
Network Working Group T. Paila
Request for Comments: 3926 Nokia
Category: Experimental M. Luby
 Digital Fountain
 R. Lehtonen
 TeliaSonera
 V. Roca
 INRIA Rhone-Alpes
 R. Walsh
 Nokia
 October 2004

 FLUTE - File Delivery over Unidirectional Transport

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004).

Abstract

 This document defines FLUTE, a protocol for the unidirectional
 delivery of files over the Internet, which is particularly suited to
 multicast networks. The specification builds on Asynchronous Layered
 Coding, the base protocol designed for massively scalable multicast
 distribution.

Table of Contents

 1. Introduction . 2
 1.1. Applicability Statement 3
 1.1.1. The Target Application Space 3
 1.1.2. The Target Scale 4
 1.1.3. Intended Environments 4
 1.1.4. Weaknesses 4
 2. Conventions used in this Document. 5
 3. File delivery . 5
 3.1. File delivery session 6
 3.2. File Delivery Table. 8
 3.3. Dynamics of FDT Instances within file delivery session . 9
 3.4. Structure of FDT Instance packets. 11

Paila, et al. Experimental [Page 1]

RFC 3926 FLUTE October 2004

 3.4.1. Format of FDT Instance Header 12
 3.4.2. Syntax of FDT Instance 13
 3.4.3. Content Encoding of FDT Instance 16
 3.5. Multiplexing of files within a file delivery session . . 17
 4. Channels, congestion control and timing 18
 5. Delivering FEC Object Transmission Information 19
 5.1. Use of EXT_FTI for delivery of FEC Object Transmission
 Information. 20
 5.1.1. General EXT_FTI format 20
 5.1.2. FEC Encoding ID specific formats for EXT_FTI . . 21
 5.2. Use of FDT for delivery of FEC Object Transmission
 Information. 25
 6. Describing file delivery sessions. 25
 7. Security Considerations 26
 8. IANA Considerations . 29
 9. Acknowledgements . 29
 Normative References . 29
 Informative References . 30
 A. Receiver operation (informative) 32
 B. Example of FDT Instance (informative). 33
 Authors’ Addresses . 34
 Full Copyright Statement 35

1. Introduction

 This document defines FLUTE version 1, a protocol for unidirectional
 delivery of files over the Internet. The specification builds on
 Asynchronous Layered Coding (ALC), version 1 [2], the base protocol
 designed for massively scalable multicast distribution. ALC defines
 transport of arbitrary binary objects. For file delivery
 applications mere transport of objects is not enough, however. The
 end systems need to know what the objects actually represent. This
 document specifies a technique called FLUTE - a mechanism for
 signaling and mapping the properties of files to concepts of ALC in a
 way that allows receivers to assign those parameters for received
 objects. Consequently, throughout this document the term ’file’
 relates to an ’object’ as discussed in ALC. Although this
 specification frequently makes use of multicast addressing as an
 example, the techniques are similarly applicable for use with unicast
 addressing.

 This document defines a specific transport application of ALC, adding
 the following specifications:

 - Definition of a file delivery session built on top of ALC,
 including transport details and timing constraints.

 - In-band signalling of the transport parameters of the ALC session.

Paila, et al. Experimental [Page 2]

RFC 3926 FLUTE October 2004

 - In-band signalling of the properties of delivered files.

 - Details associated with the multiplexing of multiple files within
 a session.

 This specification is structured as follows. Section 3 begins by
 defining the concept of the file delivery session. Following that it
 introduces the File Delivery Table that forms the core part of this
 specification. Further, it discusses multiplexing issues of
 transport objects within a file delivery session. Section 4
 describes the use of congestion control and channels with FLUTE.
 Section 5 defines how the Forward Error Correction (FEC) Object
 Transmission Information is to be delivered within a file delivery
 session. Section 6 defines the required parameters for describing
 file delivery sessions in a general case. Section 7 outlines
 security considerations regarding file delivery with FLUTE. Last,
 there are two informative appendices. The first appendix describes
 an envisioned receiver operation for the receiver of the file
 delivery session. The second appendix gives an example of File
 Delivery Table.

 Statement of Intent

 This memo contains part of the definitions necessary to fully
 specify a Reliable Multicast Transport protocol in accordance with
 RFC2357. As per RFC2357, the use of any reliable multicast
 protocol in the Internet requires an adequate congestion control
 scheme.

 While waiting for such a scheme to be available, or for an
 existing scheme to be proven adequate, the Reliable Multicast
 Transport working group (RMT) publishes this Request for Comments
 in the "Experimental" category.

 It is the intent of RMT to re-submit this specification as an IETF
 Proposed Standard as soon as the above condition is met.

1.1. Applicability Statement

1.1.1. The Target Application Space

 FLUTE is applicable to the delivery of large and small files to many
 hosts, using delivery sessions of several seconds or more. For
 instance, FLUTE could be used for the delivery of large software
 updates to many hosts simultaneously. It could also be used for
 continuous, but segmented, data such as time-lined text for
 subtitling - potentially leveraging its layering inheritance from ALC
 and LCT to scale the richness of the session to the congestion status

Paila, et al. Experimental [Page 3]

RFC 3926 FLUTE October 2004

 of the network. It is also suitable for the basic transport of
 metadata, for example SDP [12] files which enable user applications
 to access multimedia sessions.

1.1.2. The Target Scale

 Massive scalability is a primary design goal for FLUTE. IP multicast
 is inherently massively scalable, but the best effort service that it
 provides does not provide session management functionality,
 congestion control or reliability. FLUTE provides all of this using
 ALC and IP multicast without sacrificing any of the inherent
 scalability of IP multicast.

1.1.3. Intended Environments

 All of the environmental requirements and considerations that apply
 to the ALC building block [2] and to any additional building blocks
 that FLUTE uses also apply to FLUTE.

 FLUTE can be used with both multicast and unicast delivery, but it’s
 primary application is for unidirectional multicast file delivery.
 FLUTE requires connectivity between a sender and receivers but does
 not require connectivity from receivers to a sender. FLUTE
 inherently works with all types of networks, including LANs, WANs,
 Intranets, the Internet, asymmetric networks, wireless networks, and
 satellite networks.

 FLUTE is compatible with both IPv4 or IPv6 as no part of the packet
 is IP version specific. FLUTE works with both multicast models:
 Any-Source Multicast (ASM) [13] and the Source-Specific Multicast
 (SSM) [15].

 FLUTE is applicable for both Internet use, with a suitable congestion
 control building block, and provisioned/controlled systems, such as
 delivery over wireless broadcast radio systems.

1.1.4. Weaknesses

 Some networks are not amenable to some congestion control protocols
 that could be used with FLUTE. In particular, for a satellite or
 wireless network, there may be no mechanism for receivers to
 effectively reduce their reception rate since there may be a fixed
 transmission rate allocated to the session.

Paila, et al. Experimental [Page 4]

RFC 3926 FLUTE October 2004

 FLUTE provides reliability using the FEC building block. This will
 reduce the error rate as seen by applications. However, FLUTE does
 not provide a method for senders to verify the reception success of
 receivers, and the specification of such a method is outside the
 scope of this document.

2. Conventions used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

 The terms "object" and "transport object" are consistent with the
 definitions in ALC [2] and LCT [3]. The terms "file" and "source
 object" are pseudonyms for "object".

3. File delivery

 Asynchronous Layered Coding [2] is a protocol designed for delivery
 of arbitrary binary objects. It is especially suitable for massively
 scalable, unidirectional, multicast distribution. ALC provides the
 basic transport for FLUTE, and thus FLUTE inherits the requirements
 of ALC.

 This specification is designed for the delivery of files. The core
 of this specification is to define how the properties of the files
 are carried in-band together with the delivered files.

 As an example, let us consider a 5200 byte file referred to by
 "http://www.example.com/docs/file.txt". Using the example, the
 following properties describe the properties that need to be conveyed
 by the file delivery protocol.

 * Identifier of the file, expressed as a URI. This identifier may
 be globally unique. The identifier may also provide a location
 for the file. In the above example: "http://www.example.com/docs/
 file.txt".

 * File name (usually, this can be concluded from the URI). In the
 above example: "file.txt".

 * File type, expressed as MIME media type (usually, this can also be
 concluded from the extension of the file name). In the above
 example: "text/plain". If an explicit value for the MIME type is
 provided separately from the file extension and does not match the
 MIME type of the file extension then the explicitly provided value
 MUST be used as the MIME type.

Paila, et al. Experimental [Page 5]

RFC 3926 FLUTE October 2004

 * File size, expressed in bytes. In the above example: "5200". If
 the file is content encoded then this is the file size before
 content encoding.

 * Content encoding of the file, within transport. In the above
 example, the file could be encoded using ZLIB [10]. In this case
 the size of the transport object carrying the file would probably
 differ from the file size. The transport object size is delivered
 to receivers as part of the FLUTE protocol.

 * Security properties of the file such as digital signatures,
 message digests, etc. For example, one could use S/MIME [18] as
 the content encoding type for files with this authentication
 wrapper, and one could use XML-DSIG [19] to digitally sign an FDT
 Instance.

3.1. File delivery session

 ALC is a protocol instantiation of Layered Coding Transport building
 block (LCT) [3]. Thus ALC inherits the session concept of LCT. In
 this document we will use the concept ALC/LCT session to collectively
 denote the interchangeable terms ALC session and LCT session.

 An ALC/LCT session consists of a set of logically grouped ALC/LCT
 channels associated with a single sender sending packets with ALC/LCT
 headers for one or more objects. An ALC/LCT channel is defined by
 the combination of a sender and an address associated with the
 channel by the sender. A receiver joins a channel to start receiving
 the data packets sent to the channel by the sender, and a receiver
 leaves a channel to stop receiving data packets from the channel.

 One of the fields carried in the ALC/LCT header is the Transport
 Session Identifier (TSI). The TSI is scoped by the source IP
 address, and the (source IP address, TSI) pair uniquely identifies a
 session, i.e., the receiver uses this pair carried in each packet to
 uniquely identify from which session the packet was received. In
 case multiple objects are carried within a session, the Transport
 Object Identifier (TOI) field within the ALC/LCT header identifies
 from which object the data in the packet was generated. Note that
 each object is associated with a unique TOI within the scope of a
 session.

 If the sender is not assigned a permanent IP address accessible to
 receivers, but instead, packets that can be received by receivers
 containing a temporary IP address for packets sent by the sender,
 then the TSI is scoped by this temporary IP address of the sender for
 the duration of the session. As an example, the sender may be behind
 a Network Address Translation (NAT) device that temporarily assigns

Paila, et al. Experimental [Page 6]

RFC 3926 FLUTE October 2004

 an IP address for the sender that is accessible to receivers, and in
 this case the TSI is scoped by the temporary IP address assigned by
 the NAT that will appear in packets received by the receiver. As
 another example, the sender may send its original packets using IPv6,
 but some portions of the network may not be IPv6 capable and thus
 there may be an IPv6 to IPv4 translator that changes the IP address
 of the packets to a different IPv4 address. In this case, receivers
 in the IPv4 portion of the network will receive packets containing
 the IPv4 address, and thus the TSI for them is scoped by the IPv4
 address. How the IP address of the sender to be used to scope the
 session by receivers is delivered to receivers, whether it is a
 permanent IP address or a temporary IP address, is outside the scope
 of this document.

 When FLUTE is used for file delivery over ALC the following rules
 apply:

 * The ALC/LCT session is called file delivery session.

 * The ALC/LCT concept of ’object’ denotes either a ’file’ or a ’File
 Delivery Table Instance’ (section 3.2)

 * The TOI field MUST be included in ALC packets sent within a FLUTE
 session, with the exception that ALC packets sent in a FLUTE
 session with the Close Session (A) flag set to 1 (signaling the
 end of the session) and that contain no payload (carrying no
 information for any file or FDT) SHALL NOT carry the TOI. See
 Section 5.1 of RFC 3451 [3] for the LCT definition of the Close
 Session flag, and see Section 4.2 of RFC 3450 [2] for an example
 of its use within an ALC packet.

 * The TOI value ’0’ is reserved for delivery of File Delivery Table
 Instances. Each File Delivery Table Instance is uniquely
 identified by an FDT Instance ID.

 * Each file in a file delivery session MUST be associated with a TOI
 (>0) in the scope of that session.

 * Information carried in the headers and the payload of a packet is
 scoped by the source IP address and the TSI. Information
 particular to the object carried in the headers and the payload of
 a packet is further scoped by the TOI for file objects, and is
 further scoped by both the TOI and the FDT Instance ID for FDT
 Instance objects.

Paila, et al. Experimental [Page 7]

RFC 3926 FLUTE October 2004

3.2. File Delivery Table

 The File Delivery Table (FDT) provides a means to describe various
 attributes associated with files that are to be delivered within the
 file delivery session. The following lists are examples of such
 attributes, and are not intended to be mutually exclusive nor
 exhaustive.

 Attributes related to the delivery of file:

 - TOI value that represents the file

 - FEC Object Transmission Information (including the FEC Encoding ID
 and, if relevant, the FEC Instance ID)

 - Size of the transport object carrying the file

 - Aggregate rate of sending packets to all channels

 Attributes related to the file itself:

 - Name, Identification and Location of file (specified by the URI)

 - MIME media type of file

 - Size of file

 - Encoding of file

 - Message digest of file

 Some of these attributes MUST be included in the file description
 entry for a file, others are optional, as defined in section 3.4.2.

 Logically, the FDT is a set of file description entries for files to
 be delivered in the session. Each file description entry MUST
 include the TOI for the file that it describes and the URI
 identifying the file. The TOI is included in each ALC/LCT data
 packet during the delivery of the file, and thus the TOI carried in
 the file description entry is how the receiver determines which
 ALC/LCT data packets contain information about which file. Each file
 description entry may also contain one or more descriptors that map
 the above-mentioned attributes to the file.

 Each file delivery session MUST have an FDT that is local to the
 given session. The FDT MUST provide a file description entry mapped
 to a TOI for each file appearing within the session. An object that
 is delivered within the ALC session, but not described in the FDT, is

Paila, et al. Experimental [Page 8]

RFC 3926 FLUTE October 2004

 not considered a ’file’ belonging to the file delivery session.
 Handling of these unmapped TOIs (TOIs that are not resolved by the
 FDT) is out of scope of this specification.

 Within the file delivery session the FDT is delivered as FDT
 Instances. An FDT Instance contains one or more file description
 entries of the FDT. Any FDT Instance can be equal to, a subset of, a
 superset of, or complement any other FDT Instance. A certain FDT
 Instance may be repeated several times during a session, even after
 subsequent FDT Instances (with higher FDT Instance ID numbers) have
 been transmitted. Each FDT Instance contains at least a single file
 description entry and at most the complete FDT of the file delivery
 session.

 A receiver of the file delivery session keeps an FDT database for
 received file description entries. The receiver maintains the
 database, for example, upon reception of FDT Instances. Thus, at any
 given time the contents of the FDT database represent the receiver’s
 current view of the FDT of the file delivery session. Since each
 receiver behaves independently of other receivers, it SHOULD NOT be
 assumed that the contents of the FDT database are the same for all
 the receivers of a given file delivery session.

 Since FDT database is an abstract concept, the structure and the
 maintaining of the FDT database are left to individual
 implementations and are thus out of scope of this specification.

3.3. Dynamics of FDT Instances within file delivery session

 The following rules define the dynamics of the FDT Instances within a
 file delivery session:

 * For every file delivered within a file delivery session there MUST
 be a file description entry included in at least one FDT Instance
 sent within the session. A file description entry contains at a
 minimum the mapping between the TOI and the URI.

 * An FDT Instance MAY appear in any part of the file delivery
 session and packets for an FDT Instance MAY be interleaved with
 packets for other files or other FDT Instances within a session.

 * The TOI value of ’0’ MUST be reserved for delivery of FDT
 Instances. The use of other TOI values for FDT Instances is
 outside the scope of this specification.

Paila, et al. Experimental [Page 9]

RFC 3926 FLUTE October 2004

 * FDT Instance is identified by the use of a new fixed length LCT
 Header Extension EXT_FDT (defined later in this section). Each
 FDT Instance is uniquely identified within the file delivery
 session by its FDT Instance ID. Any ALC/LCT packet carrying FDT
 Instance (indicated by TOI = 0) MUST include EXT_FDT.

 * It is RECOMMENDED that FDT Instance that contains the file
 description entry for a file is sent prior to the sending of the
 described file within a file delivery session.

 * Within a file delivery session, any TOI > 0 MAY be described more
 than once. An example: previous FDT Instance 0 describes TOI of
 value ’3’. Now, subsequent FDT Instances can either keep TOI ’3’
 unmodified on the table, not include it, or complement the
 description. However, subsequent FDT Instances MUST NOT change
 the parameters already described for a specific TOI.

 * An FDT Instance is valid until its expiration time. The
 expiration time is expressed within the FDT Instance payload as a
 32 bit data field. The value of the data field represents the 32
 most significant bits of a 64 bit Network Time Protocol (NTP) [5]
 time value. These 32 bits provide an unsigned integer
 representing the time in seconds relative to 0 hours 1 January
 1900. Handling of wraparound of the 32 bit time is outside the
 scope of NTP and FLUTE.

 * The receiver SHOULD NOT use a received FDT Instance to interpret
 packets received beyond the expiration time of the FDT Instance.

 * A sender MUST use an expiry time in the future upon creation of an
 FDT Instance relative to its Sender Current Time (SCT).

 * Any FEC Encoding ID MAY be used for the sending of FDT Instances.
 The default is to use FEC Encoding ID 0 for the sending of FDT
 Instances. (Note that since FEC Encoding ID 0 is the default for
 FLUTE, this implies that Source Block Number and Encoding Symbol
 ID lengths both default to 16 bits each.)

 Generally, a receiver needs to receive an FDT Instance describing a
 file before it is able to recover the file itself. In this sense FDT
 Instances are of higher priority than files. Thus, it is RECOMMENDED
 that FDT Instances describing a file be sent with at least as much
 reliability within a session (more often or with more FEC protection)
 as the files they describe. In particular, if FDT Instances are
 longer than one packet payload in length it is RECOMMENDED that an
 FEC code that provides protection against loss be used for delivering
 FDT Instances. How often the description of a file is sent in an FDT

Paila, et al. Experimental [Page 10]

RFC 3926 FLUTE October 2004

 Instance or how much FEC protection is provided for each FDT Instance
 (if the FDT Instance is longer than one packet payload) is dependent
 on the particular application and outside the scope of this document.

3.4. Structure of FDT Instance packets

 FDT Instances are carried in ALC packets with TOI = 0 and with an
 additional REQUIRED LCT Header extension called the FDT Instance
 Header. The FDT Instance Header (EXT_FDT) contains the FDT Instance
 ID that uniquely identifies FDT Instances within a file delivery
 session. The FDT Instance Header is placed in the same way as any
 other LCT extension header. There MAY be other LCT extension headers
 in use.

 The LCT extension headers are followed by the FEC Payload ID, and
 finally the Encoding Symbols for the FDT Instance which contains one
 or more file description entries. A FDT Instance MAY span several
 ALC packets - the number of ALC packets is a function of the file
 attributes associated with the FDT Instance. The FDT Instance Header
 is carried in each ALC packet carrying the FDT Instance. The FDT
 Instance Header is identical for all ALC/LCT packets for a particular
 FDT Instance.

 The overall format of ALC/LCT packets carrying an FDT Instance is
 depicted in the Figure 1 below. All integer fields are carried in
 "big-endian" or "network order" format, that is, most significant
 byte (octet) first. As defined in [2], all ALC/LCT packets are sent
 using UDP.

Paila, et al. Experimental [Page 11]

RFC 3926 FLUTE October 2004

 +-+
 | UDP header |
 | |
 +-+
 | Default LCT header (with TOI = 0) |
 | |
 +-+
 | LCT header extensions (EXT_FDT, EXT_FTI, etc.) |
 | |
 +-+
 | FEC Payload ID |
 | |
 +-+
 | Encoding Symbol(s) for FDT Instance |
 | ... |
 +-+

 Figure 1 - Overall FDT Packet

3.4.1. Format of FDT Instance Header

 FDT Instance Header (EXT_FDT) is a new fixed length, ALC PI specific
 LCT header extension [3]. The Header Extension Type (HET) for the
 extension is 192. Its format is defined below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HET = 192 | V | FDT Instance ID |
 +-+

 Version of FLUTE (V), 4 bits:

 This document specifies FLUTE version 1. Hence in any ALC packet
 that carries FDT Instance and that belongs to the file delivery
 session as specified in this specification MUST set this field to
 ’1’.

 FDT Instance ID, 20 bits:

 For each file delivery session the numbering of FDT Instances starts
 from ’0’ and is incremented by one for each subsequent FDT Instance.
 After reaching the maximum value (2^20-1), the numbering starts again
 from ’0’. When wraparound from 2^20-1 to 0 occurs, 0 is considered
 higher than 2^20-1. A new FDT Instance reusing a previous FDT
 Instance ID number, due to wraparound, may not implicitly expire the
 previous FDT Instance with the same ID. It would be reasonable for

Paila, et al. Experimental [Page 12]

RFC 3926 FLUTE October 2004

 FLUTE Senders to only construct and deliver FDT Instances with
 wraparound IDs after the previous FDT Instance using the same ID has
 expired. However, mandatory receiver behavior for handling FDT
 Instance ID wraparound and other special situations (for example,
 missing FDT Instance IDs resulting in larger increments than one) is
 outside the scope of this specification and left to individual
 implementations of FLUTE.

3.4.2. Syntax of FDT Instance

 The FDT Instance contains file description entries that provide the
 mapping functionality described in 3.2 above.

 The FDT Instance is an XML structure that has a single root element
 "FDT-Instance". The "FDT-Instance" element MUST contain "Expires"
 attribute, which tells the expiry time of the FDT Instance. In
 addition, the "FDT-Instance" element MAY contain the "Complete"
 attribute (boolean), which, when TRUE, signals that no new data will
 be provided in future FDT Instances within this session (i.e., that
 either FDT Instances with higher ID numbers will not be used or if
 they are used, will only provide identical file parameters to those
 already given in this and previous FDT Instances). For example, this
 may be used to provide a complete list of files in an entire FLUTE
 session (a "complete FDT").

 The "FDT-Instance" element MAY contain attributes that give common
 parameters for all files of an FDT Instance. These attributes MAY
 also be provided for individual files in the "File" element. Where
 the same attribute appears in both the "FDT-Instance" and the "File"
 elements, the value of the attribute provided in the "File" element
 takes precedence.

 For each file to be declared in the given FDT Instance there is a
 single file description entry in the FDT Instance. Each entry is
 represented by element "File" which is a child element of the FDT
 Instance structure.

 The attributes of "File" element in the XML structure represent the
 attributes given to the file that is delivered in the file delivery
 session. The value of the XML attribute name corresponds to MIME
 field name and the XML attribute value corresponds to the value of
 the MIME field body. Each "File" element MUST contain at least two
 attributes "TOI" and "Content-Location". "TOI" MUST be assigned a
 valid TOI value as described in section 3.3 above. "Content-
 Location" MUST be assigned a valid URI as defined in [6].

Paila, et al. Experimental [Page 13]

RFC 3926 FLUTE October 2004

 In addition to mandatory attributes, the "FDT-Instance" element and
 the "File" element MAY contain other attributes of which the
 following are specifically pointed out.

 * Where the MIME type is described, the attribute "Content-Type"
 MUST be used for the purpose as defined in [6].

 * Where the length is described, the attribute "Content-Length" MUST
 be used for the purpose as defined in [6]. The transfer length is
 defined to be the length of the object transported in bytes. It
 is often important to convey the transfer length to receivers,
 because the source block structure needs to be known for the FEC
 decoder to be applied to recover source blocks of the file, and
 the transfer length is often needed to properly determine the
 source block structure of the file. There generally will be a
 difference between the length of the original file and the
 transfer length if content encoding is applied to the file before
 transport, and thus the "Content-Encoding" attribute is used. If
 the file is not content encoded before transport (and thus the
 "Content-Encoding" attribute is not used) then the transfer length
 is the length of the original file, and in this case the
 "Content-Length" is also the transfer length. However, if the
 file is content encoded before transport (and thus the "Content-
 Encoding" attribute is used), e.g., if compression is applied
 before transport to reduce the number of bytes that need to be
 transferred, then the transfer length is generally different than
 the length of the original file, and in this case the attribute
 "Transfer-Length" MAY be used to carry the transfer length.

 * Where the content encoding scheme is described, the attribute
 "Content-Encoding" MUST be used for the purpose as defined in [6].

 * Where the MD5 message digest is described, the attribute
 "Content-MD5" MUST be used for the purpose as defined in [6].

 * The FEC Object Transmission Information attributes as described in
 section 5.2.

 The following specifies the XML Schema [8][9] for FDT Instance:

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fl="http://www.example.com/flute"
 elementFormDefault:xs="qualified"
 targetNamespace:xs="http://www.example.com/flute">
 <xs:element name="FDT-Instance">
 <xs:complexType>
 <xs:sequence>

Paila, et al. Experimental [Page 14]

RFC 3926 FLUTE October 2004

 <xs:element name="File" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="Content-Location"
 type="xs:anyURI"
 use="required"/>
 <xs:attribute name="TOI"
 type="xs:positiveInteger"
 use="required"/>
 <xs:attribute name="Content-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="Transfer-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="Content-Type"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-Encoding"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-MD5"
 type="xs:base64Binary"
 use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Encoding-ID"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Instance-ID"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Encoding-Symbol-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

 <xs:attribute name="Expires"
 type="xs:string"
 use="required"/>
 <xs:attribute name="Complete"
 type="xs:boolean"

Paila, et al. Experimental [Page 15]

RFC 3926 FLUTE October 2004

 use="optional"/>
 <xs:attribute name="Content-Type"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-Encoding"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Encoding-ID"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Instance-ID"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Encoding-Symbol-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 </xs:element>
 </xs:schema>

 Any valid FDT Instance must use the above XML Schema. This way FDT
 provides extensibility to support private attributes within the file
 description entries. Those could be, for example, the attributes
 related to the delivery of the file (timing, packet transmission
 rate, etc.).

 In case the basic FDT XML Schema is extended in terms of new
 descriptors, for attributes applying to a single file, those MUST be
 placed within the attributes of the element "File". For attributes
 applying to all files described by the current FDT Instance, those
 MUST be placed within the element "FDT-Instance". It is RECOMMENDED
 that the new descriptors applied in the FDT are in the format of MIME
 fields and are either defined in the HTTP/1.1 specification [6] or
 another well-known specification.

3.4.3. Content Encoding of FDT Instance

 The FDT Instance itself MAY be content encoded, for example
 compressed. This specification defines FDT Instance Content Encoding
 Header (EXT_CENC). EXT_CENC is a new fixed length, ALC PI specific
 LCT header extension [3]. The Header Extension Type (HET) for the

Paila, et al. Experimental [Page 16]

RFC 3926 FLUTE October 2004

 extension is 193. If the FDT Instance is content encoded, the
 EXT_CENC MUST be used to signal the content encoding type. In that
 case, EXT_CENC header extension MUST be used in all ALC packets
 carrying the same FDT Instance ID. Consequently, when EXT_CENC
 header is used, it MUST be used together with a proper FDT Instance
 Header (EXT_FDT). Within a file delivery session, FDT Instances that
 are not content encoded and FDT Instances that are content encoded
 MAY both appear. If content encoding is not used for a given FDT
 Instance, the EXT_CENC MUST NOT be used in any packet carrying the
 FDT Instance. The format of EXT_CENC is defined below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HET = 193 | CENC | Reserved |
 +-+

 Content Encoding Algorithm (CENC), 8 bits:

 This field signals the content encoding algorithm used in the FDT
 Instance payload. The definition of this field is outside the scope
 of this specification. Applicable content encoding algorithms
 include, for example, ZLIB [10], DEFLATE [16] and GZIP [17].

 Reserved, 16 bits:

 This field MUST be set to all ’0’.

3.5. Multiplexing of files within a file delivery session

 The delivered files are carried as transport objects (identified with
 TOIs) in the file delivery session. All these objects, including the
 FDT Instances, MAY be multiplexed in any order and in parallel with
 each other within a session, i.e., packets for one file MAY be
 interleaved with packets for other files or other FDT Instances
 within a session.

 Multiple FDT Instances MAY be delivered in a single session using TOI
 = 0. In this case, it is RECOMMENDED that the sending of a previous
 FDT Instance SHOULD end before the sending of the next FDT Instance
 starts. However, due to unexpected network conditions, packets for
 the FDT Instances MAY be interleaved. A receiver can determine which
 FDT Instance a packet contains information about since the FDT
 Instances are uniquely identified by their FDT Instance ID carried in
 the EXT_FDT headers.

Paila, et al. Experimental [Page 17]

RFC 3926 FLUTE October 2004

4. Channels, congestion control and timing

 ALC/LCT has a concept of channels and congestion control. There are
 four scenarios FLUTE is envisioned to be applied.

 (a) Use a single channel and a single-rate congestion control
 protocol.

 (b) Use multiple channels and a multiple-rate congestion control
 protocol. In this case the FDT Instances MAY be delivered on
 more than one channel.

 (c) Use a single channel without congestion control supplied by ALC,
 but only when in a controlled network environment where flow/
 congestion control is being provided by other means.

 (d) Use multiple channels without congestion control supplied by ALC,
 but only when in a controlled network environment where flow/
 congestion control is being provided by other means. In this
 case the FDT Instances MAY be delivered on more than one channel.

 When using just one channel for a file delivery session, as in (a)
 and (c), the notion of ’prior’ and ’after’ are intuitively defined
 for the delivery of objects with respect to their delivery times.

 However, if multiple channels are used, as in (b) and (d), it is not
 straightforward to state that an object was delivered ’prior’ to the
 other. An object may begin to be delivered on one or more of those
 channels before the delivery of a second object begins. However, the
 use of multiple channels/layers may complete the delivery of the
 second object before the first. This is not a problem when objects
 are delivered sequentially using a single channel. Thus, if the
 application of FLUTE has a mandatory or critical requirement that the
 first transport object must complete ’prior’ to the second one, it is
 RECOMMENDED that only a single channel is used for the file delivery
 session.

 Furthermore, if multiple channels are used then a receiver joined to
 the session at a low reception rate will only be joined to the lower
 layers of the session. Thus, since the reception of FDT Instances is
 of higher priority than the reception of files (because the reception
 of files depends on the reception of an FDT Instance describing it),
 the following is RECOMMENDED:

 1. The layers to which packets for FDT Instances are sent SHOULD NOT
 be biased towards those layers to which lower rate receivers are
 not joined. For example, it is ok to put all the packets for an
 FDT Instance into the lowest layer (if this layer carries enough

Paila, et al. Experimental [Page 18]

RFC 3926 FLUTE October 2004

 packets to deliver the FDT to higher rate receivers in a
 reasonable amount of time), but it is not ok to put all the
 packets for an FDT Instance into the higher layers that only high
 rate receivers will receive.

 2. If FDT Instances are generally longer than one Encoding Symbol in
 length and some packets for FDT Instances are sent to layers that
 lower rate receivers do not receive, an FEC Encoding other than
 FEC Encoding ID 0 SHOULD be used to deliver FDT Instances. This
 is because in this case, even when there is no packet loss in the
 network, a lower rate receiver will not receive all packets sent
 for an FDT Instance.

5. Delivering FEC Object Transmission Information

 FLUTE inherits the use of FEC building block [4] from ALC. When
 using FLUTE for file delivery over ALC the FEC Object Transmission
 Information MUST be delivered in-band within the file delivery
 session. In this section, two methods are specified for FLUTE for
 this purpose: the use of ALC specific LCT extension header EXT_FTI
 [2] and the use of FDT.

 The receiver of file delivery session MUST support delivery of FEC
 Object Transmission Information using the EXT_FTI for the FDT
 Instances carried using TOI value 0. For the TOI values other than 0
 the receiver MUST support both methods: the use of EXT_FTI and the
 use of FDT.

 The FEC Object Transmission Information that needs to be delivered to
 receivers MUST be exactly the same whether it is delivered using
 EXT_FTI or using FDT (or both). Section 5.1 describes the required
 FEC Object Transmission Information that MUST be delivered to
 receivers for various FEC Encoding IDs. In addition, it describes
 the delivery using EXT_FTI. Section 5.2 describes the delivery using
 FDT.

 The FEC Object Transmission Information regarding a given TOI may be
 available from several sources. In this case, it is RECOMMENDED that
 the receiver of the file delivery session prioritizes the sources in
 the following way (in the order of decreasing priority).

 1. FEC Object Transmission Information that is available in EXT_FTI.

 2. FEC Object Transmission Information that is available in the FDT.

Paila, et al. Experimental [Page 19]

RFC 3926 FLUTE October 2004

5.1. Use of EXT_FTI for delivery of FEC Object Transmission Information

 As specified in [2], the EXT_FTI header extension is intended to
 carry the FEC Object Transmission Information for an object in-band.
 It is left up to individual implementations to decide how frequently
 and in which ALC packets the EXT_FTI header extension is included.
 In environments with higher packet loss rate, the EXT_FTI might need
 to be included more frequently in ALC packets than in environments
 with low error probability. The EXT_FTI MUST be included in at least
 one sent ALC packet for each FDT Instance.

 The ALC specification does not define the format or the processing of
 the EXT_FTI header extension. The following sections specify EXT_FTI
 when used in FLUTE.

 In FLUTE, the FEC Encoding ID (8 bits) is carried in the Codepoint
 field of the ALC/LCT header.

5.1.1. General EXT_FTI format

 The general EXT_FTI format specifies the structure and those
 attributes of FEC Object Transmission Information that are applicable
 to any FEC Encoding ID.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HET = 64 | HEL | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | Transfer Length |
 +-+
 | FEC Instance ID | FEC Enc. ID Specific Format |
 +-+

 Header Extension Type (HET), 8 bits:

 64 as defined in [2].

 Header Extension Length (HEL), 8 bits:

Paila, et al. Experimental [Page 20]

RFC 3926 FLUTE October 2004

 The length of the whole Header Extension field, expressed in
 multiples of 32-bit words. This length includes the FEC Encoding ID
 specific format part.

 Transfer Length, 48 bits:

 The length of the transport object that carries the file in bytes.
 (This is the same as the file length if the file is not content
 encoded.)

 FEC Instance ID, optional, 16 bits:

 This field is used for FEC Instance ID. It is only present if the
 value of FEC Encoding ID is in the range of 128-255. When the value
 of FEC Encoding ID is in the range of 0-127, this field is set to 0.

 FEC Encoding ID Specific Format:

 Different FEC encoding schemes will need different sets of encoding
 parameters. Thus, the structure and length of this field depends on
 FEC Encoding ID. The next sections specify structure of this field
 for FEC Encoding ID numbers 0, 128, 129, and 130.

5.1.2. FEC Encoding ID specific formats for EXT_FTI

5.1.2.1. FEC Encoding IDs 0, 128, and 130

 FEC Encoding ID 0 is ’Compact No-Code FEC’ (Fully-Specified) [7].
 FEC Encoding ID 128 is ’Small Block, Large Block and Expandable FEC’
 (Under-Specified) [4]. FEC Encoding ID 130 is ’Compact FEC’ (Under-
 Specified) [7]. For these FEC Encoding IDs, the FEC Encoding ID
 specific format of EXT_FTI is defined as follows.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 General EXT_FTI format | Encoding Symbol Length |
 +-+
 | Maximum Source Block Length |
 +-+

 Encoding Symbol Length, 16 bits:

 Length of Encoding Symbol in bytes.

 All Encoding Symbols of a transport object MUST be equal to this
 length, with the optional exception of the last source symbol of the
 last source block (so that redundant padding is not mandatory in this

Paila, et al. Experimental [Page 21]

RFC 3926 FLUTE October 2004

 last symbol). This last source symbol MUST be logically padded out
 with zeroes when another Encoding Symbol is computed based on this
 source symbol to ensure the same interpretation of this Encoding
 Symbol value by the sender and receiver. However, this padding does
 not actually need to be sent with the data of the last source symbol.

 Maximum Source Block Length, 32 bits:

 The maximum number of source symbols per source block.

 This EXT_FTI specification requires that an algorithm is known to
 both sender and receivers for determining the size of all source
 blocks of the transport object that carries the file identified by
 the TOI (or within the FDT Instance identified by the TOI and the FDT
 Instance ID). The algorithm SHOULD be the same for all files using
 the same FEC Encoding ID within a session.

 Section 5.1.2.3 describes an algorithm that is RECOMMENDED for this
 use.

 For the FEC Encoding IDs 0, 128 and 130, this algorithm is the only
 well known way the receiver can determine the length of each source
 block. Thus, the algorithm does two things: (a) it tells the
 receiver the length of each particular source block as it is
 receiving packets for that source block - this is essential to all of
 these FEC schemes; and, (b) it provides the source block structure
 immediately to the receiver so that the receiver can determine where
 to save recovered source blocks at the beginning of the reception of
 data packets for the file - this is an optimization which is
 essential for some implementations.

5.1.2.2. FEC Encoding ID 129

 Small Block Systematic FEC (Under-Specified). The FEC Encoding ID
 specific format of EXT_FTI is defined as follows.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 General EXT_FTI format | Encoding Symbol Length |
 +-+
 | Maximum Source Block Length | Max. Num. of Encoding Symbols |
 +-+

 Encoding Symbol Length, 16 bits:

 Length of Encoding Symbol in bytes.

Paila, et al. Experimental [Page 22]

RFC 3926 FLUTE October 2004

 All Encoding Symbols of a transport object MUST be equal to this
 length, with the optional exception of the last source symbol of the
 last source block (so that redundant padding is not mandatory in this
 last symbol). This last source symbol MUST be logically padded out
 with zeroes when another Encoding Symbol is computed based on this
 source symbol to ensure the same interpretation of this Encoding
 Symbol value by the sender and receiver. However, this padding need
 not be actually sent with the data of the last source symbol.

 Maximum Source Block Length, 16 bits:

 The maximum number of source symbols per source block.

 Maximum Number of Encoding Symbols, 16 bits:

 Maximum number of Encoding Symbols that can be generated for a source
 block.

 This EXT_FTI specification requires that an algorithm is known to
 both sender and receivers for determining the size of all source
 blocks of the transport object that carries the file identified by
 the TOI (or within the FDT Instance identified by the TOI and the FDT
 Instance ID). The algorithm SHOULD be the same for all files using
 the same FEC Encoding ID within a session.

 Section 5.1.2.3 describes an algorithm that is RECOMMENDED for this
 use. For FEC Encoding ID 129 the FEC Payload ID in each data packet
 already contains the source block length for the source block
 corresponding to the Encoding Symbol carried in the data packet.
 Thus, the algorithm for computing source blocks for FEC Encoding ID
 129 could be to just use the source block lengths carried in data
 packets within the FEC Payload ID. However, the algorithm described
 in Section 5.1.2.3 is useful for the receiver to compute the source
 block structure at the beginning of the reception of data packets for
 the file. If the algorithm described in Section 5.1.2.3 is used then
 it MUST be the case that the source block lengths that appear in data
 packets agree with the source block lengths calculated by the
 algorithm.

5.1.2.3. Algorithm for Computing Source Block Structure

 This algorithm computes a source block structure so that all source
 blocks are as close to being equal length as possible. A first
 number of source blocks are of the same larger length, and the
 remaining second number of source blocks are sent of the same smaller
 length. The total number of source blocks (N), the first number of

Paila, et al. Experimental [Page 23]

RFC 3926 FLUTE October 2004

 source blocks (I), the second number of source blocks (N-I), the
 larger length (A_large) and the smaller length (A_small) are
 calculated thus,

 Input:
 B -- Maximum Source Block Length, i.e., the maximum number of
 source symbols per source block
 L -- Transfer Length in bytes
 E -- Encoding Symbol Length in bytes

 Output:
 N -- The number of source blocks into which the transport
 object is partitioned.

 The number and lengths of source symbols in each of the N
 source blocks.

 Algorithm:
 (a) The number of source symbols in the transport object is
 computed as T = L/E rounded up to the nearest integer.
 (b) The transport object is partitioned into N source blocks,
 where N = T/B rounded up to the nearest integer
 (c) The average length of a source block, A = T/N
 (this may be non-integer)
 (d) A_large = A rounded up to the nearest integer
 (it will always be the case that the value of A_large is at
 most B)
 (e) A_small = A rounded down to the nearest integer
 (if A is an integer A_small = A_large,
 and otherwise A_small = A_large - 1)
 (f) The fractional part of A, A_fraction = A - A_small
 (g) I = A_fraction * N
 (I is an integer between 0 and N-1)
 (h) Each of the first I source blocks consists of A_large source
 symbols, each source symbol is E bytes in length. Each of the
 remaining N-I source blocks consist of A_small source symbols,
 each source symbol is E bytes in length except that the last
 source symbol of the last source block is L-(((L-1)/E) rounded
 down to the nearest integer)*E bytes in length.

 Note, this algorithm does not imply implementation by floating point
 arithmetic and integer arithmetic may be used to avoid potential
 floating point rounding errors.

Paila, et al. Experimental [Page 24]

RFC 3926 FLUTE October 2004

5.2. Use of FDT for delivery of FEC Object Transmission Information

 The FDT delivers FEC Object Transmission Information for each file
 using an appropriate attribute within the "FDT-Instance" or the
 "File" element of the FDT structure. For future FEC Encoding IDs, if
 the attributes listed below do not fulfill the needs of describing
 the FEC Object Transmission Information then additional new
 attributes MAY be used.

 * "Transfer-Length" is semantically equivalent with the field
 "Transfer Length" of EXT_FTI.

 * "FEC-OTI-FEC-Encoding-ID" is semantically equivalent with the
 field "FEC Encoding ID" as carried in the Codepoint field of the
 ALC/LCT header.

 * "FEC-OTI-FEC-Instance-ID" is semantically equivalent with the
 field "FEC Instance ID" of EXT_FTI.

 * "FEC-OTI-Maximum-Source-Block-Length" is semantically equivalent
 with the field "Maximum Source Block Length" of EXT_FTI for FEC
 Encoding IDs 0, 128 and 130, and semantically equivalent with the
 field "Maximum Source Block Length" of EXT_FTI for FEC Encoding ID
 129.

 * "FEC-OTI-Encoding-Symbol-Length" is semantically equivalent with
 the field "Encoding Symbol Length" of EXT_FTI for FEC Encoding IDs
 0, 128, 129 and 130.

 * "FEC-OTI-Max-Number-of-Encoding-Symbols" is semantically
 equivalent with the field "Maximum Number of Encoding Symbols" of
 EXT_FTI for FEC Encoding ID 129.

6. Describing file delivery sessions

 To start receiving a file delivery session, the receiver needs to
 know transport parameters associated with the session.
 Interpreting these parameters and starting the reception therefore
 represents the entry point from which thereafter the receiver
 operation falls into the scope of this specification. According
 to [2], the transport parameters of an ALC/LCT session that the
 receiver needs to know are:

 * The source IP address;

 * The number of channels in the session;

Paila, et al. Experimental [Page 25]

RFC 3926 FLUTE October 2004

 * The destination IP address and port number for each channel in the
 session;

 * The Transport Session Identifier (TSI) of the session;

 * An indication that the session is a FLUTE session. The need to
 demultiplex objects upon reception is implicit in any use of
 FLUTE, and this fulfills the ALC requirement of an indication of
 whether or not a session carries packets for more than one object
 (all FLUTE sessions carry packets for more than one object).

 Optionally, the following parameters MAY be associated with the
 session (Note, the list is not exhaustive):

 * The start time and end time of the session;

 * FEC Encoding ID and FEC Instance ID when the default FEC Encoding
 ID 0 is not used for the delivery of FDT;

 * Content Encoding format if optional content encoding of FDT
 Instance is used, e.g., compression;

 * Some information that tells receiver, in the first place, that the
 session contains files that are of interest.

 It is envisioned that these parameters would be described according
 to some session description syntax (such as SDP [12] or XML based)
 and held in a file which would be acquired by the receiver before the
 FLUTE session begins by means of some transport protocol (such as
 Session Announcement Protocol [11], email, HTTP [6], SIP [22], manual
 pre-configuration, etc.) However, the way in which the receiver
 discovers the above-mentioned parameters is out of scope of this
 document, as it is for LCT and ALC. In particular, this
 specification does not mandate or exclude any mechanism.

7. Security Considerations

 The security considerations that apply to, and are described in, ALC
 [2], LCT [3] and FEC [4] also apply to FLUTE. In addition, any
 security considerations that apply to any congestion control building
 block used in conjunction with FLUTE also apply to FLUTE.

 Because of the use of FEC, FLUTE is especially vulnerable to denial-
 of-service attacks by attackers that try to send forged packets to
 the session which would prevent successful reconstruction or cause
 inaccurate reconstruction of large portions of the FDT or file by
 receivers. Like ALC, FLUTE is particularly affected by such an

Paila, et al. Experimental [Page 26]

RFC 3926 FLUTE October 2004

 attack because many receivers may receive the same forged packet. A
 malicious attacker may spoof file packets and cause incorrect
 recovery of a file.

 Even more damaging, a malicious forger may spoof FDT Instance
 packets, for example sending packets with erroneous FDT-Instance
 fields. Many attacks can follow this approach. For instance a
 malicious attacker may alter the Content-Location field of TOI ’n’,
 to make it point to a system file or a user configuration file.
 Then, TOI ’n’ can carry a Trojan Horse or some other type of virus.
 It is thus STRONGLY RECOMMENDED that the FLUTE delivery service at
 the receiver does not have write access to the system files or
 directories, or any other critical areas. As described for MIME
 [20][21], special consideration should be paid to the security
 implications of any MIME types that can cause the remote execution of
 any actions in the recipient’s environment. Note, RFC 1521 [21]
 describes important security issues for this environment, even though
 its protocol is obsoleted by RFC 2048 [20].

 Another example is generating a bad Content-MD5 sum, leading
 receivers to reject the associated file that will be declared
 corrupted. The Content-Encoding can also be modified, which also
 prevents the receivers to correctly handle the associated file.
 These examples show that the FDT information is critical to the FLUTE
 delivery service.

 At the application level, it is RECOMMENDED that an integrity check
 on the entire received object be done once the object is
 reconstructed to ensure it is the same as the sent object, especially
 for objects that are FDT Instances. Moreover, in order to obtain
 strong cryptographic integrity protection a digital signature
 verifiable by the receiver SHOULD be used to provide this application
 level integrity check. However, if even one corrupted or forged
 packet is used to reconstruct the object, it is likely that the
 received object will be reconstructed incorrectly. This will
 appropriately cause the integrity check to fail and, in this case,
 the inaccurately reconstructed object SHOULD be discarded. Thus, the
 acceptance of a single forged packet can be an effective denial of
 service attack for distributing objects, but an object integrity
 check at least prevents inadvertent use of inaccurately reconstructed
 objects. The specification of an application level integrity check
 of the received object is outside the scope of this document.

 At the packet level, it is RECOMMENDED that a packet level
 authentication be used to ensure that each received packet is an
 authentic and uncorrupted packet containing FEC data for the object
 arriving from the specified sender. Packet level authentication has
 the advantage that corrupt or forged packets can be discarded

Paila, et al. Experimental [Page 27]

RFC 3926 FLUTE October 2004

 individually and the received authenticated packets can be used to
 accurately reconstruct the object. Thus, the effect of a denial of
 service attack that injects forged packets is proportional only to
 the number of forged packets, and not to the object size. Although
 there is currently no IETF standard that specifies how to do
 multicast packet level authentication, TESLA [14] is a known
 multicast packet authentication scheme that would work.

 In addition to providing protection against reconstruction of
 inaccurate objects, packet level authentication can also provide some
 protection against denial of service attacks on the multiple rate
 congestion control. Attackers can try to inject forged packets with
 incorrect congestion control information into the multicast stream,
 thereby potentially adversely affecting network elements and
 receivers downstream of the attack, and much less significantly the
 rest of the network and other receivers. Thus, it is also
 RECOMMENDED that packet level authentication be used to protect
 against such attacks. TESLA [14] can also be used to some extent to
 limit the damage caused by such attacks. However, with TESLA a
 receiver can only determine if a packet is authentic several seconds
 after it is received, and thus an attack against the congestion
 control protocol can be effective for several seconds before the
 receiver can react to slow down the session reception rate.

 Reverse Path Forwarding checks SHOULD be enabled in all network
 routers and switches along the path from the sender to receivers to
 limit the possibility of a bad agent injecting forged packets into
 the multicast tree data path.

 A receiver with an incorrect or corrupted implementation of the
 multiple rate congestion control building block may affect health of
 the network in the path between the sender and the receiver, and may
 also affect the reception rates of other receivers joined to the
 session. It is therefore RECOMMENDED that receivers be required to
 identify themselves as legitimate before they receive the Session
 Description needed to join the session. How receivers identify
 themselves as legitimate is outside the scope of this document.

 Another vulnerability of FLUTE is the potential of receivers
 obtaining an incorrect Session Description for the session. The
 consequences of this could be that legitimate receivers with the
 wrong Session Description are unable to correctly receive the session
 content, or that receivers inadvertently try to receive at a much
 higher rate than they are capable of, thereby disrupting traffic in
 portions of the network. To avoid these problems, it is RECOMMENDED
 that measures be taken to prevent receivers from accepting incorrect
 Session Descriptions, e.g., by using source authentication to ensure

Paila, et al. Experimental [Page 28]

RFC 3926 FLUTE October 2004

 that receivers only accept legitimate Session Descriptions from
 authorized senders. How this is done is outside the scope of this
 document.

8. IANA Considerations

 No information in this specification is directly subject to IANA
 registration. However, building blocks components used by ALC may
 introduce additional IANA considerations. In particular, the FEC
 building block used by FLUTE does require IANA registration of the
 FEC codec used.

9. Acknowledgements

 The following persons have contributed to this specification: Brian
 Adamson, Mark Handley, Esa Jalonen, Roger Kermode, Juha-Pekka Luoma,
 Jani Peltotalo, Sami Peltotalo, Topi Pohjolainen, and Lorenzo
 Vicisano. The authors would like to thank all the contributors for
 their valuable work in reviewing and providing feedback regarding
 this specification.

Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Luby, M., Gemmell, J., Vicisano, L., Rizzo, L., and J.
 Crowcroft, "Asynchronous Layered Coding (ALC) Protocol
 Instantiation", RFC 3450, December 2002.

 [3] Luby, M., Gemmell, J., Vicisano, L., Rizzo, L., Handley, M.,
 and J. Crowcroft, "Layered Coding Transport (LCT) Building
 Block", RFC 3451, December 2002.

 [4] Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley, M.,
 and J. Crowcroft, "Forward Error Correction (FEC) Building
 Block", RFC 3452, December 2002.

 [5] Mills, D., "Network Time Protocol (Version 3) Specification,
 Implementation", RFC 1305, March 1992.

 [6] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
 L., Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol
 -- HTTP/1.1", RFC 2616, June 1999.

 [7] Luby, M. and L. Vicisano, "Compact Forward Error Correction
 (FEC) Schemes", RFC 3695, February 2004.

Paila, et al. Experimental [Page 29]

RFC 3926 FLUTE October 2004

 [8] Thompson, H., Beech, D., Maloney, M. and N. Mendelsohn, "XML
 Schema Part 1: Structures", W3C Recommendation, May 2001.

 [9] Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes", W3C
 Recommendation, May 2001.

Informative References

 [10] Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950, May 1996.

 [11] Handley, M., Perkins, C., and E. Whelan, "Session Announcement
 Protocol", RFC 2974, October 2000.

 [12] Handley, M. and V. Jacobson, "SDP: Session Description
 Protocol", RFC 2327, April 1998.

 [13] Deering, S., "Host extensions for IP multicasting", STD 5, RFC
 1112, August 1989.

 [14] Perrig, A., Canetti, R., Song, D., and J. Tygar, "Efficient and
 Secure Source Authentication for Multicast, Network and
 Distributed System Security Symposium, NDSS 2001, pp. 35-46.",
 February 2001.

 [15] Holbrook, H., "A Channel Model for Multicast, Ph.D.
 Dissertation, Stanford University, Department of Computer
 Science, Stanford, California", August 2001.

 [16] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [17] Deutsch, P., "GZIP file format specification version 4.3", RFC
 1952, May 1996.

 [18] Ramsdell, B., "Secure/Multipurpose Internet Mail Extensions
 (S/MIME) Version 3.1 Message Specification", RFC 3851, July
 2004.

 [19] Eastlake, D., Reagle, J., and D. Solo, "(Extensible Markup
 Language) XML-Signature Syntax and Processing", RFC 3275, March
 2002.

 [20] Freed, N., Klensin, J., and J. Postel, "Multipurpose Internet
 Mail Extensions (MIME) Part Four: Registration Procedures", RFC
 2048, November 1996.

Paila, et al. Experimental [Page 30]

RFC 3926 FLUTE October 2004

 [21] Moore, K., "MIME (Multipurpose Internet Mail Extensions) Part
 Three: Message Header Extensions for Non-ASCII Text", RFC 1521,
 November 1996.

 [22] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 session initiation protocol", RFC 3261, June 2002.

Paila, et al. Experimental [Page 31]

RFC 3926 FLUTE October 2004

Appendix A. Receiver operation (informative)

 This section gives an example how the receiver of the file delivery
 session may operate. Instead of a detailed state-by-state
 specification the following should be interpreted as a rough sequence
 of an envisioned file delivery receiver.

 1. The receiver obtains the description of the file delivery session
 identified by the pair: (source IP address, Transport Session
 Identifier). The receiver also obtains the destination IP
 addresses and respective ports associated with the file delivery
 session.

 2. The receiver joins the channels in order to receive packets
 associated with the file delivery session. The receiver may
 schedule this join operation utilizing the timing information
 contained in a possible description of the file delivery session.

 3. The receiver receives ALC/LCT packets associated with the file
 delivery session. The receiver checks that the packets match the
 declared Transport Session Identifier. If not, packets are
 silently discarded.

 4. While receiving, the receiver demultiplexes packets based on their
 TOI and stores the relevant packet information in an appropriate
 area for recovery of the corresponding file. Multiple files can
 be reconstructed concurrently.

 5. Receiver recovers an object. An object can be recovered when an
 appropriate set of packets containing Encoding Symbols for the
 transport object have been received. An appropriate set of
 packets is dependent on the properties of the FEC Encoding ID and
 FEC Instance ID, and on other information contained in the FEC
 Object Transmission Information.

 6. If the recovered object was an FDT Instance with FDT Instance ID
 ’N’, the receiver parses the payload of the instance ’N’ of FDT
 and updates its FDT database accordingly. The receiver identifies
 FDT Instances within a file delivery session by the EXT_FDT header
 extension. Any object that is delivered using EXT_FDT header
 extension is an FDT Instance, uniquely identified by the FDT
 Instance ID. Note that TOI ’0’ is exclusively reserved for FDT
 delivery.

 7. If the object recovered is not an FDT Instance but a file, the
 receiver looks up its FDT database to get the properties described
 in the database, and assigns file with the given properties. The
 receiver also checks that received content length matches with the

Paila, et al. Experimental [Page 32]

RFC 3926 FLUTE October 2004

 description in the database. Optionally, if MD5 checksum has been
 used, the receiver checks that calculated MD5 matches with the
 description in the FDT database.

 8. The actions the receiver takes with imperfectly received files
 (missing data, mismatching digestive, etc.) is outside the scope
 of this specification. When a file is recovered before the
 associated file description entry is available, a possible
 behavior is to wait until an FDT Instance is received that
 includes the missing properties.

 9. If the file delivery session end time has not been reached go back
 to 3. Otherwise end.

Appendix B. Example of FDT Instance (informative)

<?xml version="1.0" encoding="UTF-8"?>
<FDT-Instance xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:fl="http://www.example.com/flute"
xsi:schemaLocation="http://www.example.com/flute-fdt.xsd"
Expires="2890842807">
 <File
 Content-Location="http://www.example.com/menu/tracklist.html"
 TOI="1"
 Content-Type="text/html"/>
 <File
 Content-Location="http://www.example.com/tracks/track1.mp3"
 TOI="2"
 Content-Length="6100"
 Content-Type="audio/mp3"
 Content-Encoding="gzip"
 Content-MD5="+VP5IrWploFkZWc11iLDdA=="
 Some-Private-Extension-Tag="abc123"/>
</FDT-Instance>

Paila, et al. Experimental [Page 33]

RFC 3926 FLUTE October 2004

Authors’ Addresses

 Toni Paila
 Nokia
 Itamerenkatu 11-13
 Helsinki FIN-00180
 Finland

 EMail: toni.paila@nokia.com

 Michael Luby
 Digital Fountain
 39141 Civic Center Dr.
 Suite 300
 Fremont, CA 94538
 USA

 EMail: luby@digitalfountain.com

 Rami Lehtonen
 TeliaSonera
 Hatanpaan valtatie 18
 Tampere FIN-33100
 Finland

 EMail: rami.lehtonen@teliasonera.com

 Vincent Roca
 INRIA Rhone-Alpes
 655, av. de l’Europe
 Montbonnot
 St Ismier cedex 38334
 France

 EMail: vincent.roca@inrialpes.fr

 Rod Walsh
 Nokia
 Visiokatu 1
 Tampere FIN-33720
 Finland

 EMail: rod.walsh@nokia.com

Paila, et al. Experimental [Page 34]

RFC 3926 FLUTE October 2004

Full Copyright Statement

 Copyright (C) The Internet Society (2004).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/S HE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
 INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the IETF’s procedures with respect to rights in IETF Documents can
 be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Paila, et al. Experimental [Page 35]

