
Network Working Group B. Adamson
Request for Comments: 3941 NRL
Category: Experimental C. Bormann
 Universitaet Bremen TZI
 M. Handley
 UCL
 J. Macker
 NRL
 November 2004

 Negative-Acknowledgment (NACK)-Oriented Reliable Multicast (NORM)
 Building Blocks

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004).

Abstract

 This document discusses the creation of negative-acknowledgment
 (NACK)-oriented reliable multicast (NORM) protocols. The rationale
 for NORM goals and assumptions are presented. Technical challenges
 for NACK-oriented (and in some cases general) reliable multicast
 protocol operation are identified. These goals and challenges are
 resolved into a set of functional "building blocks" that address
 different aspects of NORM protocol operation. It is anticipated that
 these building blocks will be useful in generating different
 instantiations of reliable multicast protocols.

Adamson, et al. Experimental [Page 1]

RFC 3941 NORM Building Blocks November 2004

Table of Contents

 1. Introduction . 3
 2. Rationale. 4
 2.1. Delivery Service Model 4
 2.2. Group Membership Dynamics 5
 2.3. Sender/Receiver Relationships 5
 2.4. Group Size Scalability. 6
 2.5. Data Delivery Performance 6
 2.6. Network Environments. 6
 2.7. Router/Intermediate System Assistance 7
 3. Functionality. 7
 3.1. NORM Sender Transmission. 10
 3.2. NORM Repair Process 11
 3.2.1. Receiver NACK Process Initiation 11
 3.2.2. NACK Suppression 13
 3.2.3. NACK Content 17
 3.2.3.1. NACK and FEC Repair Strategies. 17
 3.2.3.2. NACK Content Format 20
 3.2.4. Sender Repair Response 21
 3.3. NORM Receiver Join Policies and Procedures. 23
 3.4. Reliable Multicast Member Identification. 24
 3.5. Data Content Identification 24
 3.6. Forward Error Correction (FEC). 26
 3.7. Round-trip Timing Collection. 27
 3.7.1. One-to-Many Sender GRTT Measurement. 27
 3.7.2. One-to-Many Receiver RTT Measurement 29
 3.7.3. Many-to-Many RTT Measurement 29
 3.7.4. Sender GRTT Advertisement. 30
 3.8. Group Size Determination/Estimation 31
 3.9. Congestion Control Operation. 31
 3.10 Router/Intermediate System Assistance 31
 3.11 NORM Applicability. 31
 4. Security Considerations. 32
 5. Acknowledgements . 33
 6. References . 33
 6.1. Normative References. 33
 6.2. Informative References. 33
 7. Authors’ Addresses . 35
 Full Copyright Statement 36

Adamson, et al. Experimental [Page 2]

RFC 3941 NORM Building Blocks November 2004

1. Introduction

 Reliable multicast transport is a desirable technology for the
 efficient and reliable distribution of data to a group on the
 Internet. The complexities of group communication paradigms
 necessitate different protocol types and instantiations to meet the
 range of performance and scalability requirements of different
 potential reliable multicast applications and users [3]. This
 document addresses the creation of negative-acknowledgment (NACK)-
 oriented reliable multicast (NORM) protocols. While different
 protocol instantiations may be required to meet specific application
 and network architecture demands [4], there are a number of
 fundamental components that may be common to these different
 instantiations. This document describes the framework and common
 "building block" components relevant to multicast protocols based
 primarily on NACK operation for reliable transport. While this
 document discusses a large set of reliable multicast components and
 issues relevant to NORM protocol design, it specifically addresses in
 detail the following building blocks which are not addressed in other
 IETF documents:

 1) NORM sender transmission strategies,

 2) NACK-oriented repair process with timer-based feedback
 suppression, and

 3) Round-trip timing for adapting NORM timers.

 The potential relationships to other reliable multicast transport
 building blocks (Forward Error Correction (FEC), congestion control)
 and general issues with NORM protocols are also discussed. This
 document is a product of the IETF RMT WG and follows the guidelines
 provided in RFC 3269 [5]. The key words "MUST", "MUST NOT",
 "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
 interpreted as described in BCP 14, RFC 2119 [1].

Statement of Intent

 This memo contains part of the definitions necessary to fully specify
 a Reliable Multicast Transport protocol in accordance with RFC 2357.
 As per RFC 2357, the use of any reliable multicast protocol in the
 Internet requires an adequate congestion control scheme.

 While waiting for such a scheme to be available, or for an existing
 scheme to be proven adequate, the Reliable Multicast Transport
 working group (RMT) publishes this Request for Comments in the
 "Experimental" category.

Adamson, et al. Experimental [Page 3]

RFC 3941 NORM Building Blocks November 2004

 It is the intent of RMT to re-submit this specification as an IETF
 Proposed Standard as soon as the above condition is met.

2. Rationale

 Each potential protocol instantiation using the building blocks
 presented here (and in other applicable building block documents)
 will have specific criteria that may influence individual protocol
 design. To support the development of applicable building blocks, it
 is useful to identify and summarize driving general protocol design
 goals and assumptions. These are areas that each protocol
 instantiation will need to address in detail. Each building block
 description in this document will include a discussion of the impact
 of these design criteria. The categories of design criteria
 considered here include:

 1) Delivery Service Model,
 2) Group Membership Dynamics,
 3) Sender/receiver relationships,
 4) Group Size Scalability,
 5) Data Delivery Performance,
 6) Network Environments, and
 7) Router/Intermediate System Interactions.

 All of these areas are at least briefly discussed. Additionally,
 other reliable multicast transport building block documents such as
 [9] have been created to address areas outside of the scope of this
 document. NORM protocol instantiations may depend upon these other
 building blocks as well as the ones presented here. This document
 focuses on areas that are unique to NORM but may be used in concert
 with the other building block areas. In some cases, a building block
 may be able address a wide range of assumptions, while in other cases
 there will be trade-offs required to meet different application needs
 or operating environments. Where necessary, building block features
 are designed to be parametric to meet different requirements. Of
 course, an underlying goal will be to minimize design complexity and
 to at least recommend default values for any such parameters that
 meet a general purpose "bulk data transfer" requirement in a typical
 Internet environment.

2.1. Delivery Service Model

 The implicit goal of a reliable multicast transport protocol is the
 reliable delivery of data among a group of members communicating
 using IP multicast datagram service. However, the specific service
 the application is attempting to provide can impact design decisions.
 A most basic service model for reliable multicast transport is that
 of "bulk transfer" which is a primary focus of this and other related

Adamson, et al. Experimental [Page 4]

RFC 3941 NORM Building Blocks November 2004

 RMT working group documents. However, the same principles in
 protocol design may also be applied to other services models, e.g.,
 more interactive exchanges of small messages such as with white-
 boarding or text chat. Within these different models there are
 issues such as the sender’s ability to cache transmitted data (or
 state referencing it) for retransmission or repair. The needs for
 ordering and/or causality in the sequence of transmissions and
 receptions among members in the group may be different depending upon
 data content. The group communication paradigm differs significantly
 from the point-to-point model in that, depending upon the data
 content type, some receivers may complete reception of a portion of
 data content and be able to act upon it before other members have
 received the content. This may be acceptable (or even desirable) for
 some applications but not for others. These varying requirements
 drive the need for a number of different protocol instantiation
 designs. A significant challenge in developing generally useful
 building block mechanisms is accommodating even a limited range of
 these capabilities without defining specific application-level
 details.

2.2. Group Membership Dynamics

 One area where group communication can differ from point-to-point
 communications is that even if the composition of the group changes,
 the "thread" of communication can still exist. This contrasts with
 the point-to-point communication model where, if either of the two
 parties leave, the communication process (exchange of data) is
 terminated (or at least paused). Depending upon application goals,
 senders and receivers participating in a reliable multicast transport
 "session" may be able to join late, leave, and/or potentially rejoin
 while the ongoing group communication "thread" still remains
 functional and useful. Also note that this can impact protocol
 message content. If "late joiners" are supported, some amount of
 additional information may be placed in message headers to
 accommodate this functionality. Alternatively, the information may
 be sent in its own message (on demand or intermittently) if the
 impact to the overhead of typical message transmissions is deemed too
 great. Group dynamics can also impact other protocol mechanisms such
 as NACK timing, congestion control operation, etc.

2.3. Sender/Receiver Relationships

 The relationship of senders and receivers among group members
 requires consideration. In some applications, there may be a single
 sender multicasting to a group of receivers. In other cases, there
 may be more than one sender or the potential for everyone in the
 group to be a sender _and_ receiver of data may exist.

Adamson, et al. Experimental [Page 5]

RFC 3941 NORM Building Blocks November 2004

2.4. Group Size Scalability

 Native IP multicast [2] may scale to extremely large group sizes. It
 may be desirable for some applications to scale along with the
 multicast infrastructure’s ability to scale. In its simplest form,
 there are limits to the group size to which a NACK-oriented protocol
 can apply without NACK implosion problems. Research suggests that
 NORM group sizes on the order of tens of thousands of receivers may
 operate with modest feedback to the sender using probabilistic,
 timer-based suppression techniques [7]. However, the potential for
 router assistance and/or other NACK suppression heuristics may enable
 these protocols to scale to very large group sizes. In large scale
 cases, it may be prohibitive for members to maintain state on all
 other members (in particular, other receivers) in the group. The
 impact of group size needs to be considered in the development of
 applicable building blocks.

2.5. Data Delivery Performance

 There is a trade-off between scalability and data delivery latency
 when designing NACK-oriented protocols. If probabilistic, timer-
 based NACK suppression is to be used, there will be some delays built
 into the NACK process to allow suppression to occur and for the
 sender of data to identify appropriate content for efficient repair
 transmission. For example, backoff timeouts can be used to ensure
 efficient NACK suppression and repair transmission, but this comes at
 a cost of increased delivery latency and increased buffering
 requirements for both senders and receivers. The building blocks
 SHOULD allow applications to establish bounds for data delivery
 performance. Note that application designers must be aware of the
 scalability trade-off that is made when such bounds are applied.

2.6. Network Environments

 The Internet Protocol has historically assumed a role of providing
 service across heterogeneous network topologies. It is desirable
 that a reliable multicast protocol be capable of effectively
 operating across a wide range of the networks to which general
 purpose IP service applies. The bandwidth available on the links
 between the members of a single group today may vary between low
 numbers of kbit/s for wireless links and multiple Gbit/s for high
 speed LAN connections, with varying degrees of contention from other
 flows. Recently, a number of asymmetric network services including
 56K/ADSL modems, CATV Internet service, satellite and other wireless
 communication services have begun to proliferate. Many of these are
 inherently broadcast media with potentially large "fan-out" to which
 IP multicast service is highly applicable. Additionally, policy
 and/or technical issues may result in topologies where multicast

Adamson, et al. Experimental [Page 6]

RFC 3941 NORM Building Blocks November 2004

 connectivity is limited to a single source multicast (SSM) model from
 a specific source [8]. Receivers in the group may be restricted to
 unicast feedback for NACKs and other messages. Consideration must be
 given, in building block development and protocol design, to the
 nature of the underlying networks.

2.7. Router/Intermediate System Assistance

 While intermediate assistance from devices/systems with direct
 knowledge of the underlying network topology may be used to leverage
 the performance and scalability of reliable multicast protocols,
 there will continue to be a number of instances where this is not
 available or practical. Any building block components for NACK-
 oriented reliable multicast SHALL be capable of operating without
 such assistance. However, it is RECOMMENDED that such protocols also
 consider utilizing these features when available.

3. Functionality

 The previous section has presented the role of protocol building
 blocks and some of the criteria that may affect NORM building block
 identification/design. This section describes different building
 block areas applicable to NORM protocols. Some of these areas are
 specific to NACK-oriented protocols. Detailed descriptions of such
 areas are provided. In other cases, the areas (e.g., node
 identifiers, forward error correction (FEC), etc.) may be applicable
 to other forms of reliable multicast. In those cases, the discussion
 below describes requirements placed on those other general building
 block areas from the standpoint of NACK-oriented reliable multicast.
 Where applicable, other building block documents are referenced for
 possible contribution to NORM protocols.

 For each building block, a notional "interface description" is
 provided to illustrate any dependencies of one building block
 component upon another or upon other protocol parameters. A building
 block component may require some form of "input" from another
 building block component or other source to perform its function.
 Any "inputs" required by a building block component and/or any
 resultant "output" provided will be defined and described in each
 building block component’s interface description. Note that the set
 of building blocks presented here do not fully satisfy each other’s
 "input" and "output" needs. In some cases, "inputs" for the building
 blocks here must come from other building blocks external to this
 document (e.g., congestion control or FEC). In other cases NORM
 building block "inputs" must be satisfied by the specific protocol
 instantiation or implementation (e.g., application data and control).

Adamson, et al. Experimental [Page 7]

RFC 3941 NORM Building Blocks November 2004

 The following building block components relevant to NORM are
 identified:

 (NORM-Specific)
 1) NORM Sender Transmission
 2) NORM Repair Process
 3) NORM Receiver Join Policies
 (General Purpose)
 4) Node (member) Identification
 5) Data Content Identification
 6) Forward Error Correction (FEC)
 7) Round-trip Timing Collection
 8) Group Size Determination/Estimation
 9) Congestion Control Operation
 10) Router/Intermediate System Assistance
 11) Ancillary Protocol Mechanisms

 Figure 1 provides a pictorial overview of these building block areas
 and some of their relationships. For example, the content of the
 data messages that a sender initially transmits depends upon the
 "Node Identification", "Data Content Identification", and "FEC"
 components while the rate of message transmission will generally
 depend upon the "Congestion Control" component. Subsequently, the
 receivers’ response to these transmissions (e.g., NACKing for repair)
 will depend upon the data message content and inputs from other
 building block components. Finally, the sender’s processing of
 receiver responses will feed back into its transmission strategy.

Adamson, et al. Experimental [Page 8]

RFC 3941 NORM Building Blocks November 2004

 Application Data and Control
 |
 v
 .---------------------. .-----------------------.
 | Node Identification |----------->| Sender Transmission |<------.
 ‘---------------------’ _.-’ ‘-----------------------’ |
 .---------------------. _.-’ .’ | .--------------. |
 | Data Identification |--’ .’’ | | Join Policy | |
 ‘---------------------’ .’ ’ v ‘--------------’ |
 .---------------------. .’ ’ .------------------------. |
 .->| Congestion Control |-’ ’ | Receiver NACK | |
‘---------------------’ .’	Repair Process					
.---------------------. .’	.------------------.					
	FEC	’.		NACK Initiation		
‘---------------------’‘ ‘._	‘------------------’					
.---------------------. ‘‘. ‘-._	.------------------.					
 ‘--| RTT Collection |._‘ ‘ ‘->| | NACK Content | | |
 ‘---------------------’ .‘- ‘ | ‘------------------’ | |
 .---------------------. \ ‘-‘._ | .------------------. | |
 | Group Size Est. |---.-‘---‘->| | NACK Suppression | | |
 ‘---------------------’‘. ‘ ‘ | ‘------------------’ | |
 .---------------------. ‘ ‘ ‘ ‘------------------------’ |
 | Other | ‘ ‘ ‘ | .-----------------. |
 ‘---------------------’ ‘ ‘ ‘ | |Router Assistance| |
 ‘. ‘ ‘ v ‘-----------------’ |
 ‘.‘’ .-------------------------. |
 ‘>| Sender NACK Processing |_____/
 | and Repair Response |
 ‘-------------------------’

 ^ ^
 | |
 .-----------------------------.
 | (Security) |
 ‘-----------------------------’

 Fig. 1 - NORM Building Block Framework

 The components on the left side of this figure are areas that may be
 applicable beyond NORM. The most significant of these components are
 discussed in other building block documents such as [9]. A brief
 description of these areas and their role in the NORM protocol is
 given below. The components on the right are seen as specific to
 NORM protocols, most notably the NACK repair process. These areas
 are discussed in detail below. Some other components (e.g.,
 "Security") impact many aspects of the protocol, and others such as
 "Router Assistance" may be more transparent to the core protocol
 processing. The sections below describe the "NORM Sender

Adamson, et al. Experimental [Page 9]

RFC 3941 NORM Building Blocks November 2004

 Transmission", "NORM Repair Process", and "RTT Collection" building
 blocks in detail. The relationships to and among the other building
 block areas are also discussed, focusing on issues applicable to NORM
 protocol design. Where applicable, specific technical
 recommendations are made for mechanisms that will properly satisfy
 the goals of NORM transport for the Internet.

3.1. NORM Sender Transmission

 NORM senders will transmit data content to the multicast session.
 The data content will be application dependent. The sender will
 transmit data content at a rate, and with message sizes, determined
 by application and/or network architecture requirements. Any FEC
 encoding of sender transmissions SHOULD conform with the guidelines
 of [9]. When congestion control mechanisms are needed (REQUIRED for
 general Internet operation), NORM transmission SHALL be controlled by
 the congestion control mechanism. In any case, it is RECOMMENDED
 that all data transmissions from NORM senders be subject to rate
 limitations determined by the application or congestion control
 algorithm. The sender’s transmissions SHOULD make good utilization
 of the available capacity (which may be limited by the application
 and/or by congestion control). As a result, it is expected there
 will be overlap and multiplexing of new data content transmission
 with repair content. Other factors related to application operation
 may determine sender transmission formats and methods. For example,
 some consideration needs to be given to the sender’s behavior during
 intermittent idle periods when it has no data to transmit.

 In addition to data content, other sender messages or commands may be
 employed as part of protocol operation. These messages may occur
 outside of the scope of application data transfer. In NORM
 protocols, reliability of such protocol messages may be attempted by
 redundant transmission when positive acknowledgement is prohibitive
 due to group size scalability concerns. Note that protocol design
 SHOULD provide mechanisms for dealing with cases where such messages
 are not received by the group. As an example, a command message
 might be redundantly transmitted by a sender to indicate that it is
 temporarily (or permanently) halting transmission. At this time, it
 may be appropriate for receivers to respond with NACKs for any
 outstanding repairs they require following the rules of the NORM NACK
 procedure. For efficiency, the sender should allow sufficient time
 between the redundant transmissions to receive any NACK-oriented
 responses from the receivers to this command.

 In general, when there is any resultant NACK or other feedback
 operation, the timing of redundant transmission of control messages
 issued by a sender and other NORM protocol timeouts should be
 dependent upon the group greatest round trip timing (GRTT) estimate

Adamson, et al. Experimental [Page 10]

RFC 3941 NORM Building Blocks November 2004

 and any expected resultant NACK or other feedback operation. The
 NORM GRTT is an estimate of the worst-case round-trip timing from a
 sender to any receivers in the group. It is assumed that the GRTT
 interval is a conservative estimate of the maximum span (with respect
 to delay) of the multicast group across a network topology with
 respect to given sender. NORM instantiations SHOULD be able to
 dynamically adapt to a wide range of multicast network topologies.

 Sender Transmission Interface Description

 Inputs:

 1) Application data and control
 2) Sender node identifier
 3) Data identifiers
 4) Segmentation and FEC parameters
 5) Transmission rate
 6) Application controls
 7) Receiver feedback messages (e.g., NACKs)

 Outputs:

 1) Controlled transmission of messages with headers uniquely
 identifying data or repair content within the context of the
 NORM session.
 2) Commands indicating sender’s status or other transport
 control actions to be taken.

3.2. NORM Repair Process

 A critical component of NORM protocols is the NACK repair process.
 This includes the receiver’s role in detecting and requesting repair
 needs, and the sender’s response to such requests. There are four
 primary elements of the NORM repair process:

 1) Receiver NACK process initiation,

 3) NACK suppression,

 2) NACK message content,

 4) Sender NACK processing and response.

3.2.1. Receiver NACK Process Initiation

 The NORM NACK process (cycle) will be initiated by receivers that
 detect a need for repair transmissions from a specific sender to
 achieve reliable reception. When FEC is applied, a receiver should

Adamson, et al. Experimental [Page 11]

RFC 3941 NORM Building Blocks November 2004

 initiate the NACK process only when it is known its repair
 requirements exceed the amount of pending FEC transmission for a
 given coding block of data content. This can be determined at the
 end of the current transmission block (if it is indicated) or upon
 the start of reception of a subsequent coding block or transmission
 object. This implies the NORM data content is marked to identify its
 FEC block number and that ordinal relationship is preserved in order
 of transmission.

 Alternatively, if the sender’s transmission advertises the quantity
 of repair packets it is already planning to send for a block, the
 receiver may be able to initiate the NACK processor earlier.
 Allowing receivers to initiate NACK cycles at any time they detect
 their repair needs have exceeded pending repair transmissions may
 result in slightly quicker repair cycles. However, it may be useful
 to limit NACK process initiation to specific events such as at the
 end-of-transmission of an FEC coding block or upon detection of
 subsequent coding blocks. This can allow receivers to aggregate NACK
 content into a smaller number of NACK messages and provide some
 implicit loose synchronization among the receiver set to help
 facilitate effective probabilistic suppression of NACK feedback. The
 receiver MUST maintain a history of data content received from the
 sender to determine its current repair needs. When FEC is employed,
 it is expected that the history will correspond to a record of
 pending or partially-received coding blocks.

 For probabilistic, timer-base suppression of feedback, the NACK cycle
 should begin with receivers observing backoff timeouts. In
 conjunction with initiating this backoff timeout, it is important
 that the receivers record the current position in the sender’s
 transmission sequence at which they initiate the NACK cycle. When
 the suppression backoff timeout expires, the receivers should only
 consider their repair needs up to this recorded transmission position
 in making the decision to transmit or suppress a NACK. Without this
 restriction, suppression is greatly reduced as additional content is
 received from the sender during the time a NACK message propagates
 across the network to the sender and other receivers.

 Receiver NACK Process Initiation Interface Description

 Inputs:

 1) Sender data content with sequencing identifiers from sender
 transmissions.
 2) History of content received from sender.

Adamson, et al. Experimental [Page 12]

RFC 3941 NORM Building Blocks November 2004

 Outputs:

 1) NACK process initiation decision
 2) Recorded sender transmission sequence position.

3.2.2. NACK Suppression

 An effective NORM feedback suppression mechanism is the use of random
 backoff timeouts prior to NACK transmission by receivers requiring
 repairs [10]. Upon expiration of the backoff timeout, a receiver
 will request repairs unless its pending repair needs have been
 completely superseded by NACK messages heard from other receivers
 (when receivers are multicasting NACKs) or from some indicator from
 the sender. When receivers are unicasting NACK messages, the sender
 may facilitate NACK suppression by forwarding a representation of
 NACK content it has received to the group at large or provide some
 other indicator of the repair information it will be subsequently
 transmitting.

 For effective and scalable suppression performance, the backoff
 timeout periods used by receivers should be independently, randomly
 picked by receivers with a truncated exponential distribution [6].
 This results in the majority of the receiver set holding off
 transmission of NACK messages under the assumption that the smaller
 number of "early NACKers" will supersede the repair needs of the
 remainder of the group. The mean of the distribution should be
 determined as a function of the current estimate of sender<->group
 GRTT and a group size estimate that is determined by other mechanisms
 within the protocol or preset by the multicast application.

 A simple algorithm can be constructed to generate random backoff
 timeouts with the appropriate distribution. Additionally, the
 algorithm may be designed to optimize the backoff distribution given
 the number of receivers (R) potentially generating feedback. This
 "optimization" minimizes the number of feedback messages (e.g., NACK)
 in the worst-case situation where all receivers generate a NACK. The
 maximum backoff timeout (T_maxBackoff) can be set to control reliable
 delivery latency versus volume of feedback traffic. A larger value
 of T_maxBackoff will result in a lower density of feedback traffic
 for a given repair cycle. A smaller value of T_maxBackoff results in
 shorter latency which also reduces the buffering requirements of
 senders and receivers for reliable transport.

 Given the receiver group size (R), and maximum allowed backoff
 timeout (T_maxBackoff), random backoff timeouts (t’) with a truncated
 exponential distribution can be picked with the following algorithm:

Adamson, et al. Experimental [Page 13]

RFC 3941 NORM Building Blocks November 2004

 1) Establish an optimal mean (L) for the exponential backoff based on
 the group size:

 L = ln(R) + 1

 2) Pick a random number (x) from a uniform distribution over a range
 of:

 L L L
 -------------------- to -------------------- + ----------
 T_maxBackoff*(exp(L)-1) T_maxBackoff*(exp(L)-1) T_maxBackoff

 3) Transform this random variate to generate the desired random
 backoff time (t’) with the following equation:

 t’ = T_maxBackoff/L * ln(x * (exp(L) - 1) * (T_maxBackoff/L))

 This C language function can be used to generate an appropriate
 random backoff time interval:

 double RandomBackoff(double maxTime, double groupSize)
 {
 double lambda = log(groupSize) + 1;
 double x = UniformRand(lambda/maxTime) +
 lambda / (maxTime*(exp(lambda)-1));
 return ((maxTime/lambda) *
 log(x*(exp(lambda)-1)*(maxTime/lambda)));
 } // end RandomBackoff()

 where UniformRand(double max) returns random numbers with a uniform
 distribution from the range of 0..max. For example, based on the
 POSIX "rand()" function, the following C code can be used:

 double UniformRand(double max)
 {
 return (max * ((double)rand()/(double)RAND_MAX));
 }

 The number of expected NACK messages generated (N) within the first
 round trip time for a single feedback event is approximately:

 N = exp(1.2 * L / (2*T_maxBackoff/GRTT))

 Thus the maximum backoff time can be adjusted to tradeoff worst-case
 NACK feedback volume versus latency. This is derived from [6] and
 assumes T_maxBackoff >= GRTT, and L is the mean of the distribution
 optimized for the given group size as shown in the algorithm above.

Adamson, et al. Experimental [Page 14]

RFC 3941 NORM Building Blocks November 2004

 Note that other mechanisms within the protocol may work to reduce
 redundant NACK generation further. It is suggested that T_maxBackoff
 be selected as an integer multiple of the sender’s current advertised
 GRTT estimate such that:

 T_maxBackoff = K * GRTT ;where K >= 1

 For general Internet operation, a default value of K=4 is RECOMMENDED
 for operation with multicast (to the group at large) NACK delivery
 and a value of K=6 for unicast NACK delivery. Alternate values may
 be used to for buffer utilization, reliable delivery latency and
 group size scalability tradeoffs.

 Given that (K*GRTT) is the maximum backoff time used by the receivers
 to initiate NACK transmission, other timeout periods related to the
 NACK repair process can be scaled accordingly. One of those timeouts
 is the amount of time a receiver should wait after generating a NACK
 message before allowing itself to initiate another NACK
 backoff/transmission cycle (T_rcvrHoldoff). This delay should be
 sufficient for the sender to respond to the received NACK with repair
 messages. An appropriate value depends upon the amount of time for
 the NACK to reach the sender and the sender to provide a repair
 response. This MUST include any amount of sender NACK aggregation
 period during which possible multiple NACKs are accumulated to
 determine an efficient repair response. These timeouts are further
 discussed in the section below on "Sender NACK Processing and Repair
 Response".

 There are also secondary measures that can be applied to improve the
 performance of feedback suppression. For example, the sender’s data
 content transmissions can follow an ordinal sequence of transmission.
 When repairs for data content occur, the receiver can note that the
 sender has "rewound" its data content transmission position by
 observing the data object, FEC block number, and FEC symbol
 identifiers. Receivers SHOULD limit transmission of NACKs to only
 when the sender’s current transmission position exceeds the point to
 which the receiver has incomplete reception. This reduces premature
 requests for repair of data the sender may be planning to provide in
 response to other receiver requests. This mechanism can be very
 effective for protocol convergence in high loss conditions when
 transmissions of NACKs from other receivers (or indicators from the
 sender) are lost. Another mechanism (particularly applicable when
 FEC is used) is for the sender to embed an indication of impending
 repair transmissions in current packets sent. For example, the
 indication may be as simple as an advertisement of the number of FEC
 packets to be sent for the current applicable coding block.

Adamson, et al. Experimental [Page 15]

RFC 3941 NORM Building Blocks November 2004

 Finally, some consideration might be given to using the NACKing
 history of receivers to weight their selection of NACK backoff
 timeout intervals. For example, if a receiver has historically been
 experiencing the greatest degree of loss, it may promote itself to
 statistically NACK sooner than other receivers. Note this requires
 there is correlation over successive intervals of time in the loss
 experienced by a receiver. Such correlation MAY not be present in
 multicast networks. This adjustment of backoff timeout selection may
 require the creation of an "early NACK" slot for these historical
 NACKers. This additional slot in the NACK backoff window will result
 in a longer repair cycle process that may not be desirable for some
 applications. The resolution of these trade-offs may be dependent
 upon the protocol’s target application set or network.

 After the random backoff timeout has expired, the receiver will make
 a decision on whether to generate a NACK repair request or not (i.e.,
 it has been suppressed). The NACK will be suppressed when any of the
 following conditions has occurred:

 1) The accumulated state of NACKs heard from other receivers (or
 forwarding of this state by the sender) is equal to or supersedes
 the repair needs of the local receiver. Note that the local
 receiver should consider its repair needs only up to the sender
 transmission position recorded at the NACK cycle initiation (when
 the backoff timer was activated).

 2) The sender’s data content transmission position "rewinds" to a
 point ordinally less than that of the lowest sequence position of
 the local receiver’s repair needs. (This detection of sender
 "rewind" indicates the sender has already responded to other
 receiver repair needs of which the local receiver may not have
 been aware). This "rewind" event can occur any time between 1)
 when the NACK cycle was initiated with the backoff timeout
 activation and 2) the current moment when the backoff timeout has
 expired to suppress the NACK. Another NACK cycle must be
 initiated by the receiver when the sender’s transmission sequence
 position exceeds the receiver’s lowest ordinal repair point. Note
 it is possible that the local receiver may have had its repair
 needs satisfied as a result of the sender’s response to the repair
 needs of other receivers and no further NACKing is required.

 If these conditions have not occurred and the receiver still has
 pending repair needs, a NACK message is generated and transmitted.
 The NACK should consist of an accumulation of repair needs from the
 receiver’s lowest ordinal repair point up to the current sender
 transmission sequence position. A single NACK message should be
 generated and the NACK message content should be truncated if it
 exceeds the payload size of single protocol message. When such NACK

Adamson, et al. Experimental [Page 16]

RFC 3941 NORM Building Blocks November 2004

 payload limits occur, the NACK content SHOULD contain requests for
 the ordinally lowest repair content needed from the sender.

 NACK Suppression Interface Description

 Inputs:

 1) NACK process initiation decision.
 2) Recorded sender transmission sequence position.
 3) Sender GRTT.
 4) Sender group size estimate.
 5) Application-defined bound on backoff timeout period.
 6) NACKs from other receivers.
 7) Pending repair indication from sender (may be forwarded
 NACKs).
 8) Current sender transmission sequence position.

 Outputs:

 1) Yes/no decision to generate NACK message upon backoff timer
 expiration.

3.2.3. NACK Content

 The content of NACK messages generated by reliable multicast
 receivers will include information detailing their current repair
 needs. The specific information depends on the use and type of FEC
 in the NORM repair process. The identification of repair needs is
 dependent upon the data content identification (See Section 3.5
 below). At the highest level the NACK content will identify the
 sender to which the NACK is addressed and the data transport object
 (or stream) within the sender’s transmission that needs repair. For
 the indicated transport entity, the NACK content will then identify
 the specific FEC coding blocks and/or symbols it requires to
 reconstruct the complete transmitted data. This content may consist
 of FEC block erasure counts and/or explicit indication of missing
 blocks or symbols (segments) of data and FEC content. It should also
 be noted that NORM can be effectively instantiated without a
 requirement for reliable NACK delivery using the techniques discussed
 here.

3.2.3.1. NACK and FEC Repair Strategies

 Where FEC-based repair is used, the NACK message content will
 minimally need to identify the coding block(s) for which repair is
 needed and a count of erasures (missing packets) for the coding
 block. An exact count of erasures implies the FEC algorithm is
 capable of repairing _any_ loss combination within the coding block.

Adamson, et al. Experimental [Page 17]

RFC 3941 NORM Building Blocks November 2004

 This count may need to be adjusted for some FEC algorithms.
 Considering that multiple repair rounds may be required to
 successfully complete repair, an erasure count also implies that the
 quantity of unique FEC parity packets the server has available to
 transmit is essentially unlimited (i.e., the server will always be
 able to provide new, unique, previously unsent parity packets in
 response to any subsequent repair requests for the same coding
 block). Alternatively, the sender may "round-robin" transmit through
 its available set of FEC symbols for a given coding block, and
 eventually affect repair. For a most efficient repair strategy, the
 NACK content will need to also _explicitly_ identify which symbols
 (information and/or parity) the receiver requires to successfully
 reconstruct the content of the coding block. This will be
 particularly true of small to medium size block FEC codes (e.g., Reed
 Solomon) that are capable of provided a limited number of parity
 symbols per FEC coding block.

 When FEC is not used as part of the repair process, or the protocol
 instantiation is required to provide reliability even when the sender
 has transmitted all available parity for a given coding block (or the
 sender’s ability to buffer transmission history is exceeded by the
 delay*bandwidth*loss characteristics of the network topology), the
 NACK content will need to contain _explicit_ coding block and/or
 segment loss information so that the sender can provide appropriate
 repair packets and/or data retransmissions. Explicit loss
 information in NACK content may also potentially serve other
 purposes. For example, it may be useful for decorrelating loss
 characteristics among a group of receivers to help differentiate
 candidate congestion control bottlenecks among the receiver set.

 When FEC is used and NACK content is designed to contain explicit
 repair requests, there is a strategy where the receivers can NACK for
 specific content that will help facilitate NACK suppression and
 repair efficiency. The assumptions for this strategy are that sender
 may potentially exhaust its supply of new, unique parity packets
 available for a given coding block and be required to explicitly
 retransmit some data or parity symbols to complete reliable transfer.
 Another assumption is that an FEC algorithm where any parity packet
 can fill any erasure within the coding block (e.g., Reed Solomon) is
 used. The goal of this strategy is to make maximum use of the
 available parity and provide the minimal amount of data and repair
 transmissions during reliable transfer of data content to the group.

 When systematic FEC codes are used, the sender transmits the data
 content of the coding block (and optionally some quantity of parity
 packets) in its initial transmission. Note that a systematic FEC
 coding block is considered to be logically made up of the contiguous
 set of data vectors plus parity vectors for the given FEC algorithm

Adamson, et al. Experimental [Page 18]

RFC 3941 NORM Building Blocks November 2004

 used. For example, a coding scheme that provides for 64 data symbols
 and 32 parity symbols per coding block would contain FEC symbol
 identifiers in the range of 0 to 95.

 Receivers then can construct NACK messages requesting sufficient
 content to satisfy their repair needs. For example, if the receiver
 has three erasures in a given received coding block, it will request
 transmission of the three lowest ordinal parity vectors in the coding
 block. In our example coding scheme from the previous paragraph, the
 receiver would explicitly request parity symbols 64 to 66 to fill its
 three erasures for the coding block. Note that if the receiver’s
 loss for the coding block exceeds the available parity quantity
 (i.e., greater than 32 missing symbols in our example), the receiver
 will be required to construct a NACK requesting all (32) of the
 available parity symbols plus some additional portions of its missing
 data symbols in order to reconstruct the block. If this is done
 consistently across the receiver group, the resulting NACKs will
 comprise a minimal set of sender transmissions to satisfy their
 repair needs.

 In summary, the rule is to request the lower ordinal portion of the
 parity content for the FEC coding block to satisfy the erasure repair
 needs on the first NACK cycle. If the available number of parity
 symbols is insufficient, the receiver will also request the subset of
 ordinally highest missing data symbols to cover what the parity
 symbols will not fill. Note this strategy assumes FEC codes such as
 Reed-Solomon for which a single parity symbol can repair any erased
 symbol. This strategy would need minor modification to take into
 account the possibly limited repair capability of other FEC types.
 On subsequent NACK repair cycles where the receiver may have received
 some portion of its previously requested repair content, the receiver
 will use the same strategy, but only NACK for the set of parity
 and/or data symbols it has not yet received. Optionally, the
 receivers could also provide a count of erasures as a convenience to
 the sender or intermediate systems assisting NACK operation.

 After receipt and accumulation of NACK messages during the
 aggregation period, the sender can begin transmission of fresh
 (previously untransmitted) parity symbols for the coding block based
 on the highest receiver erasure count _if_ it has a sufficient
 quantity of parity symbols that were _not_ previously transmitted.
 Otherwise, the sender MUST resort to transmitting the explicit set of
 repair vectors requested. With this approach, the sender needs to
 maintain very little state on requests it has received from the group
 without need for synchronization of repair requests from the group.
 Since all receivers use the same consistent algorithm to express
 their explicit repair needs, NACK suppression among receivers is
 simplified over the course of multiple repair cycles. The receivers

Adamson, et al. Experimental [Page 19]

RFC 3941 NORM Building Blocks November 2004

 can simply compare NACKs heard from other receivers against their own
 calculated repair needs to determine whether they should transmit or
 suppress their pending NACK messages.

3.2.3.2. NACK Content Format

 The format of NACK content will depend on the protocol’s data service
 model and the format of data content identification the protocol
 uses. This NACK format also depends upon the type of FEC encoding
 (if any) used. Figure 2 illustrates a logical, hierarchical
 transmission content identification scheme, denoting that the notion
 of objects (or streams) and/or FEC blocking is optional at the
 protocol instantiation’s discretion. Note that the identification of
 objects is with respect to a given sender. It is recommended that
 transport data content identification is done within the context of a
 sender in a given session. Since the notion of session "streams" and
 "blocks" is optional, the framework degenerates to that of typical
 transport data segmentation and reassembly in its simplest form.

 Session_
 _
 Sender_
 _
 [Object/Stream(s)]_
 _
 [FEC Blocks]_
 _
 Symbols

 Fig. 2: NORM Data Content Identification Hierarchy

 The format of NACK messages should meet the following goals:

 1) Able to identify transport data unit transmissions required to
 repair a portion of the received content, whether it is an entire
 missing object/stream (or range), entire FEC coding block(s), or
 sets of symbols,

 2) Be simple to process for NACK aggregation and suppression,

 3) Be capable of including NACKs for multiple objects, FEC coding
 blocks and/or symbols in a single message, and

 4) Have a reasonably compact format.

 If the NORM transport object/stream is identified with an <objectId>
 and the FEC symbol being transmitted is identified with an
 <fecPayloadId>, the concatenation of <objectId::fecPayloadId>

Adamson, et al. Experimental [Page 20]

RFC 3941 NORM Building Blocks November 2004

 comprises a basic transport protocol data unit (TPDU) identifier for
 symbols from a given source. NACK content can be composed of lists
 and/or ranges of these TPDU identifiers to build up NACK messages to
 describe the receivers repair needs. If no hierarchical object
 delineation or FEC blocking is used, the TPDU is a simple linear
 representation of the data symbols transmitted by the sender. When
 the TPDU represents a hierarchy for purposes of object/stream
 delineation and/or FEC blocking, the NACK content unit may require
 flags to indicate which portion of the TPDU is applicable. For
 example, if an entire "object" (or range of objects) is missing in
 the received data, the receiver will not necessarily know the
 appropriate range of <sourceBlockNumbers> or <encodingSymbolIds> for
 which to request repair and thus requires some mechanism to request
 repair (or retransmission) of the entire unit represented by an
 <objectId>. The same is true if entire FEC coding blocks represented
 by one or a range of <sourceBlockNumbers> have been lost.

 NACK Content Interface Description

 Inputs:

 1) Sender identification.
 2) Sender data identification.
 3) Sender FEC Object Transmission Information.
 4) Recorded sender transmission sequence position.
 5) Current sender transmission sequence position. History of
 repair needs for this sender.

 Outputs:

 1) NACK message with repair requests.

3.2.4. Sender Repair Response

 Upon reception of a repair request from a receiver in the group, the
 sender will initiate a repair response procedure. The sender may
 wish to delay transmission of repair content until it has had
 sufficient time to accumulate potentially multiple NACKs from the
 receiver set. This allows the sender to determine the most efficient
 repair strategy for a given transport stream/object or FEC coding
 block. Depending upon the approach used, some protocols may find it
 beneficial for the sender to provide an indicator of pending repair
 transmissions as part of its current transmitted message content.
 This can aid some NACK suppression mechanisms. The amount of time to
 perform this NACK aggregation should be sufficient to allow for the
 maximum receiver NACK backoff window ("T_maxBackoff" from Section
 3.2.2) and propagation of NACK messages from the receivers to the
 sender. Note the maximum transmission delay of a message from a

Adamson, et al. Experimental [Page 21]

RFC 3941 NORM Building Blocks November 2004

 receiver to the sender may be approximately (1*GRTT) in the case of
 very asymmetric network topology with respect to transmission delay.
 Thus, if the maximum receiver NACK backoff time is T_maxBackoff =
 K*GRTT, the sender NACK aggregation period should be equal to at
 least:

 T_sndrAggregate = T_maxBackoff + 1*GRTT = (K+1)*GRTT

 Immediately after the sender NACK aggregation period, the sender will
 begin transmitting repair content determined from the aggregate NACK
 state and continue with any new transmission. Also, at this time,
 the sender should observe a "holdoff" period where it constrains
 itself from initiating a new NACK aggregation period to allow
 propagation of the new transmission sequence position due to the
 repair response to the receiver group. To allow for worst case
 asymmetry, this "holdoff" time should be:

 T_sndrHoldoff = 1*GRTT

 Recall that the receivers will also employ a "holdoff" timeout after
 generating a NACK message to allow time for the sender’s response.
 Given a sender <T_sndrAggregate> plus <T_sndrHoldoff> time of
 (K+1)*GRTT, the receivers should use holdoff timeouts of:

 T_rcvrHoldoff = T_sndrAggregate + T_sndrHoldoff = (K+2)*GRTT

 This allows for a worst-case propagation time of the receiver’s NACK
 to the sender, the sender’s aggregation time and propagation of the
 sender’s response back to the receiver. Additionally, in the case of
 unicast feedback from the receiver set, it may be useful for the
 sender to forward (via multicast) a representation of its aggregated
 NACK content to the group to allow for NACK suppression when there is
 not multicast connectivity among the receiver set.

 At the expiration of the <T_sndrAggregate> timeout, the sender will
 begin transmitting repair messages according to the accumulated
 content of NACKs received. There are some guidelines with regards to
 FEC-based repair and the ordering of the repair response from the
 sender that can improve reliable multicast efficiency:

 1) When FEC is used, it is beneficial that the sender transmit
 previously untransmitted parity content as repair messages
 whenever possible. This maximizes the receiving nodes’ ability
 to reconstruct the entire transmitted content from their
 individual subsets of received messages.

Adamson, et al. Experimental [Page 22]

RFC 3941 NORM Building Blocks November 2004

 2) The transmitted object and/or stream data and repair content
 should be indexed with monotonically increasing sequence numbers
 (within a reasonably large ordinal space). If the sender observes
 the discipline of transmitting repair for the earliest content
 (e.g., ordinally lowest FEC blocks) first, the receivers can use a
 strategy of withholding repair requests for later content until
 the sender once again returns to that point in the object/stream
 transmission sequence. This can increase overall message
 efficiency among the group and help work to keep repair cycles
 relatively synchronized without dependence upon strict time
 synchronization among the sender and receivers. This also helps
 minimize the buffering requirements of receivers and senders and
 reduces redundant transmission of data to the group at large.

 Sender Repair Response Interface Description

 Inputs:

 1) Receiver NACK messages
 2) Group timing information

 Outputs

 1) Repair messages (FEC and/or Data content retransmission)
 2) Advertisement of current pending repair transmissions when
 unicast receiver feedback is detected.

3.3. NORM Receiver Join Policies and Procedures

 Consideration should be given to the policies and procedures by which
 new receivers join a group (perhaps where reliable transmission is
 already in progress) and begin requesting repair. If receiver joins
 are unconstrained, the dynamics of group membership may impede the
 application’s ability to meet its goals for forward progression of
 data transmission. Policies limiting the opportunities when
 receivers begin participating in the NACK process may be used to
 achieve the desired behavior. For example, it may be beneficial for
 receivers to attempt reliable reception from a newly-heard sender
 only upon non-repair transmissions of data in the first FEC block of
 an object or logical portion of a stream. The sender may also
 implement policies limiting the receivers from which it will accept
 NACK requests, but this may be prohibitive for scalability reasons in
 some situations. Alternatively, it may be desirable to have a looser
 transport synchronization policy and rely upon session management
 mechanisms to limit group dynamics that can cause poor performance,
 in some types of bulk transfer applications (or for potential
 interactive reliable multicast applications).

Adamson, et al. Experimental [Page 23]

RFC 3941 NORM Building Blocks November 2004

 Group Join Policy Interface Description

 Inputs:

 1) Current object/stream data/repair content and sequencing
 identifiers from sender transmissions.

 Outputs:

 1) Receiver yes/no decision to begin receiving and NACKing for
 reliable reception of data

3.4. Reliable Multicast Member Identification

 In a NORM protocol (or other multicast protocols) where there is the
 potential for multiple sources of data, it is necessary to provide
 some mechanism to uniquely identify the sources (and possibly some or
 all receivers in some cases) within the group. Identity based on
 arriving packet source addresses is insufficient for several reasons.
 These reasons include routing changes for hosts with multiple
 interfaces that result in different packet source addresses for a
 given host over time, network address translation (NAT) or firewall
 devices, or other transport/network bridging approaches. As a
 result, some type of unique source identifier <sourceId> field should
 be present in packets transmitted by reliable multicast session
 members.

3.5. Data Content Identification

 The data and repair content transmitted by a NORM sender requires
 some form of identification in the protocol header fields. This
 identification is required to facilitate the reliable NACK-oriented
 repair process. These identifiers will also be used in NACK messages
 generated. This building block document assumes two very general
 types of data that may comprise bulk transfer session content. One
 type is static, discrete objects of finite size and the other is
 continuous non-finite streams. A given application may wish to
 reliably multicast data content using either one or both of these
 paradigms. While it may be possible for some applications to further
 generalize this model and provide mechanisms to encapsulate static
 objects as content embedded within a stream, there are advantages in
 many applications to provide distinct support for static bulk objects
 and messages with the context of a reliable multicast session. These
 applications may include content caching servers, file transfer, or
 collaborative tools with bulk content. Applications with
 requirements for these static object types can then take advantage of
 transport layer mechanisms (i.e., segmentation/reassembly, caching,
 integrated forward error correction coding, etc.) rather than being

Adamson, et al. Experimental [Page 24]

RFC 3941 NORM Building Blocks November 2004

 required to provide their own mechanisms for these functions at the
 application layer.

 As noted, some applications may alternatively desire to transmit bulk
 content in the form of one or more streams of non-finite size.
 Example streams include continuous quasi-real-time message broadcasts
 (e.g., stock ticker) or some content types that are part of
 collaborative tools or other applications. And, as indicated above,
 some applications may wish to encapsulate other bulk content (e.g.,
 files) into one or more streams within a multicast session.

 The components described within this building block document are
 envisioned to be applicable to both of these models with the
 potential for a mix of both types within a single multicast session.
 To support this requirement, the normal data content identification
 should include a field to uniquely identify the object or stream
 <objectId> within some reasonable temporal or ordinal interval. Note
 that it is _not_ expected that this data content identification will
 be globally unique. It is expected that the object/stream identifier
 will be unique with respect to a given sender within the reliable
 multicast session and during the time that sender is supporting a
 specific transport instance of that object or stream.

 Since the "bulk" object/stream content usually requires segmentation,
 some form of segment identification must also be provided. This
 segment identifier will be relative to any object or stream
 identifier that has been provided. Thus, in some cases, NORM
 protocol instantiations may be able to receive transmissions and
 request repair for multiple streams and one or more sets of static
 objects in parallel. For protocol instantiations employing FEC the
 segment identification portion of the data content identifier may
 consist of a logical concatenation of a coding block identifier
 <sourceBlockNumber> and an identifier for the specific data or parity
 symbol <encodingSymbolId> of the code block. The FEC Building Block
 document [9] provides a standard message format for identifying FEC
 transmission content. NORM protocol instantiations using FEC SHOULD
 follow that document’s guidelines.

 Additionally, flags to determine the usage of the content identifier
 fields (e.g., stream vs. object) may be applicable. Flags may also
 serve other purposes in data content identification. It is expected
 that any flags defined will be dependent upon individual protocol
 instantiations.

 In summary, the following data content identification fields may be
 required for NORM protocol data content messages:

 1) Source node identifier (<sourceId>)

Adamson, et al. Experimental [Page 25]

RFC 3941 NORM Building Blocks November 2004

 2) Object/Stream identifier (<objectId>), if applicable.

 3) FEC Block identifier (<sourceBlockNumber>), if applicable.

 4) FEC Symbol identifier (<encodingSymbolId>)

 5) Flags to differentiate interpretation of identifier fields or
 identifier structure that implicitly indicates usage.

 6) Additional FEC transmission content fields per FEC Building Block

 These fields have been identified because any generated NACK messages
 will use these identifiers in requesting repair or retransmission of
 data. NORM protocols that use these data content fields should also
 be compatible with support for intermediate system assistance to
 reliable multicast transport operation when available.

3.6. Forward Error Correction (FEC)

 Multiple forward error correction (FEC) approaches have been
 identified that can provide great performance enhancements to the
 repair process of NACK-oriented and other reliable multicast
 protocols [11], [12], [13]. NORM protocols can reap additional
 benefits since FEC-based repair does not _generally_ require explicit
 knowledge of repair content within the bounds of its coding block
 size (in symbols). In NORM, parity repair packets generated will
 generally be transmitted only in response to NACK repair requests
 from receiving nodes. However, there are benefits in some network
 environments for transmitting some predetermined quantity of FEC
 repair packets multiplexed with the regular data symbol transmissions
 [14]. This can reduce the amount of NACK traffic generated with
 relatively little overhead cost when group sizes are very large or
 the network connectivity has a large delay*bandwidth product with
 some nominal level of expected packet loss. While the application of
 FEC is not unique to NORM, these sorts of requirements may dictate
 the types of algorithms and protocol approaches that are applicable.

 A specific issue related to the use of FEC with NORM is the mechanism
 used to identify the portion(s) of transmitted data content to which
 specific FEC packets are applicable. It is expected that FEC
 algorithms will be based on generating a set of parity repair packets
 for a corresponding block of transmitted data packets. Since data
 content packets are uniquely identified by the concatenation of
 <sourceId::objectId::sourceBlockNumber::encodingSymbolId> during
 transport, it is expected that FEC packets will be identified in a
 similar manner. The FEC Building Block document [9] provides
 detailed recommendations concerning application of FEC and standard
 formats for related reliable multicast protocol messages.

Adamson, et al. Experimental [Page 26]

RFC 3941 NORM Building Blocks November 2004

3.7. Round-trip Timing Collection

 The measurement of packet propagation round-trip time (RTT) among
 members of the group is required to support timer-based NACK
 suppression algorithms, timing of sender commands or certain repair
 functions, and congestion control operation. The nature of the
 round-trip information collected is dependent upon the type of
 interaction among the members of the group. In the case where only
 "one-to-many" transmission is required, it may be that only the
 sender require RTT knowledge of the greatest RTT (GRTT) among the
 receiver set and/or RTT knowledge of only a portion of the group.
 Here, the GRTT information might be collected in a reasonably
 scalable manner. For congestion control operation, it is possible
 that RTT information may be required by each receiver in the group.
 In this case, an alternative RTT collection scheme may be utilized
 where receivers collect individual RTT measurements with respect to
 the sender and advertise them to the group or sender. Where it is
 likely that exchange of reliable multicast data will occur among the
 group on a "many-to-many" basis, there are alternative measurement
 techniques that might be employed for increased efficiency [15]. And
 in some cases, there might be absolute time synchronization among
 hosts that may simplify RTT measurement. There are trade-offs in
 multicast congestion control design that require further
 consideration before a universal recommendation on RTT (or GRTT)
 measurement can be specified. Regardless of how the RTT information
 is collected (and more specifically GRTT) with respect to congestion
 control or other requirements, the sender will need to advertise its
 current GRTT estimate to the group for various timeouts used by
 receivers.

3.7.1. One-to-Many Sender GRTT Measurement

 The goal of this form of RTT measurement is for the sender to learn
 the GRTT among the receivers who are actively participating in NORM
 operation. The set of receivers participating in this process may be
 the entire group or some subset of the group determined from another
 mechanism within the protocol instantiation. An approach to collect
 this GRTT information follows.

 The sender periodically polls the group with a message (independent
 or "piggy-backed" with other transmissions) containing a <sendTime>
 timestamp relative to an internal clock at the sender. Upon
 reception of this message, the receivers will record this <sendTime>
 timestamp and the time (referenced to their own clocks) at which it
 was received <recvTime>. When the receiver provides feedback to the
 sender (either explicitly or as part of other feedback messages
 depending upon protocol instantiation specification), it will
 construct a "response" using the formula:

Adamson, et al. Experimental [Page 27]

RFC 3941 NORM Building Blocks November 2004

 grttResponse = sendTime + (currentTime - recvTime)

 where the <sendTime> is the timestamp from the last probe message
 received from the source and the (<currentTime> - <recvTime>) is the
 amount of time differential since that request was received until the
 receiver generated the response.

 The sender processes each receiver response by calculating a current
 RTT measurement for the receiver from whom the response was received
 using the following formula:

 RTT_rcvr = currentTime - grttResponse

 During the each periodic GRTT probing interval, the source keeps the
 peak round trip timing measurement (RTT_peak) from the set of
 responses it has received. A conservative estimate of GRTT is kept
 to maximize the efficiency of redundant NACK suppression and repair
 aggregation. The update to the source’s ongoing estimate of GRTT is
 done observing the following rules:

 1) If a receiver’s response round trip time (RTT_rcvr) is greater
 than the current GRTT estimate, the GRTT is immediately updated to
 this new peak value:

 GRTT = RTT_rcvr

 2) At the end of the response collection period (i.e., the GRTT probe
 interval), if the recorded "peak" response RTT_peak) is less than
 the current GRTT estimate, the GRTT is updated to:

 GRTT = MAX(0.9*GRTT, RTT_peak)

 3) If no feedback is received, the sender GRTT estimate remains
 unchanged.

 4) At the end of the response collection period, the peak tracking
 value (RTT_peak) is reset to ZERO for subsequent peak detection.

 The GRTT collection period (i.e., period of probe transmission) could
 be fixed at a value on the order of that expected for group
 membership and/or network topology dynamics. For robustness, more
 rapid probing could be used at protocol startup before settling to a
 less frequent, steady-state interval. Optionally, an algorithm may
 be developed to adjust the GRTT collection period dynamically in
 response to the current GRTT estimate (or variations in it) and to an
 estimation of packet loss. The overhead of probing messages could
 then be reduced when the GRTT estimate is stable and unchanging, but
 be adjusted to track more dynamically during periods of variation

Adamson, et al. Experimental [Page 28]

RFC 3941 NORM Building Blocks November 2004

 with correspondingly shorter GRTT collection periods. GRTT
 collection may also be coupled with collection of other information
 for congestion control purposes.

 In summary, although NORM repair cycle timeouts are based on GRTT, it
 should be noted that convergent operation of the protocol does not
 strictly depend on highly accurate GRTT estimation. The current
 mechanism has proved sufficient in simulations and in the
 environments where NORM-like protocols have been deployed to date.
 The estimate provided by the algorithm tracks the peak envelope of
 actual GRTT (including operating system effect as well as network
 delays) even in relatively high loss connectivity. The steady-state
 probing/update interval may potentially be varied to accommodate
 different levels of expected network dynamics in different
 environments.

3.7.2. One-to-Many Receiver RTT Measurement

 In this approach, receivers send messages with timestamps to the
 sender. To control the volume of these receiver-generated messages,
 a suppression mechanism similar to that described for NACK
 suppression my be used. The "age" of receivers’ RTT measurement
 should be kept by receivers and used as a metric in competing for
 feedback opportunities in the suppression scheme. For example,
 receiver who have not made any RTT measurement or whose RTT
 measurement has aged most should have precedence over other
 receivers. In turn the sender may have limited capacity to provide
 an "echo" of the receiver timestamps back to the group, and it could
 use this RTT "age" metric to determine which receivers get
 precedence. The sender can determine the GRTT as described in 3.7.1
 if it provides sender timestamps to the group. Alternatively,
 receivers who note their RTT is greater than the sender GRTT can
 compete in the feedback opportunity/suppression scheme to provide the
 sender and group with this information.

3.7.3. Many-to-Many RTT Measurement

 For reliable multicast sessions that involve multiple senders, it may
 be useful to have RTT measurements occur on a true "many-to-many"
 basis rather than have each sender independently tracking RTT. Some
 protocol efficiency can be gained when receivers can infer an
 approximation of their RTT with respect to a sender based on RTT
 information they have on another sender and that other sender’s RTT
 with respect to the new sender of interest. For example, for
 receiver "a" and sender’s "b" and "c", it is likely that:

 RTT(a<->b) <= RTT(a<->c)) + RTT(b<->c)

Adamson, et al. Experimental [Page 29]

RFC 3941 NORM Building Blocks November 2004

 Further refinement of this estimate can be conducted if RTT
 information is available to a node concerning its own RTT to a small
 subset of other group members and RTT information among those other
 group members it learns during protocol operation.

3.7.4. Sender GRTT Advertisement

 To facilitate deterministic NORM protocol operation, the sender
 should robustly advertise its current estimation of GRTT to the
 receiver set. Common, robust knowledge of the sender’s current
 operating GRTT estimate among the group will allow the protocol to
 progress in its most efficient manner. The sender’s GRTT estimate
 can be robustly advertised to the group by simply embedding the
 estimate into all pertinent messages transmitted by the sender. The
 overhead of this can be made quite small by quantizing (compressing)
 the GRTT estimate to a single byte of information. The following C-
 language functions allows this to be done over a wide range (RTT_MIN
 through RTT_MAX) of GRTT values while maintaining a greater range of
 precision for small GRTT values and less precision for large values.
 Values of 1.0e-06 seconds and 1000 seconds are RECOMMENDED for
 RTT_MIN and RTT_MAX respectively. NORM applications may wish to
 place an additional, smaller upper limit on the GRTT advertised by
 senders to meet application data delivery latency constraints at the
 expense of greater feedback volume in some network environments.

 unsigned char QuantizeGrtt(double grtt)
 {
 if (grtt > RTT_MAX)
 grtt = RTT_MAX;
 else if (grtt < RTT_MIN)
 grtt = RTT_MIN;
 if (grtt < (33*RTT_MIN))
 return ((unsigned char)(grtt / RTT_MIN) - 1);
 else
 return ((unsigned char)(ceil(255.0-
 (13.0 * log(RTT_MAX/grtt)))));
 }

 double UnquantizeRtt(unsigned char qrtt)
 {
 return ((qrtt <= 31) ?
 (((double)(qrtt+1))*(double)RTT_MIN) :
 (RTT_MAX/exp(((double)(255-qrtt))/(double)13.0)));
 }

Adamson, et al. Experimental [Page 30]

RFC 3941 NORM Building Blocks November 2004

 Note that this function is useful for quantizing GRTT times in the
 range of 1 microsecond to 1000 seconds. Of course, NORM protocol
 implementations may wish to further constrain advertised GRTT
 estimates (e.g., limit the maximum value) for practical reasons.

3.8. Group Size Determination/Estimation

 When NORM protocol operation includes mechanisms that excite feedback
 from the group at large (e.g., congestion control), it may be
 possible to roughly estimate the group size based on the number of
 feedback messages received with respect to the distribution of the
 probabilistic suppression mechanism used. Note the timer-based
 suppression mechanism described in this document does not require a
 very accurate estimate of group size to perform adequately. Thus, a
 rough estimate, particularly if conservatively managed, may suffice.
 Group size may also be determined administratively. In absence of a
 group size determination mechanism a default group size value of
 10,000 is RECOMMENDED for reasonable management of feedback given the
 scalability of expected NORM usage.

3.9. Congestion Control Operation

 Congestion control that fairly shares available network capacity
 with other reliable multicast and TCP instantiations is REQUIRED for
 general Internet operation. The TCP-Friendly Multicast Congestion
 Control (TFMCC) [16] or Pragmatic General Multicast Congestion
 Control (PGMCC) techniques [17] may be applied to NORM operation to
 meet this requirement.

3.10. Router/Intermediate System Assistance

 NACK-oriented protocols may benefit from general purpose router
 assistance. In particular, additional NACK suppression where routers
 or intermediate systems can aggregate NACK content (or filter
 duplicate NACK content) from receivers as it is relayed toward the
 sender could enhance NORM group size scalability. For NORM protocols
 using FEC, it is possible that intermediate systems may be able to
 filter FEC repair messages to provide an intelligent "subcast" of
 repair content to different legs of the multicast topology depending
 on the repair needs learned from previous receiver NACKs. Both of
 these types of assist functions would require router interpretation
 of transport data unit content identifiers and flags.

3.11. NORM Applicability

 The NORM building block applies to protocols wishing to employ
 negative acknowledgement to achieve reliable data transfer. Properly
 designed negative-acknowledgement (NACK)-oriented reliable multicast

Adamson, et al. Experimental [Page 31]

RFC 3941 NORM Building Blocks November 2004

 (NORM) protocols offer scalability advantages for applications and/or
 network topologies where, for various reasons, it is prohibitive to
 construct a higher order delivery infrastructure above the basic
 Layer 3 IP multicast service (e.g., unicast or hybrid
 unicast/multicast data distribution trees). Additionally, the
 scalability property of NACK-oriented protocols [18], [19] is
 applicable where broad "fan-out" is expected for a single network hop
 (e.g., cable-TV data delivery, satellite, or other broadcast
 communication services). Furthermore, the simplicity of a protocol
 based on "flat" group-wide multicast distribution may offer
 advantages for a broad range of distributed services or dynamic
 networks and applications. NORM protocols can make use of reciprocal
 (among senders and receivers) multicast communication under the Any-
 Source Multicast (ASM) model defined in RFC 1112 [2], and are capable
 of scalable operation in asymmetric topologies such as Single-Source
 Multicast (SSM) [8] where there may only be unicast routing service
 from the receivers to the sender(s).

 NORM operation is compatible with transport layer forward error
 correction coding techniques as described in [13] and congestion
 control mechanisms such as those described in [16] and [17]. A
 principal limitation of NORM operation involves group size
 scalability when network capacity for receiver feedback is very
 limited. NORM operation is also governed by implementation buffering
 constraints. Buffering greater than that required for typical
 point-to-point reliable transport (e.g., TCP) is recommended to allow
 for disparity in the receiver group connectivity and to allow for the
 feedback delays required to attain group size scalability.

4. Security Considerations

 NORM protocols are expected to be subject to the same sort of
 security vulnerabilities as other IP and IP multicast protocols.
 NORM is compatible with IP security (IPsec) authentication mechanisms
 [20] that are RECOMMENDED for protection against session intrusion
 and denial of service attacks. A particular threat for NACK based
 protocols is that of NACK replay attacks that would prevent a NORM
 sender from making forward progress in transmission. Any standard
 IPsec mechanisms that can provide protection against such replay
 attacks are RECOMMENDED for use. Additionally, NORM protocol
 instantiations SHOULD consider providing support for their own NACK
 replay attack protection when network layer mechanisms are not
 available. The IETF Multicast Security (msec) Working Group is also
 developing solutions which may be applicable to NORM in the future.

Adamson, et al. Experimental [Page 32]

RFC 3941 NORM Building Blocks November 2004

5. Acknowledgements (and these are not Negative)

 The authors would like to thank Rick Jones, and Joerg Widmer for
 their valuable comments on this document. The authors would also
 like to thank the RMT working group chairs, Roger Kermode and Lorenzo
 Vicisano, for their support in development of this specification, and
 Sally Floyd for her early inputs into this document.

6. References

6.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Deering, S., "Host Extensions for IP Multicasting", STD 5, RFC
 1112, August 1989.

6.2. Informative References

 [3] Mankin, A., Romanow, A., Bradner, S., and V. Paxson, "IETF
 Criteria for Evaluating Reliable Multicast Transport and
 Application Protocols", RFC 2357, June 1998.

 [4] Clark, D. and D. Tennenhouse, "Architectural Considerations for
 a New Generation of Protocols". In Proc. ACM SIGCOMM, pages
 201--208, September 1990.

 [5] Kermode, R. and L. Vicisano, "Author Guidelines for Reliable
 Multicast Transport (RMT) Building Blocks and Protocol
 Instantiation documents", RFC 3269, April 2002.

 [6] Nonnenmacher, J. and E. Biersack, "Optimal Multicast Feedback,"
 in IEEE Infocom, San Francisco, California, p. 964, March/April
 1998.

 [7] Macker, J. and R. Adamson, "Quantitative Prediction of Nack
 Oriented Reliable Multicast (NORM) Feedback", Proc. IEEE MILCOM
 2002, October 2002.

 [8] Holbrook, H., "A Channel Model for Multicast", Ph.D.
 Dissertation, Stanford University, Department of Computer
 Science, Stanford, California, August 2001.

 [9] Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley, M., and
 J. Crowcroft, "Forward Error Correction (FEC) Building Block",
 RFC 3452, December 2002.

Adamson, et al. Experimental [Page 33]

RFC 3941 NORM Building Blocks November 2004

 [10] Floyd, S., Jacobson, V., McCanne, S., Liu, C., and L. Zhang. "A
 Reliable Multicast Framework for Light-weight Sessions and
 Application Level Framing", Proc. ACM SIGCOMM, August 1995.

 [11] Metzner, J., "An Improved Broadcast Retransmission Protocol",
 IEEE Transactions on Communications, Vol. Com-32, No.6, June
 1984.

 [12] Macker, J., "Reliable Multicast Transport and Integrated
 Erasure-based Forward Error Correction", Proc. IEEE MILCOM 97,
 October 1997.

 [13] Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley, M., and
 J. Crowcroft, "The Use of Forward Error Correction (FEC) in
 Reliable Multicast", RFC 3453, December 2002.

 [14] Gossink, D. and J. Macker, "Reliable Multicast and Integrated
 Parity Retransmission with Channel Estimation", IEEE GLOBECOM
 98’.

 [15] Ozdemir, V., Muthukrishnan, S., and I. Rhee, "Scalable, Low-
 Overhead Network Delay Estimation", NCSU/AT&T White Paper,
 February 1999.

 [16] Widmer, J. and M. Handley, "Extending Equation-Based Congestion
 Control to Multicast Applications", Proc ACM SIGCOMM 2001, San
 Diego, August 2001.

 [17] Rizzo, L., "pgmcc: A TCP-Friendly Single-Rate Multicast
 Congestion Control Scheme", Proc ACM SIGCOMM 2000, Stockholm,
 August 2000.

 [18] Pingali, S., Towsley, D., and J. Kurose, "A Comparison of
 Sender-Initiated and Receiver-Initiated Reliable Multicast
 Protocols". In Proc. INFOCOM, San Francisco, CA, October 1993.

 [19] B.N. Levine, J.J. Garcia-Luna-Aceves, "A Comparison of Known
 Classes of Reliable Multicast Protocols", Proc. International
 Conference on Network Protocols (ICNP-96), Columbus, Ohio, Oct
 29--Nov 1, 1996.

 [20] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

Adamson, et al. Experimental [Page 34]

RFC 3941 NORM Building Blocks November 2004

7. Authors’ Addresses

 Brian Adamson
 Naval Research Laboratory
 Washington, DC 20375

 EMail: adamson@itd.nrl.navy.mil

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 D-28334 Bremen, Germany

 EMail: cabo@tzi.org

 Mark Handley
 Department of Computer Science
 University College London
 Gower Street
 London
 WC1E 6BT
 UK

 EMail: M.Handley@cs.ucl.ac.uk

 Joe Macker
 Naval Research Laboratory
 Washington, DC 20375

 EMail: macker@itd.nrl.navy.mil

Adamson, et al. Experimental [Page 35]

RFC 3941 NORM Building Blocks November 2004

Full Copyright Statement

 Copyright (C) The Internet Society (2004).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the IETF’s procedures with respect to rights in IETF Documents can
 be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Adamson, et al. Experimental [Page 36]

