
Network Working Group K. Raeburn
Request for Comments: 3962 MIT
Category: Standards Track February 2005

 Advanced Encryption Standard (AES) Encryption for Kerberos 5

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 The United States National Institute of Standards and Technology
 (NIST) has chosen a new Advanced Encryption Standard (AES), which is
 significantly faster and (it is believed) more secure than the old
 Data Encryption Standard (DES) algorithm. This document is a
 specification for the addition of this algorithm to the Kerberos
 cryptosystem suite.

1. Introduction

 This document defines encryption key and checksum types for Kerberos
 5 using the AES algorithm recently chosen by NIST. These new types
 support 128-bit block encryption and key sizes of 128 or 256 bits.

 Using the "simplified profile" of [KCRYPTO], we can define a pair of
 encryption and checksum schemes. AES is used with ciphertext
 stealing to avoid message expansion, and SHA-1 [SHA1] is the
 associated checksum function.

2. Conventions used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [KEYWORDS].

Raeburn Standards Track [Page 1]

RFC 3962 AES Encryption for Kerberos 5 February 2005

3. Protocol Key Representation

 The profile in [KCRYPTO] treats keys and random octet strings as
 conceptually different. But since the AES key space is dense, we can
 use any bit string of appropriate length as a key. We use the byte
 representation for the key described in [AES], where the first bit of
 the bit string is the high bit of the first byte of the byte string
 (octet string) representation.

4. Key Generation from Pass Phrases or Random Data

 Given the above format for keys, we can generate keys from the
 appropriate amounts of random data (128 or 256 bits) by simply
 copying the input string.

 To generate an encryption key from a pass phrase and salt string, we
 use the PBKDF2 function from PKCS #5 v2.0 ([PKCS5]), with parameters
 indicated below, to generate an intermediate key (of the same length
 as the desired final key), which is then passed into the DK function
 with the 8-octet ASCII string "kerberos" as is done for des3-cbc-
 hmac-sha1-kd in [KCRYPTO]. (In [KCRYPTO] terms, the PBKDF2 function
 produces a "random octet string", hence the application of the
 random-to-key function even though it’s effectively a simple identity
 operation.) The resulting key is the user’s long-term key for use
 with the encryption algorithm in question.

 tkey = random2key(PBKDF2(passphrase, salt, iter_count, keylength))
 key = DK(tkey, "kerberos")

 The pseudorandom function used by PBKDF2 will be a SHA-1 HMAC of the
 passphrase and salt, as described in Appendix B.1 to PKCS#5.

 The number of iterations is specified by the string-to-key parameters
 supplied. The parameter string is four octets indicating an unsigned
 number in big-endian order. This is the number of iterations to be
 performed. If the value is 00 00 00 00, the number of iterations to
 be performed is 4,294,967,296 (2**32). (Thus the minimum expressible
 iteration count is 1.)

 For environments where slower hardware is the norm, implementations
 of protocols such as Kerberos may wish to limit the number of
 iterations to prevent a spoofed response supplied by an attacker from
 consuming lots of client-side CPU time; if such a limit is
 implemented, it SHOULD be no less than 50,000. Even for environments
 with fast hardware, 4 billion iterations is likely to take a fairly
 long time; much larger bounds might still be enforced, and it might
 be wise for implementations to permit interruption of this operation
 by the user if the environment allows for it.

Raeburn Standards Track [Page 2]

RFC 3962 AES Encryption for Kerberos 5 February 2005

 If the string-to-key parameters are not supplied, the value used is
 00 00 10 00 (decimal 4,096, indicating 4,096 iterations).

 Note that this is not a requirement, nor even a recommendation, for
 this value to be used in "optimistic preauthentication" (e.g.,
 attempting timestamp-based preauthentication using the user’s long-
 term key without having first communicated with the KDC) in the
 absence of additional information, or as a default value for sites to
 use for their principals’ long-term keys in their Kerberos database.
 It is simply the interpretation of the absence of the string-to-key
 parameter field when the KDC has had an opportunity to provide it.

 Sample test vectors are given in Appendix B.

5. Ciphertext Stealing

 Cipher block chaining is used to encrypt messages, with the initial
 vector stored in the cipher state. Unlike previous Kerberos
 cryptosystems, we use ciphertext stealing to handle the possibly
 partial final block of the message.

 Ciphertext stealing is described on pages 195-196 of [AC], and
 section 8 of [RC5]; it has the advantage that no message expansion is
 done during encryption of messages of arbitrary sizes as is typically
 done in CBC mode with padding. Some errata for [RC5] are listed in
 Appendix A and are considered part of the ciphertext stealing
 technique as used here.

 Ciphertext stealing, as defined in [RC5], assumes that more than one
 block of plain text is available. If exactly one block is to be
 encrypted, that block is simply encrypted with AES (also known as ECB
 mode). Input smaller than one block is padded at the end to one
 block; the values of the padding bits are unspecified.
 (Implementations MAY use all-zero padding, but protocols MUST NOT
 rely on the result being deterministic. Implementations MAY use
 random padding, but protocols MUST NOT rely on the result not being
 deterministic. Note that in most cases, the Kerberos encryption
 profile will add a random confounder independent of this padding.)

 For consistency, ciphertext stealing is always used for the last two
 blocks of the data to be encrypted, as in [RC5]. If the data length
 is a multiple of the block size, this is equivalent to plain CBC mode
 with the last two ciphertext blocks swapped.

 A test vector is given in Appendix B.

Raeburn Standards Track [Page 3]

RFC 3962 AES Encryption for Kerberos 5 February 2005

 The initial vector carried out from one encryption for use in a
 subsequent encryption is the next-to-last block of the encryption
 output; this is the encrypted form of the last plaintext block. When
 decrypting, the next-to-last block of the supplied ciphertext is
 carried forward as the next initial vector. If only one ciphertext
 block is available (decrypting one block, or encrypting one block or
 less), then that one block is carried out instead.

6. Kerberos Algorithm Profile Parameters

 This is a summary of the parameters to be used with the simplified
 algorithm profile described in [KCRYPTO]:

 +--+
 | protocol key format 128- or 256-bit string |
 | |
 | string-to-key function PBKDF2+DK with variable |
 | iteration count (see |
 | above) |
 | |
 | default string-to-key parameters 00 00 10 00 |
 | |
 | key-generation seed length key size |
 | |
 | random-to-key function identity function |
 | |
 | hash function, H SHA-1 |
 | |
 | HMAC output size, h 12 octets (96 bits) |
 | |
 | message block size, m 1 octet |
 | |
 | encryption/decryption functions, AES in CBC-CTS mode |
 | E and D (cipher block size 16 |
 | octets), with next-to- |
 | last block (last block |
 | if only one) as CBC-style |
 | ivec |
 +--+

 Using this profile with each key size gives us two each of encryption
 and checksum algorithm definitions.

Raeburn Standards Track [Page 4]

RFC 3962 AES Encryption for Kerberos 5 February 2005

7. Assigned Numbers

 The following encryption type numbers are assigned:

 +--+
 | encryption types |
 +--+
 | type name etype value key size |
 +--+
 | aes128-cts-hmac-sha1-96 17 128 |
 | aes256-cts-hmac-sha1-96 18 256 |
 +--+

 The following checksum type numbers are assigned:

 +--+
 | checksum types |
 +--+
 | type name sumtype value length |
 +--+
 | hmac-sha1-96-aes128 15 96 |
 | hmac-sha1-96-aes256 16 96 |
 +--+

 These checksum types will be used with the corresponding encryption
 types defined above.

8. Security Considerations

 This new algorithm has not been around long enough to receive the
 decades of intense analysis that DES has received. It is possible
 that some weakness exists that has not been found by the
 cryptographers analyzing these algorithms before and during the AES
 selection process.

 The use of the HMAC function has drawbacks for certain pass phrase
 lengths. For example, a pass phrase longer than the hash function
 block size (64 bytes, for SHA-1) is hashed to a smaller size (20
 bytes) before applying the main HMAC algorithm. However, entropy is
 generally sparse in pass phrases, especially in long ones, so this
 may not be a problem in the rare cases of users with long pass
 phrases.

 Also, generating a 256-bit key from a pass phrase of any length may
 be deceptive, as the effective entropy in pass-phrase-derived key
 cannot be nearly that large given the properties of the string-to-key
 function described here.

Raeburn Standards Track [Page 5]

RFC 3962 AES Encryption for Kerberos 5 February 2005

 The iteration count in PBKDF2 appears to be useful primarily as a
 constant multiplier for the amount of work required for an attacker
 using brute-force methods. Unfortunately, it also multiplies, by the
 same amount, the work needed by a legitimate user with a valid
 password. Thus the work factor imposed on an attacker (who may have
 many powerful workstations at his disposal) must be balanced against
 the work factor imposed on the legitimate user (who may have a PDA or
 cell phone); the available computing power on either side increases
 as time goes on, as well. A better way to deal with the brute-force
 attack is through preauthentication mechanisms that provide better
 protection of the user’s long-term key. Use of such mechanisms is
 out of the scope of this document.

 If a site does wish to use this means of protection against a brute-
 force attack, the iteration count should be chosen based on the
 facilities available to both attacker and legitimate user, and the
 amount of work the attacker should be required to perform to acquire
 the key or password.

 As an example:

 The author’s tests on a 2GHz Pentium 4 system indicated that in
 one second, nearly 90,000 iterations could be done, producing a
 256-bit key. This was using the SHA-1 assembly implementation
 from OpenSSL, and a pre-release version of the PBKDF2 code for
 MIT’s Kerberos package, on a single system. No attempt was made
 to do multiple hashes in parallel, so we assume an attacker doing
 so can probably do at least 100,000 iterations per second --
 rounded up to 2**17, for ease of calculation. For simplicity, we
 also assume the final AES encryption step costs nothing.

 Paul Leach estimates [LEACH] that a password-cracking dictionary
 may have on the order of 2**21 entries, with capitalization,
 punctuation, and other variations contributing perhaps a factor of
 2**11, giving a ballpark estimate of 2**32.

 Thus, for a known iteration count N and a known salt string, an
 attacker with some number of computers comparable to the author’s
 would need roughly N*2**15 CPU seconds to convert the entire
 dictionary plus variations into keys.

 An attacker using a dozen such computers for a month would have
 roughly 2**25 CPU seconds available. So using 2**12 (4,096)
 iterations would mean an attacker with a dozen such computers
 dedicated to a brute-force attack against a single key (actually,
 any password-derived keys sharing the same salt and iteration

Raeburn Standards Track [Page 6]

RFC 3962 AES Encryption for Kerberos 5 February 2005

 count) would process all the variations of the dictionary entries
 in four months and, on average, would likely find the user’s
 password in two months.

 Thus, if this form of attack is of concern, users should be
 required to change their passwords every few months, and an
 iteration count a few orders of magnitude higher should be chosen.
 Perhaps several orders of magnitude, as many users will tend to
 use the shorter and simpler passwords (to the extent they can,
 given a site’s password quality checks) that the attacker would
 likely try first.

 Since this estimate is based on currently available CPU power, the
 iteration counts used for this mode of defense should be increased
 over time, at perhaps 40%-60% each year or so.

 Note that if the attacker has a large amount of storage available,
 intermediate results could be cached, saving a lot of work for the
 next attack with the same salt and a greater number of iterations
 than had been run at the point where the intermediate results were
 saved. Thus, it would be wise to generate a new random salt
 string when passwords are changed. The default salt string,
 derived from the principal name, only protects against the use of
 one dictionary of keys against multiple users.

 If the PBKDF2 iteration count can be spoofed by an intruder on the
 network, and the limit on the accepted iteration count is very high,
 the intruder may be able to introduce a form of denial of service
 attack against the client by sending a very high iteration count,
 causing the client to spend a great deal of CPU time computing an
 incorrect key.

 An intruder spoofing the KDC reply, providing a low iteration count
 and reading the client’s reply from the network, may be able to
 reduce the work needed in the brute-force attack outlined above.
 Thus, implementations may seek to enforce lower bounds on the number
 of iterations that will be used.

 Since threat models and typical end-user equipment will vary widely
 from site to site, allowing site-specific configuration of such
 bounds is recommended.

 Any benefit against other attacks specific to the HMAC or SHA-1
 algorithms is probably achieved with a fairly small number of
 iterations.

Raeburn Standards Track [Page 7]

RFC 3962 AES Encryption for Kerberos 5 February 2005

 In the "optimistic preauthentication" case mentioned in section 3,
 the client may attempt to produce a key without first communicating
 with the KDC. If the client has no additional information, it can
 only guess as to the iteration count to be used. Even such
 heuristics as "iteration count X was used to acquire tickets for the
 same principal only N hours ago" can be wrong. Given the
 recommendation above for increasing the iteration counts used over
 time, it is impossible to recommend any specific default value for
 this case; allowing site-local configuration is recommended. (If the
 lower and upper bound checks described above are implemented, the
 default count for optimistic preauthentication should be between
 those bounds.)

 Ciphertext stealing mode, as it requires no additional padding in
 most cases, will reveal the exact length of each message being
 encrypted rather than merely bounding it to a small range of possible
 lengths as in CBC mode. Such obfuscation should not be relied upon
 at higher levels in any case; if the length must be obscured from an
 outside observer, this should be done by intentionally varying the
 length of the message to be encrypted.

9. IANA Considerations

 Kerberos encryption and checksum type values used in section 7 were
 previously reserved in [KCRYPTO] for the mechanisms defined in this
 document. The registries have been updated to list this document as
 the reference.

10. Acknowledgements

 Thanks to John Brezak, Gerardo Diaz Cuellar, Ken Hornstein, Paul
 Leach, Marcus Watts, Larry Zhu, and others for feedback on earlier
 versions of this document.

Raeburn Standards Track [Page 8]

RFC 3962 AES Encryption for Kerberos 5 February 2005

A. Errata for RFC 2040 Section 8

 (Copied from the RFC Editor’s errata web site on July 8, 2004.)

 Reported By: Bob Baldwin; baldwin@plusfive.com
 Date: Fri, 26 Mar 2004 06:49:02 -0800

 In Section 8, Description of RC5-CTS, of the encryption method,
 it says:

 1. Exclusive-or Pn-1 with the previous ciphertext
 block, Cn-2, to create Xn-1.

 It should say:

 1. Exclusive-or Pn-1 with the previous ciphertext
 block, Cn-2, to create Xn-1. For short messages where
 Cn-2 does not exist, use IV.

 Reported By: Bob Baldwin; baldwin@plusfive.com
 Date: Mon, 22 Mar 2004 20:26:40 -0800

 In Section 8, first paragraph, second sentence says:

 This mode handles any length of plaintext and produces ciphertext
 whose length matches the plaintext length.

 In Section 8, first paragraph, second sentence should read:

 This mode handles any length of plaintext longer than one
 block and produces ciphertext whose length matches the
 plaintext length.

 In Section 8, step 6 of the decryption method says:

 6. Decrypt En to create Pn-1.

 In Section 8, step 6 of the decryption method should read:

 6. Decrypt En and exclusive-or with Cn-2 to create Pn-1.
 For short messages where Cn-2 does not exist, use the IV.

Raeburn Standards Track [Page 9]

RFC 3962 AES Encryption for Kerberos 5 February 2005

B. Sample Test Vectors

 Sample values for the PBKDF2 HMAC-SHA1 string-to-key function are
 included below.

 Iteration count = 1
 Pass phrase = "password"
 Salt = "ATHENA.MIT.EDUraeburn"
 128-bit PBKDF2 output:
 cd ed b5 28 1b b2 f8 01 56 5a 11 22 b2 56 35 15
 128-bit AES key:
 42 26 3c 6e 89 f4 fc 28 b8 df 68 ee 09 79 9f 15
 256-bit PBKDF2 output:
 cd ed b5 28 1b b2 f8 01 56 5a 11 22 b2 56 35 15
 0a d1 f7 a0 4b b9 f3 a3 33 ec c0 e2 e1 f7 08 37
 256-bit AES key:
 fe 69 7b 52 bc 0d 3c e1 44 32 ba 03 6a 92 e6 5b
 bb 52 28 09 90 a2 fa 27 88 39 98 d7 2a f3 01 61

 Iteration count = 2
 Pass phrase = "password"
 Salt="ATHENA.MIT.EDUraeburn"
 128-bit PBKDF2 output:
 01 db ee 7f 4a 9e 24 3e 98 8b 62 c7 3c da 93 5d
 128-bit AES key:
 c6 51 bf 29 e2 30 0a c2 7f a4 69 d6 93 bd da 13
 256-bit PBKDF2 output:
 01 db ee 7f 4a 9e 24 3e 98 8b 62 c7 3c da 93 5d
 a0 53 78 b9 32 44 ec 8f 48 a9 9e 61 ad 79 9d 86
 256-bit AES key:
 a2 e1 6d 16 b3 60 69 c1 35 d5 e9 d2 e2 5f 89 61
 02 68 56 18 b9 59 14 b4 67 c6 76 22 22 58 24 ff

 Iteration count = 1200
 Pass phrase = "password"
 Salt = "ATHENA.MIT.EDUraeburn"
 128-bit PBKDF2 output:
 5c 08 eb 61 fd f7 1e 4e 4e c3 cf 6b a1 f5 51 2b
 128-bit AES key:
 4c 01 cd 46 d6 32 d0 1e 6d be 23 0a 01 ed 64 2a
 256-bit PBKDF2 output:
 5c 08 eb 61 fd f7 1e 4e 4e c3 cf 6b a1 f5 51 2b
 a7 e5 2d db c5 e5 14 2f 70 8a 31 e2 e6 2b 1e 13
 256-bit AES key:
 55 a6 ac 74 0a d1 7b 48 46 94 10 51 e1 e8 b0 a7
 54 8d 93 b0 ab 30 a8 bc 3f f1 62 80 38 2b 8c 2a

Raeburn Standards Track [Page 10]

RFC 3962 AES Encryption for Kerberos 5 February 2005

 Iteration count = 5
 Pass phrase = "password"
 Salt=0x1234567878563412
 128-bit PBKDF2 output:
 d1 da a7 86 15 f2 87 e6 a1 c8 b1 20 d7 06 2a 49
 128-bit AES key:
 e9 b2 3d 52 27 37 47 dd 5c 35 cb 55 be 61 9d 8e
 256-bit PBKDF2 output:
 d1 da a7 86 15 f2 87 e6 a1 c8 b1 20 d7 06 2a 49
 3f 98 d2 03 e6 be 49 a6 ad f4 fa 57 4b 6e 64 ee
 256-bit AES key:
 97 a4 e7 86 be 20 d8 1a 38 2d 5e bc 96 d5 90 9c
 ab cd ad c8 7c a4 8f 57 45 04 15 9f 16 c3 6e 31
 (This test is based on values given in [PECMS].)

 Iteration count = 1200
 Pass phrase = (64 characters)
 "XX"
 Salt="pass phrase equals block size"
 128-bit PBKDF2 output:
 13 9c 30 c0 96 6b c3 2b a5 5f db f2 12 53 0a c9
 128-bit AES key:
 59 d1 bb 78 9a 82 8b 1a a5 4e f9 c2 88 3f 69 ed
 256-bit PBKDF2 output:
 13 9c 30 c0 96 6b c3 2b a5 5f db f2 12 53 0a c9
 c5 ec 59 f1 a4 52 f5 cc 9a d9 40 fe a0 59 8e d1
 256-bit AES key:
 89 ad ee 36 08 db 8b c7 1f 1b fb fe 45 94 86 b0
 56 18 b7 0c ba e2 20 92 53 4e 56 c5 53 ba 4b 34

 Iteration count = 1200
 Pass phrase = (65 characters)
 "XXX"
 Salt = "pass phrase exceeds block size"
 128-bit PBKDF2 output:
 9c ca d6 d4 68 77 0c d5 1b 10 e6 a6 87 21 be 61
 128-bit AES key:
 cb 80 05 dc 5f 90 17 9a 7f 02 10 4c 00 18 75 1d
 256-bit PBKDF2 output:
 9c ca d6 d4 68 77 0c d5 1b 10 e6 a6 87 21 be 61
 1a 8b 4d 28 26 01 db 3b 36 be 92 46 91 5e c8 2a
 256-bit AES key:
 d7 8c 5c 9c b8 72 a8 c9 da d4 69 7f 0b b5 b2 d2
 14 96 c8 2b eb 2c ae da 21 12 fc ee a0 57 40 1b

Raeburn Standards Track [Page 11]

RFC 3962 AES Encryption for Kerberos 5 February 2005

 Iteration count = 50
 Pass phrase = g-clef (0xf09d849e)
 Salt = "EXAMPLE.COMpianist"
 128-bit PBKDF2 output:
 6b 9c f2 6d 45 45 5a 43 a5 b8 bb 27 6a 40 3b 39
 128-bit AES key:
 f1 49 c1 f2 e1 54 a7 34 52 d4 3e 7f e6 2a 56 e5
 256-bit PBKDF2 output:
 6b 9c f2 6d 45 45 5a 43 a5 b8 bb 27 6a 40 3b 39
 e7 fe 37 a0 c4 1e 02 c2 81 ff 30 69 e1 e9 4f 52
 256-bit AES key:
 4b 6d 98 39 f8 44 06 df 1f 09 cc 16 6d b4 b8 3c
 57 18 48 b7 84 a3 d6 bd c3 46 58 9a 3e 39 3f 9e

 Some test vectors for CBC with ciphertext stealing, using an initial
 vector of all-zero.

 AES 128-bit key:
 0000: 63 68 69 63 6b 65 6e 20 74 65 72 69 79 61 6b 69

 IV:
 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 Input:
 0000: 49 20 77 6f 75 6c 64 20 6c 69 6b 65 20 74 68 65
 0010: 20
 Output:
 0000: c6 35 35 68 f2 bf 8c b4 d8 a5 80 36 2d a7 ff 7f
 0010: 97
 Next IV:
 0000: c6 35 35 68 f2 bf 8c b4 d8 a5 80 36 2d a7 ff 7f

 IV:
 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 Input:
 0000: 49 20 77 6f 75 6c 64 20 6c 69 6b 65 20 74 68 65
 0010: 20 47 65 6e 65 72 61 6c 20 47 61 75 27 73 20
 Output:
 0000: fc 00 78 3e 0e fd b2 c1 d4 45 d4 c8 ef f7 ed 22
 0010: 97 68 72 68 d6 ec cc c0 c0 7b 25 e2 5e cf e5
 Next IV:
 0000: fc 00 78 3e 0e fd b2 c1 d4 45 d4 c8 ef f7 ed 22

Raeburn Standards Track [Page 12]

RFC 3962 AES Encryption for Kerberos 5 February 2005

 IV:
 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 Input:
 0000: 49 20 77 6f 75 6c 64 20 6c 69 6b 65 20 74 68 65
 0010: 20 47 65 6e 65 72 61 6c 20 47 61 75 27 73 20 43
 Output:
 0000: 39 31 25 23 a7 86 62 d5 be 7f cb cc 98 eb f5 a8
 0010: 97 68 72 68 d6 ec cc c0 c0 7b 25 e2 5e cf e5 84
 Next IV:
 0000: 39 31 25 23 a7 86 62 d5 be 7f cb cc 98 eb f5 a8

 IV:
 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 Input:
 0000: 49 20 77 6f 75 6c 64 20 6c 69 6b 65 20 74 68 65
 0010: 20 47 65 6e 65 72 61 6c 20 47 61 75 27 73 20 43
 0020: 68 69 63 6b 65 6e 2c 20 70 6c 65 61 73 65 2c
 Output:
 0000: 97 68 72 68 d6 ec cc c0 c0 7b 25 e2 5e cf e5 84
 0010: b3 ff fd 94 0c 16 a1 8c 1b 55 49 d2 f8 38 02 9e
 0020: 39 31 25 23 a7 86 62 d5 be 7f cb cc 98 eb f5
 Next IV:
 0000: b3 ff fd 94 0c 16 a1 8c 1b 55 49 d2 f8 38 02 9e

 IV:
 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 Input:
 0000: 49 20 77 6f 75 6c 64 20 6c 69 6b 65 20 74 68 65
 0010: 20 47 65 6e 65 72 61 6c 20 47 61 75 27 73 20 43
 0020: 68 69 63 6b 65 6e 2c 20 70 6c 65 61 73 65 2c 20
 Output:
 0000: 97 68 72 68 d6 ec cc c0 c0 7b 25 e2 5e cf e5 84
 0010: 9d ad 8b bb 96 c4 cd c0 3b c1 03 e1 a1 94 bb d8
 0020: 39 31 25 23 a7 86 62 d5 be 7f cb cc 98 eb f5 a8
 Next IV:
 0000: 9d ad 8b bb 96 c4 cd c0 3b c1 03 e1 a1 94 bb d8

Raeburn Standards Track [Page 13]

RFC 3962 AES Encryption for Kerberos 5 February 2005

 IV:
 0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 Input:
 0000: 49 20 77 6f 75 6c 64 20 6c 69 6b 65 20 74 68 65
 0010: 20 47 65 6e 65 72 61 6c 20 47 61 75 27 73 20 43
 0020: 68 69 63 6b 65 6e 2c 20 70 6c 65 61 73 65 2c 20
 0030: 61 6e 64 20 77 6f 6e 74 6f 6e 20 73 6f 75 70 2e
 Output:
 0000: 97 68 72 68 d6 ec cc c0 c0 7b 25 e2 5e cf e5 84
 0010: 39 31 25 23 a7 86 62 d5 be 7f cb cc 98 eb f5 a8
 0020: 48 07 ef e8 36 ee 89 a5 26 73 0d bc 2f 7b c8 40
 0030: 9d ad 8b bb 96 c4 cd c0 3b c1 03 e1 a1 94 bb d8
 Next IV:
 0000: 48 07 ef e8 36 ee 89 a5 26 73 0d bc 2f 7b c8 40

Normative References

 [AC] Schneier, B., "Applied Cryptography", second edition, John
 Wiley and Sons, New York, 1996.

 [AES] National Institute of Standards and Technology, U.S.
 Department of Commerce, "Advanced Encryption Standard",
 Federal Information Processing Standards Publication 197,
 Washington, DC, November 2001.

 [KCRYPTO] Raeburn, K., "Encryption and Checksum Specifications for
 Kerberos 5", RFC 3961, February 2005.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [PKCS5] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2.0", RFC 2898, September 2000.

 [RC5] Baldwin, R. and R. Rivest, "The RC5, RC5-CBC, RC5-CBC-Pad,
 and RC5-CTS Algorithms", RFC 2040, October 1996.

 [SHA1] National Institute of Standards and Technology, U.S.
 Department of Commerce, "Secure Hash Standard", Federal
 Information Processing Standards Publication 180-1,
 Washington, DC, April 1995.

Raeburn Standards Track [Page 14]

RFC 3962 AES Encryption for Kerberos 5 February 2005

Informative References

 [LEACH] Leach, P., email to IETF Kerberos working group mailing
 list, 5 May 2003, ftp://ftp.ietf.org/ietf-mail-
 archive/krb-wg/2003-05.mail.

 [PECMS] Gutmann, P., "Password-based Encryption for CMS", RFC
 3211, December 2001.

Author’s Address

 Kenneth Raeburn
 Massachusetts Institute of Technology
 77 Massachusetts Avenue
 Cambridge, MA 02139

 EMail: raeburn@mit.edu

Raeburn Standards Track [Page 15]

RFC 3962 AES Encryption for Kerberos 5 February 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the IETF’s procedures with respect to rights in IETF Documents can
 be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Raeburn Standards Track [Page 16]

