
Network Working Group T. Aura
Request for Comments: 3972 Microsoft Research
Category: Standards Track March 2005

 Cryptographically Generated Addresses (CGA)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004).

Abstract

 This document describes a method for binding a public signature key
 to an IPv6 address in the Secure Neighbor Discovery (SEND) protocol.
 Cryptographically Generated Addresses (CGA) are IPv6 addresses for
 which the interface identifier is generated by computing a
 cryptographic one-way hash function from a public key and auxiliary
 parameters. The binding between the public key and the address can
 be verified by re-computing the hash value and by comparing the hash
 with the interface identifier. Messages sent from an IPv6 address
 can be protected by attaching the public key and auxiliary parameters
 and by signing the message with the corresponding private key. The
 protection works without a certification authority or any security
 infrastructure.

Aura Standards Track [Page 1]

RFC 3972 Cryptographically Generated Addresses March 2005

Table of Contents

 1. Introduction . 2
 2. CGA Format . 3
 3. CGA Parameters and Hash Values 5
 4. CGA Generation . 6
 5. CGA Verification . 9
 6. CGA Signatures . 10
 7. Security Considerations 12
 7.1. Security Goals and Limitations 12
 7.2. Hash Extension . 13
 7.3. Privacy Considerations 15
 7.4. Related Protocols 15
 8. IANA Considerations . 16
 9. References . 17
 9.1. Normative References 17
 9.2. Informative References 18
 Appendices . 20
 A. Example of CGA Generation. 20
 B. Acknowledgements . 21
 Author’s Address . 21
 Full Copyright Statements. 22

1. Introduction

 This document specifies a method for securely associating a
 cryptographic public key with an IPv6 address in the Secure Neighbor
 Discovery (SEND) protocol [RFC3971]. The basic idea is to generate
 the interface identifier (i.e., the rightmost 64 bits) of the IPv6
 address by computing a cryptographic hash of the public key. The
 resulting IPv6 address is called a cryptographically generated
 address (CGA). The corresponding private key can then be used to
 sign messages sent from the address. An introduction to CGAs and
 their application to SEND can be found in [Aura03] and [AAKMNR02].

 This document specifies:

 o how to generate a CGA from the cryptographic hash of a public key
 and auxiliary parameters,

 o how to verify the association between the public key and the CGA,
 and

 o how to sign a message sent from the CGA, and how to verify the
 signature.

Aura Standards Track [Page 2]

RFC 3972 Cryptographically Generated Addresses March 2005

 To verify the association between the address and the public key, the
 verifier needs to know the address itself, the public key, and the
 values of the auxiliary parameters. The verifier can then go on to
 verify messages signed by the owner of the public key (i.e., the
 address owner). No additional security infrastructure, such as a
 public key infrastructure (PKI), certification authorities, or other
 trusted servers, is needed.

 Note that because CGAs themselves are not certified, an attacker can
 create a new CGA from any subnet prefix and its own (or anyone
 else’s) public key. However, the attacker cannot take a CGA created
 by someone else and send signed messages that appear to come from the
 owner of that address.

 The address format and the CGA parameter format are defined in
 Sections 2 and 3. Detailed algorithms for generating addresses and
 for verifying them are given in Sections 4 and 5, respectively.
 Section 6 defines the procedures for generating and verifying CGA
 signatures. The security considerations in Section 7 include
 limitations of CGA-based security, the reasoning behind the hash
 extension technique that enables effective hash lengths above the
 64-bit limit of the interface identifier, the implications of CGAs on
 privacy, and protection against related-protocol attacks.

 In this document, the key words MUST, MUST NOT, REQUIRED, SHALL,
 SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL are to
 be interpreted as described in [RFC2119].

2. CGA Format

 When talking about addresses, this document refers to IPv6 addresses
 in which the leftmost 64 bits of a 128-bit address form the subnet
 prefix and the rightmost 64 bits of the address form the interface
 identifier [RFC3513]. We number the bits of the interface identifier
 starting from bit zero on the left.

 A cryptographically generated address (CGA) has a security parameter
 (Sec) that determines its strength against brute-force attacks. The
 security parameter is a three-bit unsigned integer, and it is encoded
 in the three leftmost bits (i.e., bits 0 - 2) of the interface
 identifier. This can be written as follows:

 Sec = (interface identifier & 0xe000000000000000) >> 61

Aura Standards Track [Page 3]

RFC 3972 Cryptographically Generated Addresses March 2005

 The CGA is associated with a set of parameters that consist of a
 public key and auxiliary parameters. Two hash values Hash1 (64 bits)
 and Hash2 (112 bits) are computed from the parameters. The formats
 of the public key and auxiliary parameters, and the way to compute
 the hash values, are defined in Section 3.

 A cryptographically generated address is defined as an IPv6 address
 that satisfies the following two conditions:

 o The first hash value, Hash1, equals the interface identifier of
 the address. Bits 0, 1, 2, 6, and 7 (i.e., the bits that encode
 the security parameter Sec and the "u" and "g" bits from the
 standard IPv6 address architecture format of interface identifiers
 [RFC3513]) are ignored in the comparison.

 o The 16*Sec leftmost bits of the second hash value, Hash2, are
 zero.

 The above definition can be stated in terms of the following two bit
 masks:

 Mask1 (64 bits) = 0x1cffffffffffffff

 Mask2 (112 bits) = 0x0000000000000000000000000000 if Sec=0,
 0xffff000000000000000000000000 if Sec=1,
 0xffffffff00000000000000000000 if Sec=2,
 0xffffffffffff0000000000000000 if Sec=3,
 0xffffffffffffffff000000000000 if Sec=4,
 0xffffffffffffffffffff00000000 if Sec=5,
 0xffffffffffffffffffffffff0000 if Sec=6, and
 0xffffffffffffffffffffffffffff if Sec=7

 A cryptographically generated address is an IPv6 address for which
 the following two equations hold:

 Hash1 & Mask1 == interface identifier & Mask1
 Hash2 & Mask2 == 0x0000000000000000000000000000

Aura Standards Track [Page 4]

RFC 3972 Cryptographically Generated Addresses March 2005

3. CGA Parameters and Hash Values

 Each CGA is associated with a CGA Parameters data structure, which
 has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + +
 | |
 + Modifier (16 octets) +
 | |
 + +
 | |
 +-+
 | |
 + Subnet Prefix (8 octets) +
 | |
 +-+
 |Collision Count| |
 +-+-+-+-+-+-+-+-+ |
 | |
 ˜ Public Key (variable length) ˜
 | |
 +-+
 | |
 ˜ Extension Fields (optional, variable length) ˜
 | |
 +-+

 Modifier

 This field contains a 128-bit unsigned integer, which can be any
 value. The modifier is used during CGA generation to implement
 the hash extension and to enhance privacy by adding randomness to
 the address.

 Subnet Prefix

 This field contains the 64-bit subnet prefix of the CGA.

 Collision Count

 This is an eight-bit unsigned integer that MUST be 0, 1, or 2.
 The collision count is incremented during CGA generation to
 recover from an address collision detected by duplicate address
 detection.

Aura Standards Track [Page 5]

RFC 3972 Cryptographically Generated Addresses March 2005

 Public Key

 This is a variable-length field containing the public key of the
 address owner. The public key MUST be formatted as a DER-encoded
 [ITU.X690.2002] ASN.1 structure of the type SubjectPublicKeyInfo,
 defined in the Internet X.509 certificate profile [RFC3280]. SEND
 SHOULD use an RSA public/private key pair. When RSA is used, the
 algorithm identifier MUST be rsaEncryption, which is
 1.2.840.113549.1.1.1, and the RSA public key MUST be formatted by
 using the RSAPublicKey type as specified in Section 2.3.1 of RFC
 3279 [RFC3279]. The RSA key length SHOULD be at least 384 bits.
 Other public key types are undesirable in SEND, as they may result
 in incompatibilities between implementations. The length of this
 field is determined by the ASN.1 encoding.

 Extension Fields

 This is an optional variable-length field that is not used in the
 current specification. Future versions of this specification may
 use this field for additional data items that need to be included
 in the CGA Parameters data structure. IETF standards action is
 required to specify the use of the extension fields.
 Implementations MUST ignore the value of any unrecognized
 extension fields.

 The two hash values MUST be computed as follows. The SHA-1 hash
 algorithm [FIPS.180-1.1995] is applied to the CGA Parameters. When
 Hash1 is computed, the input to the SHA-1 algorithm is the CGA
 Parameters data structure. The 64-bit Hash1 is obtained by taking
 the leftmost 64 bits of the 160-bit SHA-1 hash value. When Hash2 is
 computed, the input is the same CGA Parameters data structure except
 that the subnet prefix and collision count are set to zero. The
 112-bit Hash2 is obtained by taking the leftmost 112 bits of the
 160-bit SHA-1 hash value. Note that the hash values are computed
 over the entire CGA Parameters data structure, including any
 unrecognized extension fields.

4. CGA Generation

 The process of generating a new CGA takes three input values: a
 64-bit subnet prefix, the public key of the address owner as a
 DER-encoded ASN.1 structure of the type SubjectPublicKeyInfo, and the
 security parameter Sec, which is an unsigned three-bit integer. The
 cost of generating a new CGA depends exponentially on the security
 parameter Sec, which can have values from 0 to 7.

Aura Standards Track [Page 6]

RFC 3972 Cryptographically Generated Addresses March 2005

 A CGA and associated parameters SHOULD be generated as follows:

 1. Set the modifier to a random or pseudo-random 128-bit value.

 2. Concatenate from left to right the modifier, 9 zero octets, the
 encoded public key, and any optional extension fields. Execute
 the SHA-1 algorithm on the concatenation. Take the 112 leftmost
 bits of the SHA-1 hash value. The result is Hash2.

 3. Compare the 16*Sec leftmost bits of Hash2 with zero. If they are
 all zero (or if Sec=0), continue with step 4. Otherwise,
 increment the modifier by one and go back to step 2.

 4. Set the 8-bit collision count to zero.

 5. Concatenate from left to right the final modifier value, the
 subnet prefix, the collision count, the encoded public key, and
 any optional extension fields. Execute the SHA-1 algorithm on the
 concatenation. Take the 64 leftmost bits of the SHA-1 hash value.
 The result is Hash1.

 6. Form an interface identifier from Hash1 by writing the value of
 Sec into the three leftmost bits and by setting bits 6 and 7
 (i.e., the "u" and "g" bits) to zero.

 7. Concatenate the 64-bit subnet prefix and the 64-bit interface
 identifier to form a 128-bit IPv6 address with the subnet prefix
 to the left and interface identifier to the right, as in a
 standard IPv6 address [RFC3513].

 8. Perform duplicate address detection if required, as per [RFC3971].
 If an address collision is detected, increment the collision count
 by one and go back to step 5. However, after three collisions,
 stop and report the error.

 9. Form the CGA Parameters data structure by concatenating from left
 to right the final modifier value, the subnet prefix, the final
 collision count value, the encoded public key, and any optional
 extension fields.

 The output of the address generation algorithm is a new CGA and a CGA
 Parameters data structure.

 The initial value of the modifier in step 1 SHOULD be chosen randomly
 to make addresses generated from the same public key unlinkable,
 which enhances privacy (see Section 7.3). The quality of the random
 number generator does not affect the strength of the binding between

Aura Standards Track [Page 7]

RFC 3972 Cryptographically Generated Addresses March 2005

 the address and the public key. Implementations that have no strong
 random numbers available MAY use a non-cryptographic pseudo-random
 number generator initialized with the current time of day.

 For Sec=0, the above algorithm is deterministic and relatively fast.
 Nodes that implement CGA generation MAY always use the security
 parameter value Sec=0. If Sec=0, steps 2 - 3 of the generation
 algorithm can be skipped.

 For Sec values greater than zero, the above algorithm is not
 guaranteed to terminate after a certain number of iterations. The
 brute-force search in steps 2 - 3 takes O(2^(16*Sec)) iterations to
 complete. The algorithm has been intentionally designed so that the
 generation of CGAs with high Sec values is infeasible with current
 technology.

 Implementations MAY use optimized or otherwise modified versions of
 the above algorithm for CGA generation. However, the output of any
 modified versions MUST fulfill the following two requirements.
 First, the resulting CGA and CGA Parameters data structure MUST be
 formatted as specified in Sections 2 - 3. Second, the CGA
 verification procedure defined in Section 5 MUST succeed when invoked
 on the output of the CGA generation algorithm. Note that some
 optimizations involve trade-offs between privacy and the cost of
 address generation.

 One optimization is particularly important. If the subnet prefix of
 the address changes but the address owner’s public key does not, the
 old modifier value MAY be reused. If it is reused, the algorithm
 SHOULD be started from step 4. This optimization avoids repeating
 the expensive search for an acceptable modifier value but may, in
 some situations, make it easier for an observer to link two addresses
 to each other.

 Note that this document does not specify whether duplicate address
 detection should be performed and how the detection is done. Step 8
 only defines what to do if some form of duplicate address detection
 is performed and an address collision is detected.

 Future versions of this specification may specify additional inputs
 to the CGA generation algorithm that are concatenated as extension
 fields to the end of the CGA Parameters data structure. No such
 extension fields are defined in this document.

Aura Standards Track [Page 8]

RFC 3972 Cryptographically Generated Addresses March 2005

5. CGA Verification

 CGA verification takes an IPv6 address and a CGA Parameters data
 structure as input. The CGA Parameters consist of the concatenated
 modifier, subnet prefix, collision count, public key, and optional
 extension fields. The verification either succeeds or fails.

 The CGA MUST be verified with the following steps:

 1. Check that the collision count in the CGA Parameters data
 structure is 0, 1, or 2. The CGA verification fails if the
 collision count is out of the valid range.

 2. Check that the subnet prefix in the CGA Parameters data structure
 is equal to the subnet prefix (i.e., the leftmost 64 bits) of the
 address. The CGA verification fails if the prefix values differ.

 3. Execute the SHA-1 algorithm on the CGA Parameters data structure.
 Take the 64 leftmost bits of the SHA-1 hash value. The result is
 Hash1.

 4. Compare Hash1 with the interface identifier (i.e., the rightmost
 64 bits) of the address. Differences in the three leftmost bits
 and in bits 6 and 7 (i.e., the "u" and "g" bits) are ignored. If
 the 64-bit values differ (other than in the five ignored bits),
 the CGA verification fails.

 5. Read the security parameter Sec from the three leftmost bits of
 the 64-bit interface identifier of the address. (Sec is an
 unsigned 3-bit integer.)

 6. Concatenate from left to right the modifier, 9 zero octets, the
 public key, and any extension fields that follow the public key in
 the CGA Parameters data structure. Execute the SHA-1 algorithm on
 the concatenation. Take the 112 leftmost bits of the SHA-1 hash
 value. The result is Hash2.

 7. Compare the 16*Sec leftmost bits of Hash2 with zero. If any one
 of them is not zero, the CGA verification fails. Otherwise, the
 verification succeeds. (If Sec=0, the CGA verification never
 fails at this step.)

 If the verification fails at any step, the execution of the algorithm
 MUST be stopped immediately. On the other hand, if the verification
 succeeds, the verifier knows that the public key in the CGA
 Parameters is the authentic public key of the address owner. The

Aura Standards Track [Page 9]

RFC 3972 Cryptographically Generated Addresses March 2005

 verifier can extract the public key by removing 25 octets from the
 beginning of the CGA Parameters and by decoding the following
 SubjectPublicKeyInfo data structure.

 Note that the values of bits 6 and 7 (the "u" and "g" bits) of the
 interface identifier are ignored during CGA verification. In the
 SEND protocol, after the verification succeeds, the verifier SHOULD
 process all CGAs in the same way regardless of the Sec, modifier, and
 collision count values. In particular, the verifier in the SEND
 protocol SHOULD NOT have any security policy that differentiates
 between addresses based on the value of Sec. That way, the address
 generator is free to choose any value of Sec.

 All nodes that implement CGA verification MUST be able to process all
 security parameter values Sec = 0, 1, 2, 3, 4, 5, 6, 7. The
 verification procedure is relatively fast and always requires at most
 two computations of the SHA-1 hash function. If Sec=0, the
 verification never fails in steps 6 - 7 and these steps can be
 skipped.

 Nodes that implement CGA verification for SEND SHOULD be able to
 process RSA public keys that have the algorithm identifier
 rsaEncryption and, key length between 384 and 2,048 bits.
 Implementations MAY support longer keys. Future versions of this
 specification may recommend support for longer keys.

 Implementations of CGA verification MUST ignore the value of any
 unrecognized extension fields that follow the public key in the CGA
 Parameters data structure. However, implementations MUST include any
 such unrecognized data in the hash input when computing Hash1 in step
 3 and Hash2 in step 6 of the CGA verification algorithm. This is
 important to ensure upward compatibility with future extensions.

6. CGA Signatures

 This section defines the procedures for generating and verifying CGA
 signatures. To sign a message, a node needs the CGA, the associated
 CGA Parameters data structure, the message, and the private
 cryptographic key that corresponds to the public key in the CGA
 Parameters. The node also must have a 128-bit type tag for the
 message from the CGA Message Type name space.

 To sign a message, a node SHOULD do the following:

 o Concatenate the 128-bit type tag (in network byte order) and the
 message with the type tag to the left and the message to the
 right. The concatenation is the message to be signed in the next
 step.

Aura Standards Track [Page 10]

RFC 3972 Cryptographically Generated Addresses March 2005

 o Generate the RSA signature by using the RSASSA-PKCS1-v1_5
 [RFC3447] signature algorithm with the SHA-1 hash algorithm. The
 private key and the concatenation created above are the inputs to
 the generation operation.

 The SEND protocol specification [RFC3971] defines several messages
 that contain a signature in the Signature Option. The SEND protocol
 specification also defines a type tag from the CGA Message Type name
 space. The same type tag is used for all the SEND messages that have
 the Signature Option. This type tag is an IANA-allocated 128 bit
 integer that has been chosen at random to prevent an accidental type
 collision with messages of other protocols that use the same public
 key but that may or may not use IANA-allocated type tags.

 The CGA, the CGA Parameters data structure, the message, and the
 signature are sent to the verifier. The SEND protocol specification
 defines how these data items are sent in SEND protocol messages.
 Note that the 128-bit type tag is not included in the SEND protocol
 messages because the verifier knows its value implicitly from the
 ICMP message type field in the SEND message. See the SEND
 specification [RFC3971] for precise information about how SEND
 handles the type tag.

 To verify a signature, the verifier needs the CGA, the associated CGA
 Parameters data structure, the message, and the signature. The
 verifier also needs to have the 128-bit type tag for the message.

 To verify the signature, a node SHOULD do the following:

 o Verify the CGA as defined in Section 5. The inputs to the CGA
 verification are the CGA and the CGA Parameters data structure.

 o Concatenate the 128-bit type tag and the message with the type tag
 to the left and the message to the right. The concatenation is
 the message whose signature is to be verified in the next step.

 o Verify the RSA signature by using the RSASSA-PKCS1-v1_5 [RFC3447]
 algorithm with the SHA-1 hash algorithm. The inputs to the
 verification operation are the public key (i.e., the RSAPublicKey
 structure from the SubjectPublicKeyInfo structure that is a part
 of the CGA Parameters data structure), the concatenation created
 above, and the signature.

 The verifier MUST accept the signature as authentic only if both the
 CGA verification and the signature verification succeed.

Aura Standards Track [Page 11]

RFC 3972 Cryptographically Generated Addresses March 2005

7. Security Considerations

7.1. Security Goals and Limitations

 The purpose of CGAs is to prevent stealing and spoofing of existing
 IPv6 addresses. The public key of the address owner is bound
 cryptographically to the address. The address owner can use the
 corresponding private key to assert its ownership and to sign SEND
 messages sent from the address.

 It is important to understand that an attacker can create a new
 address from an arbitrary subnet prefix and its own (or someone
 else’s) public key because CGAs are not certified. However, the
 attacker cannot impersonate somebody else’s address. This is because
 the attacker would have to find a collision of the cryptographic hash
 value Hash1. (The property of the hash function needed here is
 called second pre-image resistance [MOV97].)

 For each valid CGA Parameters data structure, there are 4*(Sec+1)
 different CGAs that match the value. This is because decrementing
 the Sec value in the three leftmost bits of the interface identifier
 does not invalidate the address, and the verifier ignores the values
 of the "u" and "g" bits. In SEND, this does not have any security or
 implementation implications.

 Another limitation of CGAs is that there is no mechanism for proving
 that an address is not a CGA. Thus, an attacker could take someone
 else’s CGA and present it as a non-cryptographically generated
 address (e.g., as an RFC 3041 address [RFC3041]). An attacker does
 not benefit from this because although SEND nodes accept both signed
 and unsigned messages from every address, they give priority to the
 information in the signed messages.

 The minimum RSA key length required for SEND is only 384 bits. So
 short keys are vulnerable to integer-factoring attacks and cannot be
 used for strong authentication or secrecy. On the other hand, the
 cost of factoring 384-bit keys is currently high enough to prevent
 most denial-of-service attacks. Implementations that initially use
 short RSA keys SHOULD be prepared to switch to longer keys when
 denial-of-service attacks arising from integer factoring become a
 problem.

 The impact of a key compromise on CGAs depends on the application for
 which they are used. In SEND, it is not a major concern. If the
 private signature key is compromised because the SEND node has itself
 been compromised, the attacker does not need to spoof SEND messages
 from the node. When it is discovered that a node has been
 compromised, a new signature key and a new CGA SHOULD be generated.

Aura Standards Track [Page 12]

RFC 3972 Cryptographically Generated Addresses March 2005

 On the other hand, if the RSA key is compromised because integer-
 factoring attacks for the chosen key length have become practical,
 the key has to be replaced with a longer one, as explained above. In
 either case, the address change effectively revokes the old public
 key. It is not necessary to have any additional key revocation
 mechanism or to limit the lifetimes of the signature keys.

7.2. Hash Extension

 As computers become faster, the 64 bits of the interface identifier
 will not be sufficient to prevent attackers from searching for hash
 collisions. It helps somewhat that we include the subnet prefix of
 the address in the hash input. This prevents the attacker from using
 a single pre-computed database to attack addresses with different
 subnet prefixes. The attacker needs to create a separate database
 for each subnet prefix. Link-local addresses are, however, left
 vulnerable because the same prefix is used by all IPv6 nodes.

 To prevent the CGA technology from becoming outdated as computers
 become faster, the hash technique used to generate CGAs must be
 extended somehow. The chosen extension technique is to increase the
 cost of both address generation and brute-force attacks by the same
 parameterized factor while keeping the cost of address use and
 verification constant. This also provides protection for link-local
 addresses. Introduction of the hash extension is the main difference
 between this document and earlier CGA proposals [OR01][Nik01][MC02].

 To achieve the effective extension of the hash length, the input to
 the second hash function, Hash2, is modified (by changing the
 modifier value) until the leftmost 16*Sec bits of the hash value are
 zero. This increases the cost of address generation approximately by
 a factor of 2^(16*Sec). It also increases the cost of brute-force
 attacks by the same factor. That is, the cost of creating a CGA
 Parameters data structure that binds the attacker’s public key with
 somebody else’s address is increased from O(2^59) to
 O(2^(59+16*Sec)). The address generator may choose the security
 parameter Sec depending on its own computational capacity, the
 perceived risk of attacks, and the expected lifetime of the address.
 Currently, Sec values between 0 and 2 are sufficient for most IPv6
 nodes. As computers become faster, higher Sec values will slowly
 become useful.

 Theoretically, if no hash extension is used (i.e., Sec=0) and a
 typical attacker is able to tap into N local networks at the same
 time, an attack against link-local addresses is N times as efficient
 as an attack against addresses of a specific network. The effect
 could be countered by using a slightly higher Sec value for link-

Aura Standards Track [Page 13]

RFC 3972 Cryptographically Generated Addresses March 2005

 local addresses. When higher Sec values (such that 2^(16*Sec) > N)
 are used for all addresses, the relative advantage of attacking
 link-local addresses becomes insignificant.

 The effectiveness of the hash extension depends on the assumption
 that the computational capacities of the attacker and the address
 generator will grow at the same (potentially exponential) rate. This
 is not necessarily true if the addresses are generated on low-end
 mobile devices, for which the main design goals are to lower cost and
 decrease size, rather than increase computing power. But there is no
 reason for doing so. The expensive part of the address generation
 (steps 1 - 3 of the generation algorithm) may be delegated to a more
 powerful computer. Moreover, this work can be done in advance or
 offline, rather than in real time, when a new address is needed.

 To make it possible for mobile nodes whose subnet prefixes change
 frequently to use Sec values greater than zero, we have decided not
 to include the subnet prefix in the input of Hash2. The result is
 weaker than it would be if the subnet prefix were included in the
 input of both hashes. On the other hand, our scheme is at least as
 strong as using the hash extension technique without including the
 subnet prefix in either hash. It is also at least as strong as not
 using the hash extension but including the subnet prefix. This
 trade-off was made because mobile nodes frequently move to insecure
 networks, where they are at the risk of denial-of-service (DoS)
 attacks (for example, during the duplicate address detection
 procedure).

 In most networks, the goal of Secure Neighbor Discovery and CGA
 signatures is to prevent denial-of-service attacks. Therefore, it is
 usually sensible to start by using a low Sec value and to replace
 addresses with stronger ones only when denial-of-service attacks
 based on brute-force search become a significant problem. If CGAs
 were used as a part of a strong authentication or secrecy mechanism,
 it might be necessary to start with higher Sec values.

 The collision count value is used to modify the input to Hash1 if
 there is an address collision. It is important not to allow
 collision count values higher than 2. First, it is extremely
 unlikely that three collisions would occur and the reason is certain
 to be either a configuration or implementation error or a denial-of-
 service attack. (When the SEND protocol is used, deliberate
 collisions caused by a DoS attacker are detected and ignored.)
 Second, an attacker doing a brute-force search to match a given CGA
 can try all different values of a collision count without repeating
 the brute-force search for the modifier value. Thus, if higher
 values are allowed for the collision count, the hash extension
 technique becomes less effective in preventing brute force attacks.

Aura Standards Track [Page 14]

RFC 3972 Cryptographically Generated Addresses March 2005

7.3. Privacy Considerations

 CGAs can give the same level of pseudonymity as the IPv6 address
 privacy extensions defined in RFC 3041 [RFC3041]. An IP host can
 generate multiple pseudo-random CGAs by executing the CGA generation
 algorithm of Section 4 multiple times and by using a different random
 or pseudo-random initial value for the modifier every time. The host
 should change its address periodically as in [RFC3041]. When privacy
 protection is needed, the (pseudo)random number generator used in
 address generation SHOULD be strong enough to produce unpredictable
 and unlinkable values. Advice on random number generation can be
 found in [RFC1750].

 There are two apparent limitations to this privacy protection.
 However, as will be explained below, neither is very serious.

 First, the high cost of address generation may prevent hosts that use
 a high Sec value from changing their address frequently. This
 problem is mitigated because the expensive part of the address
 generation may be done in advance or offline, as explained in the
 previous section. It should also be noted that the nodes that
 benefit most from high Sec values (e.g., DNS servers, routers, and
 data servers) usually do not require pseudonymity, and the nodes that
 have high privacy requirements (e.g., client PCs and mobile hosts)
 are unlikely targets for expensive brute-force DoS attacks and can
 make do with lower Sec values.

 Second, the public key of the address owner is revealed in the signed
 SEND messages. This means that if the address owner wants to be
 pseudonymous toward the nodes in the local links that it accesses, it
 should generate not only a new address but also a new public key.
 With typical local-link technologies, however, a node’s link-layer
 address is a unique identifier for the node. As long as the node
 keeps using the same link-layer address, it makes little sense to
 change the public key for privacy reasons.

7.4. Related Protocols

 Although this document defines CGAs only for the purposes of Secure
 Neighbor Discovery, other protocols could be defined elsewhere that
 use the same addresses and public keys. This raises the possibility
 of related-protocol attacks in which a signed message from one
 protocol is replayed in another protocol. This means that other
 protocols (perhaps even those designed without an intimate knowledge
 of SEND) could endanger the security of SEND. What makes this threat
 even more significant is that the attacker could create a CGA from
 someone else’s public key and then replay signed messages from a
 protocol that has nothing to do with CGAs or IP addresses.

Aura Standards Track [Page 15]

RFC 3972 Cryptographically Generated Addresses March 2005

 To prevent the related-protocol attacks, a type tag is prepended to
 every message before it is signed. The type tags are 128-bit
 randomly chosen values, which prevents accidental type collisions
 with even poorly designed protocols that do not use any type tags.
 Moreover, the SEND protocol includes the sender’s CGA address in all
 signed messages. This makes it even more difficult for an attacker
 to take signed messages from some other context and to replay them as
 SEND messages.

 Finally, a strong cautionary note has to be made about using CGA
 signatures for purposes other than SEND. First, the other protocols
 MUST include a type tag and the sender address in all signed messages
 in the same way that SEND does. Each protocol MUST define its own
 type tag values as explained in Section 8. Moreover, because of the
 possibility of related-protocol attacks, the public key MUST be used
 only for signing, and it MUST NOT be used for encryption. Second,
 the minimum RSA key length of 384 bits may be too short for many
 applications and the impact of key compromise on the particular
 protocol must be evaluated. Third, CGA-based authorization is
 particularly suitable for securing neighbor discovery [RFC2461] and
 duplicate address detection [RFC2462] because these are network-layer
 signaling protocols for which IPv6 addresses are natural endpoint
 identifiers. In any protocol that uses other identifiers, such as
 DNS names, CGA signatures alone are not a sufficient security
 mechanism. There must also be a secure way of mapping the other
 identifiers to IPv6 addresses. If the goal is not to verify claims
 about IPv6 addresses, CGA signatures are probably not the right
 solution.

8. IANA Considerations

 This document defines a new CGA Message Type name space for use as
 type tags in messages that may be signed by using CGA signatures.
 The values in this name space are 128-bit unsigned integers. Values
 in this name space are allocated on a First Come First Served basis
 [RFC2434]. IANA assigns new 128-bit values directly without a
 review.

 The requester SHOULD generate the new values with a strong random-
 number generator. Continuous ranges of at most 256 values can be
 requested provided that the 120 most significant bits of the values
 have been generated with a strong random-number generator.

 IANA does not generate random values for the requester. IANA
 allocates requested values without verifying the way in which they
 have been generated. The name space is essentially unlimited, and
 any number of individual values and ranges of at most 256 values can
 be allocated.

Aura Standards Track [Page 16]

RFC 3972 Cryptographically Generated Addresses March 2005

 CGA Message Type values for private use MAY be generated with a
 strong random-number generator without IANA allocation.

 This document does not define any new values in any name space.

9. References

9.1. Normative References

 [RFC3971] Arkko, J., Ed., Kempf, J., Sommerfeld, B., Zill,
 B., and P. Nikander, "SEcure Neighbor Discovery
 (SEND)", RFC 3971, March 2005.

 [RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms
 and Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate
 Revocation List (CRL) Profile", RFC 3279, April
 2002.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3513] Hinden, R. and S. Deering, "Internet Protocol
 Version 6 (IPv6) Addressing Architecture", RFC
 3513, April 2003.

 [RFC3280] Housley, R., Polk, W., Ford, W., and D. Solo,
 "Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL)
 Profile", RFC 3280, April 2002.

 [ITU.X690.2002] International Telecommunications Union,
 "Information Technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)", ITU-T Recommendation X.690,
 July 2002.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key
 Cryptography Standards (PKCS) #1: RSA Cryptography
 Specifications Version 2.1", RFC 3447, February
 2003.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for
 Writing an IANA Considerations Section in RFCs",
 BCP 26, RFC 2434, October 1998.

Aura Standards Track [Page 17]

RFC 3972 Cryptographically Generated Addresses March 2005

 [FIPS.180-1.1995] National Institute of Standards and Technology,
 "Secure Hash Standard", Federal Information
 Processing Standards Publication FIPS PUB 180-1,
 April 1995,
 <http://www.itl.nist.gov/fipspubs/fip180-1.htm>.

9.2. Informative References

 [AAKMNR02] Arkko, J., Aura, T., Kempf, J., Mantyla, V.,
 Nikander, P., and M. Roe, "Securing IPv6 neighbor
 discovery and router discovery", ACM Workshop on
 Wireless Security (WiSe 2002), Atlanta, GA USA ,
 September 2002.

 [Aura03] Aura, T., "Cryptographically Generated Addresses
 (CGA)", 6th Information Security Conference
 (ISC’03), Bristol, UK, October 2003.

 [RFC1750] Eastlake, D., Crocker, S., and J. Schiller,
 "Randomness Recommendations for Security", RFC
 1750, December 1994.

 [MOV97] Menezes, A., van Oorschot, P., and S. Vanstone,
 "Handbook of Applied Cryptography", CRC Press ,
 1997.

 [MC02] Montenegro, G. and C. Castelluccia, "Statistically
 unique and cryptographically verifiable identifiers
 and addresses", ISOC Symposium on Network and
 Distributed System Security (NDSS 2002), San Diego,
 CA USA , February 2002.

 [RFC3041] Narten, T. and R. Draves, "Privacy Extensions for
 Stateless Address Autoconfiguration in IPv6", RFC
 3041, January 2001.

 [RFC2461] Narten, T., Nordmark, E., and W. Simpson, "Neighbor
 Discovery for IP Version 6 (IPv6)", RFC 2461,
 December 1998.

 [Nik01] Nikander, P., "A scaleable architecture for IPv6
 address ownership", draft-nikander-addr-ownership-
 00 (work in progress), March 2001.

 [OR01] O’Shea, G. and M. Roe, "Child-proof authentication
 for MIPv6 (CAM)", ACM Computer Communications
 Review 31(2), April 2001.

Aura Standards Track [Page 18]

RFC 3972 Cryptographically Generated Addresses March 2005

 [RFC2462] Thomson, S. and T. Narten, "IPv6 Stateless Address
 Autoconfiguration", RFC 2462, December 1998.

Aura Standards Track [Page 19]

RFC 3972 Cryptographically Generated Addresses March 2005

Appendix A. Example of CGA Generation

 We generate a CGA with Sec=1 from the subnet prefix fe80:: and the
 following public key:

 305c 300d 0609 2a86 4886 f70d 0101 0105 0003 4b00 3048 0241
 00c2 c2f1 3730 5454 f10b d9ce a368 44b5 30e9 211a 4b26 2b16
 467c b7df ba1f 595c 0194 f275 be5a 4d38 6f2c 3c23 8250 8773
 c786 7f9b 3b9e 63a0 9c7b c48f 7a54 ebef af02 0301 0001

 The modifier is initialized to a random value 89a8 a8b2 e858 d8b8
 f263 3f44 d2d4 ce9a. The input to Hash2 is:

 89a8 a8b2 e858 d8b8 f263 3f44 d2d4 ce9a 0000 0000 0000 0000 00
 305c 300d 0609 2a86 4886 f70d 0101 0105 0003 4b00 3048 0241
 00c2 c2f1 3730 5454 f10b d9ce a368 44b5 30e9 211a 4b26 2b16
 467c b7df ba1f 595c 0194 f275 be5a 4d38 6f2c 3c23 8250 8773
 c786 7f9b 3b9e 63a0 9c7b c48f 7a54 ebef af02 0301 0001

 The 112 first bits of the SHA-1 hash value computed from the above
 input are Hash2=436b 9a70 dbfd dbf1 926e 6e66 29c0. This does not
 begin with 16*Sec=16 zero bits. Thus, we must increment the modifier
 by one and recompute the hash. The new input to Hash2 is:

 89a8 a8b2 e858 d8b8 f263 3f44 d2d4 ce9b 0000 0000 0000 0000 00
 305c 300d 0609 2a86 4886 f70d 0101 0105 0003 4b00 3048 0241
 00c2 c2f1 3730 5454 f10b d9ce a368 44b5 30e9 211a 4b26 2b16
 467c b7df ba1f 595c 0194 f275 be5a 4d38 6f2c 3c23 8250 8773
 c786 7f9b 3b9e 63a0 9c7b c48f 7a54 ebef af02 0301 0001

 The new hash value is Hash2=0000 01ca 680b 8388 8d09 12df fcce. The
 16 leftmost bits of Hash2 are all zero. Thus, we found a suitable
 modifier. (We were very lucky to find it so soon.)

 The input to Hash1 is:

 89a8 a8b2 e858 d8b8 f263 3f44 d2d4 ce9b fe80 0000 0000 0000 00
 305c 300d 0609 2a86 4886 f70d 0101 0105 0003 4b00 3048 0241
 00c2 c2f1 3730 5454 f10b d9ce a368 44b5 30e9 211a 4b26 2b16
 467c b7df ba1f 595c 0194 f275 be5a 4d38 6f2c 3c23 8250 8773
 c786 7f9b 3b9e 63a0 9c7b c48f 7a54 ebef af02 0301 0001

 The 64 first bits of the SHA-1 hash value of the above input are
 Hash1=fd4a 5bf6 ffb4 ca6c. We form an interface identifier from this
 by writing Sec=1 into the three leftmost bits and by setting bits 6
 and 7 (the "u" and "g" bits) to zero. The new interface identifier
 is 3c4a:5bf6:ffb4:ca6c.

Aura Standards Track [Page 20]

RFC 3972 Cryptographically Generated Addresses March 2005

 Finally, we form the IPv6 address fe80::3c4a:5bf6:ffb4:ca6c. This is
 the new CGA. No address collisions were detected this time.
 (Collisions are very rare.) The CGA Parameters data structure
 associated with the address is the same as the input to Hash1 above.

Appendix B. Acknowledgements

 The author gratefully acknowledges the contributions of Jari Arkko,
 Francis Dupont, Pasi Eronen, Christian Huitema, James Kempf, Pekka
 Nikander, Michael Roe, Dave Thaler, and other participants of the
 SEND working group.

Author’s Address

 Tuomas Aura
 Microsoft Research
 Roger Needham Building
 7 JJ Thomson Avenue
 Cambridge CB3 0FB
 United Kingdom

 Phone: +44 1223 479708
 EMail: tuomaura@microsoft.com

Aura Standards Track [Page 21]

RFC 3972 Cryptographically Generated Addresses March 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Aura Standards Track [Page 22]

