the features that are not specified:

 ’system-defined’
 The feature may differ between systems, but must be the same for
 different implementations using the same system. A system will
 usually identify a class of operating systems. Some systems are
 defined in section 7 of this document. New systems may be defined
 by new specifications without revision of this document.

Robinson & Coar Informational [Page 4]

RFC 3875 CGI Version 1.1 October 2004

 ’implementation-defined’
 The behaviour of the feature may vary from implementation to
 implementation; a particular implementation must document its
 behaviour.

1.4. Terminology

 This specification uses many terms defined in the HTTP/1.1
 specification [4]; however, the following terms are used here in a
 sense which may not accord with their definitions in that document,
 or with their common meaning.

 ’meta-variable’
 A named parameter which carries information from the server to the
 script. It is not necessarily a variable in the operating
 system’s environment, although that is the most common
 implementation.

 ’script’
 The software that is invoked by the server according to this
 interface. It need not be a standalone program, but could be a
 dynamically-loaded or shared library, or even a subroutine in the
 server. It might be a set of statements interpreted at run-time,
 as the term ’script’ is frequently understood, but that is not a
 requirement and within the context of this specification the term
 has the broader definition stated.

 ’server’
 The application program that invokes the script in order to
 service requests from the client.

2. Notational Conventions and Generic Grammar

2.1. Augmented BNF

 All of the mechanisms specified in this document are described in
 both prose and an augmented Backus-Naur Form (BNF) similar to that
 used by RFC 822 [13]. Unless stated otherwise, the elements are
 case-sensitive. This augmented BNF contains the following
 constructs:

 name = definition
 The name of a rule and its definition are separated by the equals
 character (’=’). Whitespace is only significant in that
 continuation lines of a definition are indented.

Robinson & Coar Informational [Page 5]

RFC 3875 CGI Version 1.1 October 2004

 "literal"
 Double quotation marks (") surround literal text, except for a
 literal quotation mark, which is surrounded by angle-brackets (’<’
 and ’>’).

 rule1 | rule2
 Alternative rules are separated by a vertical bar (’|’).

 (rule1 rule2 rule3)
 Elements enclosed in parentheses are treated as a single element.

 *rule
 A rule preceded by an asterisk (’*’) may have zero or more
 occurrences. The full form is ’n*m rule’ indicating at least n
 and at most m occurrences of the rule. n and m are optional
 decimal values with default values of 0 and infinity respectively.

 [rule]
 An element enclosed in square brackets (’[’ and ’]’) is optional,
 and is equivalent to ’*1 rule’.

 N rule
 A rule preceded by a decimal number represents exactly N
 occurrences of the rule. It is equivalent to ’N*N rule’.

2.2. Basic Rules

 This specification uses a BNF-like grammar defined in terms of
 characters. Unlike many specifications which define the bytes
 allowed by a protocol, here each literal in the grammar corresponds
 to the character it represents. How these characters are represented
 in terms of bits and bytes within a system are either system-defined
 or specified in the particular context. The single exception is the
 rule ’OCTET’, defined below.

 The following rules are used throughout this specification to
 describe basic parsing constructs.

 alpha = lowalpha | hialpha
 lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |
 "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |
 "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |
 "y" | "z"
 hialpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" |
 "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" |
 "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" |
 "Y" | "Z"

Robinson & Coar Informational [Page 6]

RFC 3875 CGI Version 1.1 October 2004

 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
 "8" | "9"
 alphanum = alpha | digit
 OCTET = <any 8-bit byte>
 CHAR = alpha | digit | separator | "!" | "#" | "$" |
 "%" | "&" | "’" | "*" | "+" | "-" | "." | "‘" |
 "^" | "_" | "{" | "|" | "}" | "˜" | CTL
 CTL = <any control character>
 SP = <space character>
 HT = <horizontal tab character>
 NL = <newline>
 LWSP = SP | HT | NL
 separator = "(" | ")" | "<" | ">" | "@" | "," | ";" | ":" |
 "\" | <"> | "/" | "[" | "]" | "?" | "=" | "{" |
 "}" | SP | HT
 token = 1*<any CHAR except CTLs or separators>
 quoted-string = <"> *qdtext <">
 qdtext = <any CHAR except <"> and CTLs but including LWSP>
 TEXT = <any printable character>

 Note that newline (NL) need not be a single control character, but
 can be a sequence of control characters. A system MAY define TEXT to
 be a larger set of characters than <any CHAR excluding CTLs but
 including LWSP>.

2.3. URL Encoding

 Some variables and constructs used here are described as being
 ’URL-encoded’. This encoding is described in section 2 of RFC 2396
 [2]. In a URL-encoded string an escape sequence consists of a
 percent character ("%") followed by two hexadecimal digits, where the
 two hexadecimal digits form an octet. An escape sequence represents
 the graphic character that has the octet as its code within the
 US-ASCII [9] coded character set, if it exists. Currently there is
 no provision within the URI syntax to identify which character set
 non-ASCII codes represent, so CGI handles this issue on an ad-hoc
 basis.

 Note that some unsafe (reserved) characters may have different
 semantics when encoded. The definition of which characters are
 unsafe depends on the context; see section 2 of RFC 2396 [2], updated
 by RFC 2732 [7], for an authoritative treatment. These reserved
 characters are generally used to provide syntactic structure to the
 character string, for example as field separators. In all cases, the
 string is first processed with regard to any reserved characters
 present, and then the resulting data can be URL-decoded by replacing
 "%" escape sequences by their character values.

Robinson & Coar Informational [Page 7]

RFC 3875 CGI Version 1.1 October 2004

 To encode a character string, all reserved and forbidden characters
 are replaced by the corresponding "%" escape sequences. The string
 can then be used in assembling a URI. The reserved characters will
 vary from context to context, but will always be drawn from this set:

 reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | "$" |
 "," | "[" | "]"

 The last two characters were added by RFC 2732 [7]. In any
 particular context, a sub-set of these characters will be reserved;
 the other characters from this set MUST NOT be encoded when a string
 is URL-encoded in that context. Other basic rules used to describe
 URI syntax are:

 hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b"
 | "c" | "d" | "e" | "f"
 escaped = "%" hex hex
 unreserved = alpha | digit | mark
 mark = "-" | "_" | "." | "!" | "˜" | "*" | "’" | "(" | ")"

3. Invoking the Script

3.1. Server Responsibilities

 The server acts as an application gateway. It receives the request
 from the client, selects a CGI script to handle the request, converts
 the client request to a CGI request, executes the script and converts
 the CGI response into a response for the client. When processing the
 client request, it is responsible for implementing any protocol or
 transport level authentication and security. The server MAY also
 function in a ’non-transparent’ manner, modifying the request or
 response in order to provide some additional service, such as media
 type transformation or protocol reduction.

 The server MUST perform translations and protocol conversions on the
 client request data required by this specification. Furthermore, the
 server retains its responsibility to the client to conform to the
 relevant network protocol even if the CGI script fails to conform to
 this specification.

 If the server is applying authentication to the request, then it MUST
 NOT execute the script unless the request passes all defined access
 controls.

Robinson & Coar Informational [Page 8]

RFC 3875 CGI Version 1.1 October 2004

3.2. Script Selection

 The server determines which CGI is script to be executed based on a
 generic-form URI supplied by the client. This URI includes a
 hierarchical path with components separated by "/". For any
 particular request, the server will identify all or a leading part of
 this path with an individual script, thus placing the script at a
 particular point in the path hierarchy. The remainder of the path,
 if any, is a resource or sub-resource identifier to be interpreted by
 the script.

 Information about this split of the path is available to the script
 in the meta-variables, described below. Support for non-hierarchical
 URI schemes is outside the scope of this specification.

3.3. The Script-URI

 The mapping from client request URI to choice of script is defined by
 the particular server implementation and its configuration. The
 server may allow the script to be identified with a set of several
 different URI path hierarchies, and therefore is permitted to replace
 the URI by other members of this set during processing and generation
 of the meta-variables. The server

 1. MAY preserve the URI in the particular client request; or

 2. it MAY select a canonical URI from the set of possible values
 for each script; or

 3. it can implement any other selection of URI from the set.

 From the meta-variables thus generated, a URI, the ’Script-URI’, can
 be constructed. This MUST have the property that if the client had
 accessed this URI instead, then the script would have been executed
 with the same values for the SCRIPT_NAME, PATH_INFO and QUERY_STRING
 meta-variables. The Script-URI has the structure of a generic URI as
 defined in section 3 of RFC 2396 [2], with the exception that object
 parameters and fragment identifiers are not permitted. The various
 components of the Script-URI are defined by some of the
 meta-variables (see below);

 script-URI = <scheme> "://" <server-name> ":" <server-port>
 <script-path> <extra-path> "?" <query-string>

 where <scheme> is found from SERVER_PROTOCOL, <server-name>,
 <server-port> and <query-string> are the values of the respective
 meta-variables. The SCRIPT_NAME and PATH_INFO values, URL-encoded
 with ";", "=" and "?" reserved, give <script-path> and <extra-path>.

Robinson & Coar Informational [Page 9]

RFC 3875 CGI Version 1.1 October 2004

 See section 4.1.5 for more information about the PATH_INFO
 meta-variable.

 The scheme and the protocol are not identical as the scheme
 identifies the access method in addition to the application protocol.
 For example, a resource accessed using Transport Layer Security (TLS)
 [14] would have a request URI with a scheme of https when using the
 HTTP protocol [19]. CGI/1.1 provides no generic means for the script
 to reconstruct this, and therefore the Script-URI as defined includes
 the base protocol used. However, a script MAY make use of
 scheme-specific meta-variables to better deduce the URI scheme.

 Note that this definition also allows URIs to be constructed which
 would invoke the script with any permitted values for the path-info
 or query-string, by modifying the appropriate components.

3.4. Execution

 The script is invoked in a system-defined manner. Unless specified
 otherwise, the file containing the script will be invoked as an
 executable program. The server prepares the CGI request as described
 in section 4; this comprises the request meta-variables (immediately
 available to the script on execution) and request message data. The
 request data need not be immediately available to the script; the
 script can be executed before all this data has been received by the
 server from the client. The response from the script is returned to
 the server as described in sections 5 and 6.

 In the event of an error condition, the server can interrupt or
 terminate script execution at any time and without warning. That
 could occur, for example, in the event of a transport failure between
 the server and the client; so the script SHOULD be prepared to handle
 abnormal termination.

4. The CGI Request

 Information about a request comes from two different sources; the
 request meta-variables and any associated message-body.

4.1. Request Meta-Variables

 Meta-variables contain data about the request passed from the server
 to the script, and are accessed by the script in a system-defined
 manner. Meta-variables are identified by case-insensitive names;
 there cannot be two different variables whose names differ in case
 only. Here they are shown using a canonical representation of
 capitals plus underscore ("_"). A particular system can define a
 different representation.

Robinson & Coar Informational [Page 10]

RFC 3875 CGI Version 1.1 October 2004

 meta-variable-name = "AUTH_TYPE" | "CONTENT_LENGTH" |
 "CONTENT_TYPE" | "GATEWAY_INTERFACE" |
 "PATH_INFO" | "PATH_TRANSLATED" |
 "QUERY_STRING" | "REMOTE_ADDR" |
 "REMOTE_HOST" | "REMOTE_IDENT" |
 "REMOTE_USER" | "REQUEST_METHOD" |
 "SCRIPT_NAME" | "SERVER_NAME" |
 "SERVER_PORT" | "SERVER_PROTOCOL" |
 "SERVER_SOFTWARE" | scheme |
 protocol-var-name | extension-var-name
 protocol-var-name = (protocol | scheme) "_" var-name
 scheme = alpha *(alpha | digit | "+" | "-" | ".")
 var-name = token
 extension-var-name = token

 Meta-variables with the same name as a scheme, and names beginning
 with the name of a protocol or scheme (e.g., HTTP_ACCEPT) are also
 defined. The number and meaning of these variables may change
 independently of this specification. (See also section 4.1.18.)

 The server MAY set additional implementation-defined extension meta-
 variables, whose names SHOULD be prefixed with "X_".

 This specification does not distinguish between zero-length (NULL)
 values and missing values. For example, a script cannot distinguish
 between the two requests http://host/script and http://host/script?
 as in both cases the QUERY_STRING meta-variable would be NULL.

 meta-variable-value = "" | 1*<TEXT, CHAR or tokens of value>

 An optional meta-variable may be omitted (left unset) if its value is
 NULL. Meta-variable values MUST be considered case-sensitive except
 as noted otherwise. The representation of the characters in the
 meta-variables is system-defined; the server MUST convert values to
 that representation.

4.1.1. AUTH_TYPE

 The AUTH_TYPE variable identifies any mechanism used by the server to
 authenticate the user. It contains a case-insensitive value defined
 by the client protocol or server implementation.

 For HTTP, if the client request required authentication for external
 access, then the server MUST set the value of this variable from the
 ’auth-scheme’ token in the request Authorization header field.

Robinson & Coar Informational [Page 11]

RFC 3875 CGI Version 1.1 October 2004

 AUTH_TYPE = "" | auth-scheme
 auth-scheme = "Basic" | "Digest" | extension-auth
 extension-auth = token

 HTTP access authentication schemes are described in RFC 2617 [5].

4.1.2. CONTENT_LENGTH

 The CONTENT_LENGTH variable contains the size of the message-body
 attached to the request, if any, in decimal number of octets. If no
 data is attached, then NULL (or unset).

 CONTENT_LENGTH = "" | 1*digit

 The server MUST set this meta-variable if and only if the request is
 accompanied by a message-body entity. The CONTENT_LENGTH value must
 reflect the length of the message-body after the server has removed
 any transfer-codings or content-codings.

4.1.3. CONTENT_TYPE

 If the request includes a message-body, the CONTENT_TYPE variable is
 set to the Internet Media Type [6] of the message-body.

 CONTENT_TYPE = "" | media-type
 media-type = type "/" subtype *(";" parameter)
 type = token
 subtype = token
 parameter = attribute "=" value
 attribute = token
 value = token | quoted-string

 The type, subtype and parameter attribute names are not
 case-sensitive. Parameter values may be case sensitive. Media types
 and their use in HTTP are described section 3.7 of the HTTP/1.1
 specification [4].

 There is no default value for this variable. If and only if it is
 unset, then the script MAY attempt to determine the media type from
 the data received. If the type remains unknown, then the script MAY
 choose to assume a type of application/octet-stream or it may reject
 the request with an error (as described in section 6.3.3).

 Each media-type defines a set of optional and mandatory parameters.
 This may include a charset parameter with a case-insensitive value
 defining the coded character set for the message-body. If the

Robinson & Coar Informational [Page 12]

RFC 3875 CGI Version 1.1 October 2004

 charset parameter is omitted, then the default value should be
 derived according to whichever of the following rules is the first to
 apply:

 1. There MAY be a system-defined default charset for some
 media-types.

 2. The default for media-types of type "text" is ISO-8859-1 [4].

 3. Any default defined in the media-type specification.

 4. The default is US-ASCII.

 The server MUST set this meta-variable if an HTTP Content-Type field
 is present in the client request header. If the server receives a
 request with an attached entity but no Content-Type header field, it
 MAY attempt to determine the correct content type, otherwise it
 should omit this meta-variable.

4.1.4. GATEWAY_INTERFACE

 The GATEWAY_INTERFACE variable MUST be set to the dialect of CGI
 being used by the server to communicate with the script. Syntax:

 GATEWAY_INTERFACE = "CGI" "/" 1*digit "." 1*digit

 Note that the major and minor numbers are treated as separate
 integers and hence each may be incremented higher than a single
 digit. Thus CGI/2.4 is a lower version than CGI/2.13 which in turn
 is lower than CGI/12.3. Leading zeros MUST be ignored by the script
 and MUST NOT be generated by the server.

 This document defines the 1.1 version of the CGI interface.

4.1.5. PATH_INFO

 The PATH_INFO variable specifies a path to be interpreted by the CGI
 script. It identifies the resource or sub-resource to be returned by
 the CGI script, and is derived from the portion of the URI path
 hierarchy following the part that identifies the script itself.
 Unlike a URI path, the PATH_INFO is not URL-encoded, and cannot
 contain path-segment parameters. A PATH_INFO of "/" represents a
 single void path segment.

 PATH_INFO = "" | ("/" path)
 path = lsegment *("/" lsegment)
 lsegment = *lchar
 lchar = <any TEXT or CTL except "/">

Robinson & Coar Informational [Page 13]

RFC 3875 CGI Version 1.1 October 2004

 The value is considered case-sensitive and the server MUST preserve
 the case of the path as presented in the request URI. The server MAY
 impose restrictions and limitations on what values it permits for
 PATH_INFO, and MAY reject the request with an error if it encounters
 any values considered objectionable. That MAY include any requests
 that would result in an encoded "/" being decoded into PATH_INFO, as
 this might represent a loss of information to the script. Similarly,
 treatment of non US-ASCII characters in the path is system-defined.

 URL-encoded, the PATH_INFO string forms the extra-path component of
 the Script-URI (see section 3.3) which follows the SCRIPT_NAME part
 of that path.

4.1.6. PATH_TRANSLATED

 The PATH_TRANSLATED variable is derived by taking the PATH_INFO
 value, parsing it as a local URI in its own right, and performing any
 virtual-to-physical translation appropriate to map it onto the
 server’s document repository structure. The set of characters
 permitted in the result is system-defined.

 PATH_TRANSLATED = *<any character>

 This is the file location that would be accessed by a request for

 <scheme> "://" <server-name> ":" <server-port> <extra-path>

 where <scheme> is the scheme for the original client request and
 <extra-path> is a URL-encoded version of PATH_INFO, with ";", "=" and
 "?" reserved. For example, a request such as the following:

 http://somehost.com/cgi-bin/somescript/this%2eis%2epath%3binfo

 would result in a PATH_INFO value of

 /this.is.the.path;info

 An internal URI is constructed from the scheme, server location and
 the URL-encoded PATH_INFO:

 http://somehost.com/this.is.the.path%3binfo

 This would then be translated to a location in the server’s document
 repository, perhaps a filesystem path something like this:

 /usr/local/www/htdocs/this.is.the.path;info

 The value of PATH_TRANSLATED is the result of the translation.

Robinson & Coar Informational [Page 14]

RFC 3875 CGI Version 1.1 October 2004

 The value is derived in this way irrespective of whether it maps to a
 valid repository location. The server MUST preserve the case of the
 extra-path segment unless the underlying repository supports case-
 insensitive names. If the repository is only case-aware, case-
 preserving, or case-blind with regard to document names, the server
 is not required to preserve the case of the original segment through
 the translation.

 The translation algorithm the server uses to derive PATH_TRANSLATED
 is implementation-defined; CGI scripts which use this variable may
 suffer limited portability.

 The server SHOULD set this meta-variable if the request URI includes
 a path-info component. If PATH_INFO is NULL, then the
 PATH_TRANSLATED variable MUST be set to NULL (or unset).

4.1.7. QUERY_STRING

 The QUERY_STRING variable contains a URL-encoded search or parameter
 string; it provides information to the CGI script to affect or refine
 the document to be returned by the script.

 The URL syntax for a search string is described in section 3 of RFC
 2396 [2]. The QUERY_STRING value is case-sensitive.

 QUERY_STRING = query-string
 query-string = *uric
 uric = reserved | unreserved | escaped

 When parsing and decoding the query string, the details of the
 parsing, reserved characters and support for non US-ASCII characters
 depends on the context. For example, form submission from an HTML
 document [18] uses application/x-www-form-urlencoded encoding, in
 which the characters "+", "&" and "=" are reserved, and the ISO
 8859-1 encoding may be used for non US-ASCII characters.

 The QUERY_STRING value provides the query-string part of the
 Script-URI. (See section 3.3).

 The server MUST set this variable; if the Script-URI does not include
 a query component, the QUERY_STRING MUST be defined as an empty
 string ("").

4.1.8. REMOTE_ADDR

 The REMOTE_ADDR variable MUST be set to the network address of the
 client sending the request to the server.

Robinson & Coar Informational [Page 15]

RFC 3875 CGI Version 1.1 October 2004

 REMOTE_ADDR = hostnumber
 hostnumber = ipv4-address | ipv6-address
 ipv4-address = 1*3digit "." 1*3digit "." 1*3digit "." 1*3digit
 ipv6-address = hexpart [":" ipv4-address]
 hexpart = hexseq | ([hexseq] "::" [hexseq])
 hexseq = 1*4hex *(":" 1*4hex)

 The format of an IPv6 address is described in RFC 3513 [15].

4.1.9. REMOTE_HOST

 The REMOTE_HOST variable contains the fully qualified domain name of
 the client sending the request to the server, if available, otherwise
 NULL. Fully qualified domain names take the form as described in
 section 3.5 of RFC 1034 [17] and section 2.1 of RFC 1123 [12].
 Domain names are not case sensitive.

 REMOTE_HOST = "" | hostname | hostnumber
 hostname = *(domainlabel ".") toplabel ["."]
 domainlabel = alphanum [*alphahypdigit alphanum]
 toplabel = alpha [*alphahypdigit alphanum]
 alphahypdigit = alphanum | "-"

 The server SHOULD set this variable. If the hostname is not
 available for performance reasons or otherwise, the server MAY
 substitute the REMOTE_ADDR value.

4.1.10. REMOTE_IDENT

 The REMOTE_IDENT variable MAY be used to provide identity information
 reported about the connection by an RFC 1413 [20] request to the
 remote agent, if available. The server may choose not to support
 this feature, or not to request the data for efficiency reasons, or
 not to return available identity data.

 REMOTE_IDENT = *TEXT

 The data returned may be used for authentication purposes, but the
 level of trust reposed in it should be minimal.

4.1.11. REMOTE_USER

 The REMOTE_USER variable provides a user identification string
 supplied by client as part of user authentication.

 REMOTE_USER = *TEXT

Robinson & Coar Informational [Page 16]

RFC 3875 CGI Version 1.1 October 2004

 If the client request required HTTP Authentication [5] (e.g., the
 AUTH_TYPE meta-variable is set to "Basic" or "Digest"), then the
 value of the REMOTE_USER meta-variable MUST be set to the user-ID
 supplied.

4.1.12. REQUEST_METHOD

 The REQUEST_METHOD meta-variable MUST be set to the method which
 should be used by the script to process the request, as described in
 section 4.3.

 REQUEST_METHOD = method
 method = "GET" | "POST" | "HEAD" | extension-method
 extension-method = "PUT" | "DELETE" | token

 The method is case sensitive. The HTTP methods are described in
 section 5.1.1 of the HTTP/1.0 specification [1] and section 5.1.1 of
 the HTTP/1.1 specification [4].

4.1.13. SCRIPT_NAME

 The SCRIPT_NAME variable MUST be set to a URI path (not URL-encoded)
 which could identify the CGI script (rather than the script’s
 output). The syntax is the same as for PATH_INFO (section 4.1.5)

 SCRIPT_NAME = "" | ("/" path)

 The leading "/" is not part of the path. It is optional if the path
 is NULL; however, the variable MUST still be set in that case.

 The SCRIPT_NAME string forms some leading part of the path component
 of the Script-URI derived in some implementation-defined manner. No
 PATH_INFO segment (see section 4.1.5) is included in the SCRIPT_NAME
 value.

4.1.14. SERVER_NAME

 The SERVER_NAME variable MUST be set to the name of the server host
 to which the client request is directed. It is a case-insensitive
 hostname or network address. It forms the host part of the
 Script-URI.

 SERVER_NAME = server-name
 server-name = hostname | ipv4-address | ("[" ipv6-address "]")

Robinson & Coar Informational [Page 17]

RFC 3875 CGI Version 1.1 October 2004

 A deployed server can have more than one possible value for this
 variable, where several HTTP virtual hosts share the same IP address.
 In that case, the server would use the contents of the request’s Host
 header field to select the correct virtual host.

4.1.15. SERVER_PORT

 The SERVER_PORT variable MUST be set to the TCP/IP port number on
 which this request is received from the client. This value is used
 in the port part of the Script-URI.

 SERVER_PORT = server-port
 server-port = 1*digit

 Note that this variable MUST be set, even if the port is the default
 port for the scheme and could otherwise be omitted from a URI.

4.1.16. SERVER_PROTOCOL

 The SERVER_PROTOCOL variable MUST be set to the name and version of
 the application protocol used for this CGI request. This MAY differ
 from the protocol version used by the server in its communication
 with the client.

 SERVER_PROTOCOL = HTTP-Version | "INCLUDED" | extension-version
 HTTP-Version = "HTTP" "/" 1*digit "." 1*digit
 extension-version = protocol ["/" 1*digit "." 1*digit]
 protocol = token

 Here, ’protocol’ defines the syntax of some of the information
 passing between the server and the script (the ’protocol-specific’
 features). It is not case sensitive and is usually presented in
 upper case. The protocol is not the same as the scheme part of the
 script URI, which defines the overall access mechanism used by the
 client to communicate with the server. For example, a request that
 reaches the script with a protocol of "HTTP" may have used an "https"
 scheme.

 A well-known value for SERVER_PROTOCOL which the server MAY use is
 "INCLUDED", which signals that the current document is being included
 as part of a composite document, rather than being the direct target
 of the client request. The script should treat this as an HTTP/1.0
 request.

Robinson & Coar Informational [Page 18]

RFC 3875 CGI Version 1.1 October 2004

4.1.17. SERVER_SOFTWARE

 The SERVER_SOFTWARE meta-variable MUST be set to the name and version
 of the information server software making the CGI request (and
 running the gateway). It SHOULD be the same as the server
 description reported to the client, if any.

 SERVER_SOFTWARE = 1*(product | comment)
 product = token ["/" product-version]
 product-version = token
 comment = "(" *(ctext | comment) ")"
 ctext = <any TEXT excluding "(" and ")">

4.1.18. Protocol-Specific Meta-Variables

 The server SHOULD set meta-variables specific to the protocol and
 scheme for the request. Interpretation of protocol-specific
 variables depends on the protocol version in SERVER_PROTOCOL. The
 server MAY set a meta-variable with the name of the scheme to a
 non-NULL value if the scheme is not the same as the protocol. The
 presence of such a variable indicates to a script which scheme is
 used by the request.

 Meta-variables with names beginning with "HTTP_" contain values read
 from the client request header fields, if the protocol used is HTTP.
 The HTTP header field name is converted to upper case, has all
 occurrences of "-" replaced with "_" and has "HTTP_" prepended to
 give the meta-variable name. The header data can be presented as
 sent by the client, or can be rewritten in ways which do not change
 its semantics. If multiple header fields with the same field-name
 are received then the server MUST rewrite them as a single value
 having the same semantics. Similarly, a header field that spans
 multiple lines MUST be merged onto a single line. The server MUST,
 if necessary, change the representation of the data (for example, the
 character set) to be appropriate for a CGI meta-variable.

 The server is not required to create meta-variables for all the
 header fields that it receives. In particular, it SHOULD remove any
 header fields carrying authentication information, such as
 ’Authorization’; or that are available to the script in other
 variables, such as ’Content-Length’ and ’Content-Type’. The server
 MAY remove header fields that relate solely to client-side
 communication issues, such as ’Connection’.

Robinson & Coar Informational [Page 19]

RFC 3875 CGI Version 1.1 October 2004

4.2. Request Message-Body

 Request data is accessed by the script in a system-defined method;
 unless defined otherwise, this will be by reading the ’standard
 input’ file descriptor or file handle.

 Request-Data = [request-body] [extension-data]
 request-body = <CONTENT_LENGTH>OCTET
 extension-data = *OCTET

 A request-body is supplied with the request if the CONTENT_LENGTH is
 not NULL. The server MUST make at least that many bytes available
 for the script to read. The server MAY signal an end-of-file
 condition after CONTENT_LENGTH bytes have been read or it MAY supply
 extension data. Therefore, the script MUST NOT attempt to read more
 than CONTENT_LENGTH bytes, even if more data is available. However,
 it is not obliged to read any of the data.

 For non-parsed header (NPH) scripts (section 5), the server SHOULD
 attempt to ensure that the data supplied to the script is precisely
 as supplied by the client and is unaltered by the server.

 As transfer-codings are not supported on the request-body, the server
 MUST remove any such codings from the message-body, and recalculate
 the CONTENT_LENGTH. If this is not possible (for example, because of
 large buffering requirements), the server SHOULD reject the client
 request. It MAY also remove content-codings from the message-body.

4.3. Request Methods

 The Request Method, as supplied in the REQUEST_METHOD meta-variable,
 identifies the processing method to be applied by the script in
 producing a response. The script author can choose to implement the
 methods most appropriate for the particular application. If the
 script receives a request with a method it does not support it SHOULD
 reject it with an error (see section 6.3.3).

4.3.1. GET

 The GET method indicates that the script should produce a document
 based on the meta-variable values. By convention, the GET method is
 ’safe’ and ’idempotent’ and SHOULD NOT have the significance of
 taking an action other than producing a document.

 The meaning of the GET method may be modified and refined by
 protocol-specific meta-variables.

Robinson & Coar Informational [Page 20]

RFC 3875 CGI Version 1.1 October 2004

4.3.2. POST

 The POST method is used to request the script perform processing and
 produce a document based on the data in the request message-body, in
 addition to meta-variable values. A common use is form submission in
 HTML [18], intended to initiate processing by the script that has a
 permanent affect, such a change in a database.

 The script MUST check the value of the CONTENT_LENGTH variable before
 reading the attached message-body, and SHOULD check the CONTENT_TYPE
 value before processing it.

4.3.3. HEAD

 The HEAD method requests the script to do sufficient processing to
 return the response header fields, without providing a response
 message-body. The script MUST NOT provide a response message-body
 for a HEAD request. If it does, then the server MUST discard the
 message-body when reading the response from the script.

4.3.4. Protocol-Specific Methods

 The script MAY implement any protocol-specific method, such as
 HTTP/1.1 PUT and DELETE; it SHOULD check the value of SERVER_PROTOCOL
 when doing so.

 The server MAY decide that some methods are not appropriate or
 permitted for a script, and may handle the methods itself or return
 an error to the client.

4.4. The Script Command Line

 Some systems support a method for supplying an array of strings to
 the CGI script. This is only used in the case of an ’indexed’ HTTP
 query, which is identified by a ’GET’ or ’HEAD’ request with a URI
 query string that does not contain any unencoded "=" characters. For
 such a request, the server SHOULD treat the query-string as a
 search-string and parse it into words, using the rules

 search-string = search-word *("+" search-word)
 search-word = 1*schar
 schar = unreserved | escaped | xreserved
 xreserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "," |
 "$"

 After parsing, each search-word is URL-decoded, optionally encoded in
 a system-defined manner and then added to the command line argument
 list.

Robinson & Coar Informational [Page 21]

RFC 3875 CGI Version 1.1 October 2004

 If the server cannot create any part of the argument list, then the
 server MUST NOT generate any command line information. For example,
 the number of arguments may be greater than operating system or
 server limits, or one of the words may not be representable as an
 argument.

 The script SHOULD check to see if the QUERY_STRING value contains an
 unencoded "=" character, and SHOULD NOT use the command line
 arguments if it does.

5. NPH Scripts

5.1. Identification

 The server MAY support NPH (Non-Parsed Header) scripts; these are
 scripts to which the server passes all responsibility for response
 processing.

 This specification provides no mechanism for an NPH script to be
 identified on the basis of its output data alone. By convention,
 therefore, any particular script can only ever provide output of one
 type (NPH or CGI) and hence the script itself is described as an ’NPH
 script’. A server with NPH support MUST provide an implementation-
 defined mechanism for identifying NPH scripts, perhaps based on the
 name or location of the script.

5.2. NPH Response

 There MUST be a system-defined method for the script to send data
 back to the server or client; a script MUST always return some data.
 Unless defined otherwise, this will be the same as for conventional
 CGI scripts.

 Currently, NPH scripts are only defined for HTTP client requests. An
 (HTTP) NPH script MUST return a complete HTTP response message,
 currently described in section 6 of the HTTP specifications [1], [4].
 The script MUST use the SERVER_PROTOCOL variable to determine the
 appropriate format for a response. It MUST also take account of any
 generic or protocol-specific meta-variables in the request as might
 be mandated by the particular protocol specification.

 The server MUST ensure that the script output is sent to the client
 unmodified. Note that this requires the script to use the correct
 character set (US-ASCII [9] and ISO 8859-1 [10] for HTTP) in the
 header fields. The server SHOULD attempt to ensure that the script
 output is sent directly to the client, with minimal internal and no
 transport-visible buffering.

Robinson & Coar Informational [Page 22]

RFC 3875 CGI Version 1.1 October 2004

 Unless the implementation defines otherwise, the script MUST NOT
 indicate in its response that the client can send further requests
 over the same connection.

6. CGI Response

6.1. Response Handling

 A script MUST always provide a non-empty response, and so there is a
 system-defined method for it to send this data back to the server.
 Unless defined otherwise, this will be via the ’standard output’ file
 descriptor.

 The script MUST check the REQUEST_METHOD variable when processing the
 request and preparing its response.

 The server MAY implement a timeout period within which data must be
 received from the script. If a server implementation defines such a
 timeout and receives no data from a script within the timeout period,
 the server MAY terminate the script process.

6.2. Response Types

 The response comprises a message-header and a message-body, separated
 by a blank line. The message-header contains one or more header
 fields. The body may be NULL.

 generic-response = 1*header-field NL [response-body]

 The script MUST return one of either a document response, a local
 redirect response or a client redirect (with optional document)
 response. In the response definitions below, the order of header
 fields in a response is not significant (despite appearing so in the
 BNF). The header fields are defined in section 6.3.

 CGI-Response = document-response | local-redir-response |
 client-redir-response | client-redirdoc-response

6.2.1. Document Response

 The CGI script can return a document to the user in a document
 response, with an optional error code indicating the success status
 of the response.

 document-response = Content-Type [Status] *other-field NL
 response-body

Robinson & Coar Informational [Page 23]

RFC 3875 CGI Version 1.1 October 2004

 The script MUST return a Content-Type header field. A Status header
 field is optional, and status 200 ’OK’ is assumed if it is omitted.
 The server MUST make any appropriate modifications to the script’s
 output to ensure that the response to the client complies with the
 response protocol version.

6.2.2. Local Redirect Response

 The CGI script can return a URI path and query-string
 (’local-pathquery’) for a local resource in a Location header field.
 This indicates to the server that it should reprocess the request
 using the path specified.

 local-redir-response = local-Location NL

 The script MUST NOT return any other header fields or a message-body,
 and the server MUST generate the response that it would have produced
 in response to a request containing the URL

 scheme "://" server-name ":" server-port local-pathquery

6.2.3. Client Redirect Response

 The CGI script can return an absolute URI path in a Location header
 field, to indicate to the client that it should reprocess the request
 using the URI specified.

 client-redir-response = client-Location *extension-field NL

 The script MUST not provide any other header fields, except for
 server-defined CGI extension fields. For an HTTP client request, the
 server MUST generate a 302 ’Found’ HTTP response message.

6.2.4. Client Redirect Response with Document

 The CGI script can return an absolute URI path in a Location header
 field together with an attached document, to indicate to the client
 that it should reprocess the request using the URI specified.

 client-redirdoc-response = client-Location Status Content-Type
 *other-field NL response-body

 The Status header field MUST be supplied and MUST contain a status
 value of 302 ’Found’, or it MAY contain an extension-code, that is,
 another valid status code that means client redirection. The server
 MUST make any appropriate modifications to the script’s output to
 ensure that the response to the client complies with the response
 protocol version.

Robinson & Coar Informational [Page 24]

RFC 3875 CGI Version 1.1 October 2004

6.3. Response Header Fields

 The response header fields are either CGI or extension header fields
 to be interpreted by the server, or protocol-specific header fields
 to be included in the response returned to the client. At least one
 CGI field MUST be supplied; each CGI field MUST NOT appear more than
 once in the response. The response header fields have the syntax:

 header-field = CGI-field | other-field
 CGI-field = Content-Type | Location | Status
 other-field = protocol-field | extension-field
 protocol-field = generic-field
 extension-field = generic-field
 generic-field = field-name ":" [field-value] NL
 field-name = token
 field-value = *(field-content | LWSP)
 field-content = *(token | separator | quoted-string)

 The field-name is not case sensitive. A NULL field value is
 equivalent to a field not being sent. Note that each header field in
 a CGI-Response MUST be specified on a single line; CGI/1.1 does not
 support continuation lines. Whitespace is permitted between the ":"
 and the field-value (but not between the field-name and the ":"), and
 also between tokens in the field-value.

6.3.1. Content-Type

 The Content-Type response field sets the Internet Media Type [6] of
 the entity body.

 Content-Type = "Content-Type:" media-type NL

 If an entity body is returned, the script MUST supply a Content-Type
 field in the response. If it fails to do so, the server SHOULD NOT
 attempt to determine the correct content type. The value SHOULD be
 sent unmodified to the client, except for any charset parameter
 changes.

 Unless it is otherwise system-defined, the default charset assumed by
 the client for text media-types is ISO-8859-1 if the protocol is HTTP
 and US-ASCII otherwise. Hence the script SHOULD include a charset
 parameter. See section 3.4.1 of the HTTP/1.1 specification [4] for a
 discussion of this issue.

Robinson & Coar Informational [Page 25]

RFC 3875 CGI Version 1.1 October 2004

6.3.2. Location

 The Location header field is used to specify to the server that the
 script is returning a reference to a document rather than an actual
 document (see sections 6.2.3 and 6.2.4). It is either an absolute
 URI (optionally with a fragment identifier), indicating that the
 client is to fetch the referenced document, or a local URI path
 (optionally with a query string), indicating that the server is to
 fetch the referenced document and return it to the client as the
 response.

 Location = local-Location | client-Location
 client-Location = "Location:" fragment-URI NL
 local-Location = "Location:" local-pathquery NL
 fragment-URI = absoluteURI ["#" fragment]
 fragment = *uric
 local-pathquery = abs-path ["?" query-string]
 abs-path = "/" path-segments
 path-segments = segment *("/" segment)
 segment = *pchar
 pchar = unreserved | escaped | extra
 extra = ":" | "@" | "&" | "=" | "+" | "$" | ","

 The syntax of an absoluteURI is incorporated into this document from
 that specified in RFC 2396 [2] and RFC 2732 [7]. A valid absoluteURI
 always starts with the name of scheme followed by ":"; scheme names
 start with a letter and continue with alphanumerics, "+", "-" or ".".
 The local URI path and query must be an absolute path, and not a
 relative path or NULL, and hence must start with a "/".

 Note that any message-body attached to the request (such as for a
 POST request) may not be available to the resource that is the target
 of the redirect.

6.3.3. Status

 The Status header field contains a 3-digit integer result code that
 indicates the level of success of the script’s attempt to handle the
 request.

 Status = "Status:" status-code SP reason-phrase NL
 status-code = "200" | "302" | "400" | "501" | extension-code
 extension-code = 3digit
 reason-phrase = *TEXT

 Status code 200 ’OK’ indicates success, and is the default value
 assumed for a document response. Status code 302 ’Found’ is used
 with a Location header field and response message-body. Status code

Robinson & Coar Informational [Page 26]

RFC 3875 CGI Version 1.1 October 2004

 400 ’Bad Request’ may be used for an unknown request format, such as
 a missing CONTENT_TYPE. Status code 501 ’Not Implemented’ may be
 returned by a script if it receives an unsupported REQUEST_METHOD.

 Other valid status codes are listed in section 6.1.1 of the HTTP
 specifications [1], [4], and also the IANA HTTP Status Code Registry
 [8] and MAY be used in addition to or instead of the ones listed
 above. The script SHOULD check the value of SERVER_PROTOCOL before
 using HTTP/1.1 status codes. The script MAY reject with error 405
 ’Method Not Allowed’ HTTP/1.1 requests made using a method it does
 not support.

 Note that returning an error status code does not have to mean an
 error condition with the script itself. For example, a script that
 is invoked as an error handler by the server should return the code
 appropriate to the server’s error condition.

 The reason-phrase is a textual description of the error to be
 returned to the client for human consumption.

6.3.4. Protocol-Specific Header Fields

 The script MAY return any other header fields that relate to the
 response message defined by the specification for the SERVER_PROTOCOL
 (HTTP/1.0 [1] or HTTP/1.1 [4]). The server MUST translate the header
 data from the CGI header syntax to the HTTP header syntax if these
 differ. For example, the character sequence for newline (such as
 UNIX’s US-ASCII LF) used by CGI scripts may not be the same as that
 used by HTTP (US-ASCII CR followed by LF).

 The script MUST NOT return any header fields that relate to
 client-side communication issues and could affect the server’s
 ability to send the response to the client. The server MAY remove
 any such header fields returned by the client. It SHOULD resolve any
 conflicts between header fields returned by the script and header
 fields that it would otherwise send itself.

6.3.5. Extension Header Fields

 There may be additional implementation-defined CGI header fields,
 whose field names SHOULD begin with "X-CGI-". The server MAY ignore
 (and delete) any unrecognised header fields with names beginning "X-
 CGI-" that are received from the script.

Robinson & Coar Informational [Page 27]

RFC 3875 CGI Version 1.1 October 2004

6.4. Response Message-Body

 The response message-body is an attached document to be returned to
 the client by the server. The server MUST read all the data provided
 by the script, until the script signals the end of the message-body
 by way of an end-of-file condition. The message-body SHOULD be sent
 unmodified to the client, except for HEAD requests or any required
 transfer-codings, content-codings or charset conversions.

 response-body = *OCTET

7. System Specifications

7.1. AmigaDOS

 Meta-Variables
 Meta-variables are passed to the script in identically named
 environment variables. These are accessed by the DOS library
 routine GetVar(). The flags argument SHOULD be 0. Case is
 ignored, but upper case is recommended for compatibility with
 case-sensitive systems.

 The current working directory
 The current working directory for the script is set to the
 directory containing the script.

 Character set
 The US-ASCII character set [9] is used for the definition of
 meta-variables, header fields and values; the newline (NL)
 sequence is LF; servers SHOULD also accept CR LF as a newline.

7.2. UNIX

 For UNIX compatible operating systems, the following are defined:

 Meta-Variables
 Meta-variables are passed to the script in identically named
 environment variables. These are accessed by the C library
 routine getenv() or variable environ.

 The command line
 This is accessed using the argc and argv arguments to main(). The
 words have any characters which are ’active’ in the Bourne shell
 escaped with a backslash.

 The current working directory
 The current working directory for the script SHOULD be set to the
 directory containing the script.

Robinson & Coar Informational [Page 28]

RFC 3875 CGI Version 1.1 October 2004

 Character set
 The US-ASCII character set [9], excluding NUL, is used for the
 definition of meta-variables, header fields and CHAR values; TEXT
 values use ISO-8859-1. The PATH_TRANSLATED value can contain any
 8-bit byte except NUL. The newline (NL) sequence is LF; servers
 should also accept CR LF as a newline.

7.3. EBCDIC/POSIX

 For POSIX compatible operating systems using the EBCDIC character
 set, the following are defined:

 Meta-Variables
 Meta-variables are passed to the script in identically named
 environment variables. These are accessed by the C library
 routine getenv().

 The command line
 This is accessed using the argc and argv arguments to main(). The
 words have any characters which are ’active’ in the Bourne shell
 escaped with a backslash.

 The current working directory
 The current working directory for the script SHOULD be set to the
 directory containing the script.

 Character set
 The IBM1047 character set [21], excluding NUL, is used for the
 definition of meta-variables, header fields, values, TEXT strings
 and the PATH_TRANSLATED value. The newline (NL) sequence is LF;
 servers should also accept CR LF as a newline.

 media-type charset default
 The default charset value for text (and other implementation-
 defined) media types is IBM1047.

8. Implementation

8.1. Recommendations for Servers

 Although the server and the CGI script need not be consistent in
 their handling of URL paths (client URLs and the PATH_INFO data,
 respectively), server authors may wish to impose consistency. So the
 server implementation should specify its behaviour for the following
 cases:

 1. define any restrictions on allowed path segments, in particular
 whether non-terminal NULL segments are permitted;

Robinson & Coar Informational [Page 29]

RFC 3875 CGI Version 1.1 October 2004

 2. define the behaviour for "." or ".." path segments; i.e.,
 whether they are prohibited, treated as ordinary path segments
 or interpreted in accordance with the relative URL
 specification [2];

 3. define any limits of the implementation, including limits on
 path or search string lengths, and limits on the volume of
 header fields the server will parse.

8.2. Recommendations for Scripts

 If the script does not intend processing the PATH_INFO data, then it
 should reject the request with 404 Not Found if PATH_INFO is not
 NULL.

 If the output of a form is being processed, check that CONTENT_TYPE
 is "application/x-www-form-urlencoded" [18] or "multipart/form-data"
 [16]. If CONTENT_TYPE is blank, the script can reject the request
 with a 415 ’Unsupported Media Type’ error, where supported by the
 protocol.

 When parsing PATH_INFO, PATH_TRANSLATED or SCRIPT_NAME the script
 should be careful of void path segments ("//") and special path
 segments ("." and ".."). They should either be removed from the path
 before use in OS system calls, or the request should be rejected with
 404 ’Not Found’.

 When returning header fields, the script should try to send the CGI
 header fields as soon as possible, and should send them before any
 HTTP header fields. This may help reduce the server’s memory
 requirements.

 Script authors should be aware that the REMOTE_ADDR and REMOTE_HOST
 meta-variables (see sections 4.1.8 and 4.1.9) may not identify the
 ultimate source of the request. They identify the client for the
 immediate request to the server; that client may be a proxy, gateway,
 or other intermediary acting on behalf of the actual source client.

9. Security Considerations

9.1. Safe Methods

 As discussed in the security considerations of the HTTP
 specifications [1], [4], the convention has been established that the
 GET and HEAD methods should be ’safe’ and ’idempotent’ (repeated
 requests have the same effect as a single request). See section 9.1
 of RFC 2616 [4] for a full discussion.

Robinson & Coar Informational [Page 30]

RFC 3875 CGI Version 1.1 October 2004

9.2. Header Fields Containing Sensitive Information

 Some HTTP header fields may carry sensitive information which the
 server should not pass on to the script unless explicitly configured
 to do so. For example, if the server protects the script by using
 the Basic authentication scheme, then the client will send an
 Authorization header field containing a username and password. The
 server validates this information and so it should not pass on the
 password via the HTTP_AUTHORIZATION meta-variable without careful
 consideration. This also applies to the Proxy-Authorization header
 field and the corresponding HTTP_PROXY_AUTHORIZATION meta-variable.

9.3. Data Privacy

 Confidential data in a request should be placed in a message-body as
 part of a POST request, and not placed in the URI or message headers.
 On some systems, the environment used to pass meta-variables to a
 script may be visible to other scripts or users. In addition, many
 existing servers, proxies and clients will permanently record the URI
 where it might be visible to third parties.

9.4. Information Security Model

 For a client connection using TLS, the security model applies between
 the client and the server, and not between the client and the script.
 It is the server’s responsibility to handle the TLS session, and thus
 it is the server which is authenticated to the client, not the CGI
 script.

 This specification provides no mechanism for the script to
 authenticate the server which invoked it. There is no enforced
 integrity on the CGI request and response messages.

9.5. Script Interference with the Server

 The most common implementation of CGI invokes the script as a child
 process using the same user and group as the server process. It
 should therefore be ensured that the script cannot interfere with the
 server process, its configuration, documents or log files.

 If the script is executed by calling a function linked in to the
 server software (either at compile-time or run-time) then precautions
 should be taken to protect the core memory of the server, or to
 ensure that untrusted code cannot be executed.

Robinson & Coar Informational [Page 31]

RFC 3875 CGI Version 1.1 October 2004

9.6. Data Length and Buffering Considerations

 This specification places no limits on the length of the message-body
 presented to the script. The script should not assume that
 statically allocated buffers of any size are sufficient to contain
 the entire submission at one time. Use of a fixed length buffer
 without careful overflow checking may result in an attacker
 exploiting ’stack-smashing’ or ’stack-overflow’ vulnerabilities of
 the operating system. The script may spool large submissions to disk
 or other buffering media, but a rapid succession of large submissions
 may result in denial of service conditions. If the CONTENT_LENGTH of
 a message-body is larger than resource considerations allow, scripts
 should respond with an error status appropriate for the protocol
 version; potentially applicable status codes include 503 ’Service
 Unavailable’ (HTTP/1.0 and HTTP/1.1), 413 ’Request Entity Too Large’
 (HTTP/1.1), and 414 ’Request-URI Too Large’ (HTTP/1.1).

 Similar considerations apply to the server’s handling of the CGI
 response from the script. There is no limit on the length of the
 header or message-body returned by the script; the server should not
 assume that statically allocated buffers of any size are sufficient
 to contain the entire response.

9.7. Stateless Processing

 The stateless nature of the Web makes each script execution and
 resource retrieval independent of all others even when multiple
 requests constitute a single conceptual Web transaction. Because of
 this, a script should not make any assumptions about the context of
 the user-agent submitting a request. In particular, scripts should
 examine data obtained from the client and verify that they are valid,
 both in form and content, before allowing them to be used for
 sensitive purposes such as input to other applications, commands, or
 operating system services. These uses include (but are not limited
 to) system call arguments, database writes, dynamically evaluated
 source code, and input to billing or other secure processes. It is
 important that applications be protected from invalid input
 regardless of whether the invalidity is the result of user error,
 logic error, or malicious action.

 Authors of scripts involved in multi-request transactions should be
 particularly cautious about validating the state information;
 undesirable effects may result from the substitution of dangerous
 values for portions of the submission which might otherwise be
 presumed safe. Subversion of this type occurs when alterations are
 made to data from a prior stage of the transaction that were not
 meant to be controlled by the client (e.g., hidden HTML form
 elements, cookies, embedded URLs, etc.).

Robinson & Coar Informational [Page 32]

RFC 3875 CGI Version 1.1 October 2004

9.8. Relative Paths

 The server should be careful of ".." path segments in the request
 URI. These should be removed or resolved in the request URI before
 it is split into the script-path and extra-path. Alternatively, when
 the extra-path is used to find the PATH_TRANSLATED, care should be
 taken to avoid the path resolution from providing translated paths
 outside an expected path hierarchy.

9.9. Non-parsed Header Output

 If a script returns a non-parsed header output, to be interpreted by
 the client in its native protocol, then the script must address all
 security considerations relating to that protocol.

10. Acknowledgements

 This work is based on the original CGI interface that arose out of
 discussions on the ’www-talk’ mailing list. In particular, Rob
 McCool, John Franks, Ari Luotonen, George Phillips and Tony Sanders
 deserve special recognition for their efforts in defining and
 implementing the early versions of this interface.

 This document has also greatly benefited from the comments and
 suggestions made Chris Adie, Dave Kristol and Mike Meyer; also David
 Morris, Jeremy Madea, Patrick McManus, Adam Donahue, Ross Patterson
 and Harald Alvestrand.

11. References

11.1 Normative References

 [1] Berners-Lee, T., Fielding, R. and H. Frystyk, "Hypertext
 Transfer Protocol -- HTTP/1.0", RFC 1945, May 1996.

 [2] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource
 Identifiers (URI) : Generic Syntax", RFC 2396, August 1998.

 [3] Bradner, S., "Key words for use in RFCs to Indicate Requirements
 Levels", BCP 14, RFC 2119, March 1997.

 [4] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [5] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP Authentication:
 Basic and Digest Access Authentication", RFC 2617, June 1999.

Robinson & Coar Informational [Page 33]

RFC 3875 CGI Version 1.1 October 2004

 [6] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046, November
 1996.

 [7] Hinden, R., Carpenter, B., and L. Masinter, "Format for Literal
 IPv6 Addresses in URL’s", RFC 2732, December 1999.

 [8] "HTTP Status Code Registry",
 http://www.iana.org/assignments/http-status-codes, IANA.

 [9] "Information Systems -- Coded Character Sets -- 7-bit American
 Standard Code for Information Interchange (7-Bit ASCII)", ANSI
 INCITS.4-1986 (R2002).

 [10] "Information technology -- 8-bit single-byte coded graphic
 character sets -- Part 1: Latin alphabet No. 1", ISO/IEC
 8859-1:1998.

11.2. Informative References

 [11] Berners-Lee, T., "Universal Resource Identifiers in WWW: A
 Unifying Syntax for the Expression of Names and Addresses of
 Objects on the Network as used in the World-Wide Web", RFC 1630,
 June 1994.

 [12] Braden, R., Ed., "Requirements for Internet Hosts -- Application
 and Support", STD 3, RFC 1123, October 1989.

 [13] Crocker, D., "Standard for the Format of ARPA Internet Text
 Messages", STD 11, RFC 822, August 1982.

 [14] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
 2246, January 1999.

 [15] Hinden R. and S. Deering, "Internet Protocol Version 6 (IPv6)
 Addressing Architecture", RFC 3513, April 2003.

 [16] Masinter, L., "Returning Values from Forms:
 multipart/form-data", RFC 2388, August 1998.

 [17] Mockapetris, P., "Domain Names - Concepts and Facilities", STD
 13, RFC 1034, November 1987.

 [18] Raggett, D., Le Hors, A., and I. Jacobs, Eds., "HTML 4.01
 Specification", W3C Recommendation December 1999,
 http://www.w3.org/TR/html401/.

 [19] Rescola, E. "HTTP Over TLS", RFC 2818, May 2000.

Robinson & Coar Informational [Page 34]

RFC 3875 CGI Version 1.1 October 2004

 [20] St. Johns, M., "Identification Protocol", RFC 1413, February
 1993.

 [21] IBM National Language Support Reference Manual Volume 2,
 SE09-8002-01, March 1990.

 [22] "The Common Gateway Interface",
 http://hoohoo.ncsa.uiuc.edu/cgi/, NCSA, University of Illinois.

12. Authors’ Addresses

 David Robinson
 The Apache Software Foundation

 EMail: drtr@apache.org

 Ken A. L. Coar
 The Apache Software Foundation

 EMail: coar@apache.org

Robinson & Coar Informational [Page 35]

RFC 3875 CGI Version 1.1 October 2004

13. Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78 and at
 www.rfc-editor.org, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

 Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the ISOC’s procedures with respect to rights in ISOC Documents can
 be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Robinson & Coar Informational [Page 36]

