
Network Working Group T. Berners-Lee
Request for Comments: 3986 W3C/MIT
STD: 66 R. Fielding
Updates: 1738 Day Software
Obsoletes: 2732, 2396, 1808 L. Masinter
Category: Standards Track Adobe Systems
 January 2005

 Uniform Resource Identifier (URI): Generic Syntax

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 A Uniform Resource Identifier (URI) is a compact sequence of
 characters that identifies an abstract or physical resource. This
 specification defines the generic URI syntax and a process for
 resolving URI references that might be in relative form, along with
 guidelines and security considerations for the use of URIs on the
 Internet. The URI syntax defines a grammar that is a superset of all
 valid URIs, allowing an implementation to parse the common components
 of a URI reference without knowing the scheme-specific requirements
 of every possible identifier. This specification does not define a
 generative grammar for URIs; that task is performed by the individual
 specifications of each URI scheme.

Berners-Lee, et al. Standards Track [Page 1]

RFC 3986 URI Generic Syntax January 2005

Table of Contents

 1. Introduction . 4
 1.1. Overview of URIs . 4
 1.1.1. Generic Syntax 6
 1.1.2. Examples . 7
 1.1.3. URI, URL, and URN 7
 1.2. Design Considerations 8
 1.2.1. Transcription 8
 1.2.2. Separating Identification from Interaction . . . 9
 1.2.3. Hierarchical Identifiers 10
 1.3. Syntax Notation . 11
 2. Characters . 11
 2.1. Percent-Encoding . 12
 2.2. Reserved Characters 12
 2.3. Unreserved Characters 13
 2.4. When to Encode or Decode 14
 2.5. Identifying Data . 14
 3. Syntax Components . 16
 3.1. Scheme . 17
 3.2. Authority . 17
 3.2.1. User Information 18
 3.2.2. Host . 18
 3.2.3. Port . 22
 3.3. Path . 22
 3.4. Query . 23
 3.5. Fragment . 24
 4. Usage . 25
 4.1. URI Reference . 25
 4.2. Relative Reference 26
 4.3. Absolute URI . 27
 4.4. Same-Document Reference 27
 4.5. Suffix Reference . 27
 5. Reference Resolution . 28
 5.1. Establishing a Base URI 28
 5.1.1. Base URI Embedded in Content 29
 5.1.2. Base URI from the Encapsulating Entity 29
 5.1.3. Base URI from the Retrieval URI 30
 5.1.4. Default Base URI 30
 5.2. Relative Resolution 30
 5.2.1. Pre-parse the Base URI 31
 5.2.2. Transform References 31
 5.2.3. Merge Paths 32
 5.2.4. Remove Dot Segments 33
 5.3. Component Recomposition 35
 5.4. Reference Resolution Examples 35
 5.4.1. Normal Examples 36
 5.4.2. Abnormal Examples 36

Berners-Lee, et al. Standards Track [Page 2]

RFC 3986 URI Generic Syntax January 2005

 6. Normalization and Comparison 38
 6.1. Equivalence . 38
 6.2. Comparison Ladder 39
 6.2.1. Simple String Comparison 39
 6.2.2. Syntax-Based Normalization 40
 6.2.3. Scheme-Based Normalization 41
 6.2.4. Protocol-Based Normalization 42
 7. Security Considerations 43
 7.1. Reliability and Consistency 43
 7.2. Malicious Construction 43
 7.3. Back-End Transcoding 44
 7.4. Rare IP Address Formats 45
 7.5. Sensitive Information 45
 7.6. Semantic Attacks . 45
 8. IANA Considerations . 46
 9. Acknowledgements . 46
 10. References . 46
 10.1. Normative References 46
 10.2. Informative References 47
 A. Collected ABNF for URI . 49
 B. Parsing a URI Reference with a Regular Expression 50
 C. Delimiting a URI in Context 51
 D. Changes from RFC 2396 . 53
 D.1. Additions . 53
 D.2. Modifications . 53
 Index . 56
 Authors’ Addresses . 60
 Full Copyright Statement . 61

Berners-Lee, et al. Standards Track [Page 3]

RFC 3986 URI Generic Syntax January 2005

1. Introduction

 A Uniform Resource Identifier (URI) provides a simple and extensible
 means for identifying a resource. This specification of URI syntax
 and semantics is derived from concepts introduced by the World Wide
 Web global information initiative, whose use of these identifiers
 dates from 1990 and is described in "Universal Resource Identifiers
 in WWW" [RFC1630]. The syntax is designed to meet the
 recommendations laid out in "Functional Recommendations for Internet
 Resource Locators" [RFC1736] and "Functional Requirements for Uniform
 Resource Names" [RFC1737].

 This document obsoletes [RFC2396], which merged "Uniform Resource
 Locators" [RFC1738] and "Relative Uniform Resource Locators"
 [RFC1808] in order to define a single, generic syntax for all URIs.
 It obsoletes [RFC2732], which introduced syntax for an IPv6 address.
 It excludes portions of RFC 1738 that defined the specific syntax of
 individual URI schemes; those portions will be updated as separate
 documents. The process for registration of new URI schemes is
 defined separately by [BCP35]. Advice for designers of new URI
 schemes can be found in [RFC2718]. All significant changes from RFC
 2396 are noted in Appendix D.

 This specification uses the terms "character" and "coded character
 set" in accordance with the definitions provided in [BCP19], and
 "character encoding" in place of what [BCP19] refers to as a
 "charset".

1.1. Overview of URIs

 URIs are characterized as follows:

 Uniform

 Uniformity provides several benefits. It allows different types
 of resource identifiers to be used in the same context, even when
 the mechanisms used to access those resources may differ. It
 allows uniform semantic interpretation of common syntactic
 conventions across different types of resource identifiers. It
 allows introduction of new types of resource identifiers without
 interfering with the way that existing identifiers are used. It
 allows the identifiers to be reused in many different contexts,
 thus permitting new applications or protocols to leverage a pre-
 existing, large, and widely used set of resource identifiers.

Berners-Lee, et al. Standards Track [Page 4]

RFC 3986 URI Generic Syntax January 2005

 Resource

 This specification does not limit the scope of what might be a
 resource; rather, the term "resource" is used in a general sense
 for whatever might be identified by a URI. Familiar examples
 include an electronic document, an image, a source of information
 with a consistent purpose (e.g., "today’s weather report for Los
 Angeles"), a service (e.g., an HTTP-to-SMS gateway), and a
 collection of other resources. A resource is not necessarily
 accessible via the Internet; e.g., human beings, corporations, and
 bound books in a library can also be resources. Likewise,
 abstract concepts can be resources, such as the operators and
 operands of a mathematical equation, the types of a relationship
 (e.g., "parent" or "employee"), or numeric values (e.g., zero,
 one, and infinity).

 Identifier

 An identifier embodies the information required to distinguish
 what is being identified from all other things within its scope of
 identification. Our use of the terms "identify" and "identifying"
 refer to this purpose of distinguishing one resource from all
 other resources, regardless of how that purpose is accomplished
 (e.g., by name, address, or context). These terms should not be
 mistaken as an assumption that an identifier defines or embodies
 the identity of what is referenced, though that may be the case
 for some identifiers. Nor should it be assumed that a system
 using URIs will access the resource identified: in many cases,
 URIs are used to denote resources without any intention that they
 be accessed. Likewise, the "one" resource identified might not be
 singular in nature (e.g., a resource might be a named set or a
 mapping that varies over time).

 A URI is an identifier consisting of a sequence of characters
 matching the syntax rule named <URI> in Section 3. It enables
 uniform identification of resources via a separately defined
 extensible set of naming schemes (Section 3.1). How that
 identification is accomplished, assigned, or enabled is delegated to
 each scheme specification.

 This specification does not place any limits on the nature of a
 resource, the reasons why an application might seek to refer to a
 resource, or the kinds of systems that might use URIs for the sake of
 identifying resources. This specification does not require that a
 URI persists in identifying the same resource over time, though that
 is a common goal of all URI schemes. Nevertheless, nothing in this

Berners-Lee, et al. Standards Track [Page 5]

RFC 3986 URI Generic Syntax January 2005

 specification prevents an application from limiting itself to
 particular types of resources, or to a subset of URIs that maintains
 characteristics desired by that application.

 URIs have a global scope and are interpreted consistently regardless
 of context, though the result of that interpretation may be in
 relation to the end-user’s context. For example, "http://localhost/"
 has the same interpretation for every user of that reference, even
 though the network interface corresponding to "localhost" may be
 different for each end-user: interpretation is independent of access.
 However, an action made on the basis of that reference will take
 place in relation to the end-user’s context, which implies that an
 action intended to refer to a globally unique thing must use a URI
 that distinguishes that resource from all other things. URIs that
 identify in relation to the end-user’s local context should only be
 used when the context itself is a defining aspect of the resource,
 such as when an on-line help manual refers to a file on the end-
 user’s file system (e.g., "file:///etc/hosts").

1.1.1. Generic Syntax

 Each URI begins with a scheme name, as defined in Section 3.1, that
 refers to a specification for assigning identifiers within that
 scheme. As such, the URI syntax is a federated and extensible naming
 system wherein each scheme’s specification may further restrict the
 syntax and semantics of identifiers using that scheme.

 This specification defines those elements of the URI syntax that are
 required of all URI schemes or are common to many URI schemes. It
 thus defines the syntax and semantics needed to implement a scheme-
 independent parsing mechanism for URI references, by which the
 scheme-dependent handling of a URI can be postponed until the
 scheme-dependent semantics are needed. Likewise, protocols and data
 formats that make use of URI references can refer to this
 specification as a definition for the range of syntax allowed for all
 URIs, including those schemes that have yet to be defined. This
 decouples the evolution of identification schemes from the evolution
 of protocols, data formats, and implementations that make use of
 URIs.

 A parser of the generic URI syntax can parse any URI reference into
 its major components. Once the scheme is determined, further
 scheme-specific parsing can be performed on the components. In other
 words, the URI generic syntax is a superset of the syntax of all URI
 schemes.

Berners-Lee, et al. Standards Track [Page 6]

RFC 3986 URI Generic Syntax January 2005

1.1.2. Examples

 The following example URIs illustrate several URI schemes and
 variations in their common syntax components:

 ftp://ftp.is.co.za/rfc/rfc1808.txt

 http://www.ietf.org/rfc/rfc2396.txt

 ldap://[2001:db8::7]/c=GB?objectClass?one

 mailto:John.Doe@example.com

 news:comp.infosystems.www.servers.unix

 tel:+1-816-555-1212

 telnet://192.0.2.16:80/

 urn:oasis:names:specification:docbook:dtd:xml:4.1.2

1.1.3. URI, URL, and URN

 A URI can be further classified as a locator, a name, or both. The
 term "Uniform Resource Locator" (URL) refers to the subset of URIs
 that, in addition to identifying a resource, provide a means of
 locating the resource by describing its primary access mechanism
 (e.g., its network "location"). The term "Uniform Resource Name"
 (URN) has been used historically to refer to both URIs under the
 "urn" scheme [RFC2141], which are required to remain globally unique
 and persistent even when the resource ceases to exist or becomes
 unavailable, and to any other URI with the properties of a name.

 An individual scheme does not have to be classified as being just one
 of "name" or "locator". Instances of URIs from any given scheme may
 have the characteristics of names or locators or both, often
 depending on the persistence and care in the assignment of
 identifiers by the naming authority, rather than on any quality of
 the scheme. Future specifications and related documentation should
 use the general term "URI" rather than the more restrictive terms
 "URL" and "URN" [RFC3305].

Berners-Lee, et al. Standards Track [Page 7]

RFC 3986 URI Generic Syntax January 2005

1.2. Design Considerations

1.2.1. Transcription

 The URI syntax has been designed with global transcription as one of
 its main considerations. A URI is a sequence of characters from a
 very limited set: the letters of the basic Latin alphabet, digits,
 and a few special characters. A URI may be represented in a variety
 of ways; e.g., ink on paper, pixels on a screen, or a sequence of
 character encoding octets. The interpretation of a URI depends only
 on the characters used and not on how those characters are
 represented in a network protocol.

 The goal of transcription can be described by a simple scenario.
 Imagine two colleagues, Sam and Kim, sitting in a pub at an
 international conference and exchanging research ideas. Sam asks Kim
 for a location to get more information, so Kim writes the URI for the
 research site on a napkin. Upon returning home, Sam takes out the
 napkin and types the URI into a computer, which then retrieves the
 information to which Kim referred.

 There are several design considerations revealed by the scenario:

 o A URI is a sequence of characters that is not always represented
 as a sequence of octets.

 o A URI might be transcribed from a non-network source and thus
 should consist of characters that are most likely able to be
 entered into a computer, within the constraints imposed by
 keyboards (and related input devices) across languages and
 locales.

 o A URI often has to be remembered by people, and it is easier for
 people to remember a URI when it consists of meaningful or
 familiar components.

 These design considerations are not always in alignment. For
 example, it is often the case that the most meaningful name for a URI
 component would require characters that cannot be typed into some
 systems. The ability to transcribe a resource identifier from one
 medium to another has been considered more important than having a
 URI consist of the most meaningful of components.

 In local or regional contexts and with improving technology, users
 might benefit from being able to use a wider range of characters;
 such use is not defined by this specification. Percent-encoded
 octets (Section 2.1) may be used within a URI to represent characters
 outside the range of the US-ASCII coded character set if this

Berners-Lee, et al. Standards Track [Page 8]

RFC 3986 URI Generic Syntax January 2005

 representation is allowed by the scheme or by the protocol element in
 which the URI is referenced. Such a definition should specify the
 character encoding used to map those characters to octets prior to
 being percent-encoded for the URI.

1.2.2. Separating Identification from Interaction

 A common misunderstanding of URIs is that they are only used to refer
 to accessible resources. The URI itself only provides
 identification; access to the resource is neither guaranteed nor
 implied by the presence of a URI. Instead, any operation associated
 with a URI reference is defined by the protocol element, data format
 attribute, or natural language text in which it appears.

 Given a URI, a system may attempt to perform a variety of operations
 on the resource, as might be characterized by words such as "access",
 "update", "replace", or "find attributes". Such operations are
 defined by the protocols that make use of URIs, not by this
 specification. However, we do use a few general terms for describing
 common operations on URIs. URI "resolution" is the process of
 determining an access mechanism and the appropriate parameters
 necessary to dereference a URI; this resolution may require several
 iterations. To use that access mechanism to perform an action on the
 URI’s resource is to "dereference" the URI.

 When URIs are used within information retrieval systems to identify
 sources of information, the most common form of URI dereference is
 "retrieval": making use of a URI in order to retrieve a
 representation of its associated resource. A "representation" is a
 sequence of octets, along with representation metadata describing
 those octets, that constitutes a record of the state of the resource
 at the time when the representation is generated. Retrieval is
 achieved by a process that might include using the URI as a cache key
 to check for a locally cached representation, resolution of the URI
 to determine an appropriate access mechanism (if any), and
 dereference of the URI for the sake of applying a retrieval
 operation. Depending on the protocols used to perform the retrieval,
 additional information might be supplied about the resource (resource
 metadata) and its relation to other resources.

 URI references in information retrieval systems are designed to be
 late-binding: the result of an access is generally determined when it
 is accessed and may vary over time or due to other aspects of the
 interaction. These references are created in order to be used in the
 future: what is being identified is not some specific result that was
 obtained in the past, but rather some characteristic that is expected
 to be true for future results. In such cases, the resource referred
 to by the URI is actually a sameness of characteristics as observed

Berners-Lee, et al. Standards Track [Page 9]

RFC 3986 URI Generic Syntax January 2005

 over time, perhaps elucidated by additional comments or assertions
 made by the resource provider.

 Although many URI schemes are named after protocols, this does not
 imply that use of these URIs will result in access to the resource
 via the named protocol. URIs are often used simply for the sake of
 identification. Even when a URI is used to retrieve a representation
 of a resource, that access might be through gateways, proxies,
 caches, and name resolution services that are independent of the
 protocol associated with the scheme name. The resolution of some
 URIs may require the use of more than one protocol (e.g., both DNS
 and HTTP are typically used to access an "http" URI’s origin server
 when a representation isn’t found in a local cache).

1.2.3. Hierarchical Identifiers

 The URI syntax is organized hierarchically, with components listed in
 order of decreasing significance from left to right. For some URI
 schemes, the visible hierarchy is limited to the scheme itself:
 everything after the scheme component delimiter (":") is considered
 opaque to URI processing. Other URI schemes make the hierarchy
 explicit and visible to generic parsing algorithms.

 The generic syntax uses the slash ("/"), question mark ("?"), and
 number sign ("#") characters to delimit components that are
 significant to the generic parser’s hierarchical interpretation of an
 identifier. In addition to aiding the readability of such
 identifiers through the consistent use of familiar syntax, this
 uniform representation of hierarchy across naming schemes allows
 scheme-independent references to be made relative to that hierarchy.

 It is often the case that a group or "tree" of documents has been
 constructed to serve a common purpose, wherein the vast majority of
 URI references in these documents point to resources within the tree
 rather than outside it. Similarly, documents located at a particular
 site are much more likely to refer to other resources at that site
 than to resources at remote sites. Relative referencing of URIs
 allows document trees to be partially independent of their location
 and access scheme. For instance, it is possible for a single set of
 hypertext documents to be simultaneously accessible and traversable
 via each of the "file", "http", and "ftp" schemes if the documents
 refer to each other with relative references. Furthermore, such
 document trees can be moved, as a whole, without changing any of the
 relative references.

 A relative reference (Section 4.2) refers to a resource by describing
 the difference within a hierarchical name space between the reference
 context and the target URI. The reference resolution algorithm,

Berners-Lee, et al. Standards Track [Page 10]

RFC 3986 URI Generic Syntax January 2005

 presented in Section 5, defines how such a reference is transformed
 to the target URI. As relative references can only be used within
 the context of a hierarchical URI, designers of new URI schemes
 should use a syntax consistent with the generic syntax’s hierarchical
 components unless there are compelling reasons to forbid relative
 referencing within that scheme.

 NOTE: Previous specifications used the terms "partial URI" and
 "relative URI" to denote a relative reference to a URI. As some
 readers misunderstood those terms to mean that relative URIs are a
 subset of URIs rather than a method of referencing URIs, this
 specification simply refers to them as relative references.

 All URI references are parsed by generic syntax parsers when used.
 However, because hierarchical processing has no effect on an absolute
 URI used in a reference unless it contains one or more dot-segments
 (complete path segments of "." or "..", as described in Section 3.3),
 URI scheme specifications can define opaque identifiers by
 disallowing use of slash characters, question mark characters, and
 the URIs "scheme:." and "scheme:..".

1.3. Syntax Notation

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC2234], including the following core ABNF syntax rules
 defined by that specification: ALPHA (letters), CR (carriage return),
 DIGIT (decimal digits), DQUOTE (double quote), HEXDIG (hexadecimal
 digits), LF (line feed), and SP (space). The complete URI syntax is
 collected in Appendix A.

2. Characters

 The URI syntax provides a method of encoding data, presumably for the
 sake of identifying a resource, as a sequence of characters. The URI
 characters are, in turn, frequently encoded as octets for transport
 or presentation. This specification does not mandate any particular
 character encoding for mapping between URI characters and the octets
 used to store or transmit those characters. When a URI appears in a
 protocol element, the character encoding is defined by that protocol;
 without such a definition, a URI is assumed to be in the same
 character encoding as the surrounding text.

 The ABNF notation defines its terminal values to be non-negative
 integers (codepoints) based on the US-ASCII coded character set
 [ASCII]. Because a URI is a sequence of characters, we must invert
 that relation in order to understand the URI syntax. Therefore, the

Berners-Lee, et al. Standards Track [Page 11]

RFC 3986 URI Generic Syntax January 2005

 integer values used by the ABNF must be mapped back to their
 corresponding characters via US-ASCII in order to complete the syntax
 rules.

 A URI is composed from a limited set of characters consisting of
 digits, letters, and a few graphic symbols. A reserved subset of
 those characters may be used to delimit syntax components within a
 URI while the remaining characters, including both the unreserved set
 and those reserved characters not acting as delimiters, define each
 component’s identifying data.

2.1. Percent-Encoding

 A percent-encoding mechanism is used to represent a data octet in a
 component when that octet’s corresponding character is outside the
 allowed set or is being used as a delimiter of, or within, the
 component. A percent-encoded octet is encoded as a character
 triplet, consisting of the percent character "%" followed by the two
 hexadecimal digits representing that octet’s numeric value. For
 example, "%20" is the percent-encoding for the binary octet
 "00100000" (ABNF: %x20), which in US-ASCII corresponds to the space
 character (SP). Section 2.4 describes when percent-encoding and
 decoding is applied.

 pct-encoded = "%" HEXDIG HEXDIG

 The uppercase hexadecimal digits ’A’ through ’F’ are equivalent to
 the lowercase digits ’a’ through ’f’, respectively. If two URIs
 differ only in the case of hexadecimal digits used in percent-encoded
 octets, they are equivalent. For consistency, URI producers and
 normalizers should use uppercase hexadecimal digits for all percent-
 encodings.

2.2. Reserved Characters

 URIs include components and subcomponents that are delimited by
 characters in the "reserved" set. These characters are called
 "reserved" because they may (or may not) be defined as delimiters by
 the generic syntax, by each scheme-specific syntax, or by the
 implementation-specific syntax of a URI’s dereferencing algorithm.
 If data for a URI component would conflict with a reserved
 character’s purpose as a delimiter, then the conflicting data must be
 percent-encoded before the URI is formed.

Berners-Lee, et al. Standards Track [Page 12]

RFC 3986 URI Generic Syntax January 2005

 reserved = gen-delims / sub-delims

 gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"

 sub-delims = "!" / "$" / "&" / "’" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

 The purpose of reserved characters is to provide a set of delimiting
 characters that are distinguishable from other data within a URI.
 URIs that differ in the replacement of a reserved character with its
 corresponding percent-encoded octet are not equivalent. Percent-
 encoding a reserved character, or decoding a percent-encoded octet
 that corresponds to a reserved character, will change how the URI is
 interpreted by most applications. Thus, characters in the reserved
 set are protected from normalization and are therefore safe to be
 used by scheme-specific and producer-specific algorithms for
 delimiting data subcomponents within a URI.

 A subset of the reserved characters (gen-delims) is used as
 delimiters of the generic URI components described in Section 3. A
 component’s ABNF syntax rule will not use the reserved or gen-delims
 rule names directly; instead, each syntax rule lists the characters
 allowed within that component (i.e., not delimiting it), and any of
 those characters that are also in the reserved set are "reserved" for
 use as subcomponent delimiters within the component. Only the most
 common subcomponents are defined by this specification; other
 subcomponents may be defined by a URI scheme’s specification, or by
 the implementation-specific syntax of a URI’s dereferencing
 algorithm, provided that such subcomponents are delimited by
 characters in the reserved set allowed within that component.

 URI producing applications should percent-encode data octets that
 correspond to characters in the reserved set unless these characters
 are specifically allowed by the URI scheme to represent data in that
 component. If a reserved character is found in a URI component and
 no delimiting role is known for that character, then it must be
 interpreted as representing the data octet corresponding to that
 character’s encoding in US-ASCII.

2.3. Unreserved Characters

 Characters that are allowed in a URI but do not have a reserved
 purpose are called unreserved. These include uppercase and lowercase
 letters, decimal digits, hyphen, period, underscore, and tilde.

 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"

Berners-Lee, et al. Standards Track [Page 13]

RFC 3986 URI Generic Syntax January 2005

 URIs that differ in the replacement of an unreserved character with
 its corresponding percent-encoded US-ASCII octet are equivalent: they
 identify the same resource. However, URI comparison implementations
 do not always perform normalization prior to comparison (see Section
 6). For consistency, percent-encoded octets in the ranges of ALPHA
 (%41-%5A and %61-%7A), DIGIT (%30-%39), hyphen (%2D), period (%2E),
 underscore (%5F), or tilde (%7E) should not be created by URI
 producers and, when found in a URI, should be decoded to their
 corresponding unreserved characters by URI normalizers.

2.4. When to Encode or Decode

 Under normal circumstances, the only time when octets within a URI
 are percent-encoded is during the process of producing the URI from
 its component parts. This is when an implementation determines which
 of the reserved characters are to be used as subcomponent delimiters
 and which can be safely used as data. Once produced, a URI is always
 in its percent-encoded form.

 When a URI is dereferenced, the components and subcomponents
 significant to the scheme-specific dereferencing process (if any)
 must be parsed and separated before the percent-encoded octets within
 those components can be safely decoded, as otherwise the data may be
 mistaken for component delimiters. The only exception is for
 percent-encoded octets corresponding to characters in the unreserved
 set, which can be decoded at any time. For example, the octet
 corresponding to the tilde ("˜") character is often encoded as "%7E"
 by older URI processing implementations; the "%7E" can be replaced by
 "˜" without changing its interpretation.

 Because the percent ("%") character serves as the indicator for
 percent-encoded octets, it must be percent-encoded as "%25" for that
 octet to be used as data within a URI. Implementations must not
 percent-encode or decode the same string more than once, as decoding
 an already decoded string might lead to misinterpreting a percent
 data octet as the beginning of a percent-encoding, or vice versa in
 the case of percent-encoding an already percent-encoded string.

2.5. Identifying Data

 URI characters provide identifying data for each of the URI
 components, serving as an external interface for identification
 between systems. Although the presence and nature of the URI
 production interface is hidden from clients that use its URIs (and is
 thus beyond the scope of the interoperability requirements defined by
 this specification), it is a frequent source of confusion and errors
 in the interpretation of URI character issues. Implementers have to
 be aware that there are multiple character encodings involved in the

Berners-Lee, et al. Standards Track [Page 14]

RFC 3986 URI Generic Syntax January 2005

 production and transmission of URIs: local name and data encoding,
 public interface encoding, URI character encoding, data format
 encoding, and protocol encoding.

 Local names, such as file system names, are stored with a local
 character encoding. URI producing applications (e.g., origin
 servers) will typically use the local encoding as the basis for
 producing meaningful names. The URI producer will transform the
 local encoding to one that is suitable for a public interface and
 then transform the public interface encoding into the restricted set
 of URI characters (reserved, unreserved, and percent-encodings).
 Those characters are, in turn, encoded as octets to be used as a
 reference within a data format (e.g., a document charset), and such
 data formats are often subsequently encoded for transmission over
 Internet protocols.

 For most systems, an unreserved character appearing within a URI
 component is interpreted as representing the data octet corresponding
 to that character’s encoding in US-ASCII. Consumers of URIs assume
 that the letter "X" corresponds to the octet "01011000", and even
 when that assumption is incorrect, there is no harm in making it. A
 system that internally provides identifiers in the form of a
 different character encoding, such as EBCDIC, will generally perform
 character translation of textual identifiers to UTF-8 [STD63] (or
 some other superset of the US-ASCII character encoding) at an
 internal interface, thereby providing more meaningful identifiers
 than those resulting from simply percent-encoding the original
 octets.

 For example, consider an information service that provides data,
 stored locally using an EBCDIC-based file system, to clients on the
 Internet through an HTTP server. When an author creates a file with
 the name "Laguna Beach" on that file system, the "http" URI
 corresponding to that resource is expected to contain the meaningful
 string "Laguna%20Beach". If, however, that server produces URIs by
 using an overly simplistic raw octet mapping, then the result would
 be a URI containing "%D3%81%87%A4%95%81@%C2%85%81%83%88". An
 internal transcoding interface fixes this problem by transcoding the
 local name to a superset of US-ASCII prior to producing the URI.
 Naturally, proper interpretation of an incoming URI on such an
 interface requires that percent-encoded octets be decoded (e.g.,
 "%20" to SP) before the reverse transcoding is applied to obtain the
 local name.

 In some cases, the internal interface between a URI component and the
 identifying data that it has been crafted to represent is much less
 direct than a character encoding translation. For example, portions
 of a URI might reflect a query on non-ASCII data, or numeric

Berners-Lee, et al. Standards Track [Page 15]

RFC 3986 URI Generic Syntax January 2005

 coordinates on a map. Likewise, a URI scheme may define components
 with additional encoding requirements that are applied prior to
 forming the component and producing the URI.

 When a new URI scheme defines a component that represents textual
 data consisting of characters from the Universal Character Set [UCS],
 the data should first be encoded as octets according to the UTF-8
 character encoding [STD63]; then only those octets that do not
 correspond to characters in the unreserved set should be percent-
 encoded. For example, the character A would be represented as "A",
 the character LATIN CAPITAL LETTER A WITH GRAVE would be represented
 as "%C3%80", and the character KATAKANA LETTER A would be represented
 as "%E3%82%A2".

3. Syntax Components

 The generic URI syntax consists of a hierarchical sequence of
 components referred to as the scheme, authority, path, query, and
 fragment.

 URI = scheme ":" hier-part ["?" query] ["#" fragment]

 hier-part = "//" authority path-abempty
 / path-absolute
 / path-rootless
 / path-empty

 The scheme and path components are required, though the path may be
 empty (no characters). When authority is present, the path must
 either be empty or begin with a slash ("/") character. When
 authority is not present, the path cannot begin with two slash
 characters ("//"). These restrictions result in five different ABNF
 rules for a path (Section 3.3), only one of which will match any
 given URI reference.

 The following are two example URIs and their component parts:

 foo://example.com:8042/over/there?name=ferret#nose
 _/ ______________/_________/ _________/ __/
 | | | | |
 scheme authority path query fragment
 | _____________________|__
 / \ / \
 urn:example:animal:ferret:nose

Berners-Lee, et al. Standards Track [Page 16]

RFC 3986 URI Generic Syntax January 2005

3.1. Scheme

 Each URI begins with a scheme name that refers to a specification for
 assigning identifiers within that scheme. As such, the URI syntax is
 a federated and extensible naming system wherein each scheme’s
 specification may further restrict the syntax and semantics of
 identifiers using that scheme.

 Scheme names consist of a sequence of characters beginning with a
 letter and followed by any combination of letters, digits, plus
 ("+"), period ("."), or hyphen ("-"). Although schemes are case-
 insensitive, the canonical form is lowercase and documents that
 specify schemes must do so with lowercase letters. An implementation
 should accept uppercase letters as equivalent to lowercase in scheme
 names (e.g., allow "HTTP" as well as "http") for the sake of
 robustness but should only produce lowercase scheme names for
 consistency.

 scheme = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")

 Individual schemes are not specified by this document. The process
 for registration of new URI schemes is defined separately by [BCP35].
 The scheme registry maintains the mapping between scheme names and
 their specifications. Advice for designers of new URI schemes can be
 found in [RFC2718]. URI scheme specifications must define their own
 syntax so that all strings matching their scheme-specific syntax will
 also match the <absolute-URI> grammar, as described in Section 4.3.

 When presented with a URI that violates one or more scheme-specific
 restrictions, the scheme-specific resolution process should flag the
 reference as an error rather than ignore the unused parts; doing so
 reduces the number of equivalent URIs and helps detect abuses of the
 generic syntax, which might indicate that the URI has been
 constructed to mislead the user (Section 7.6).

3.2. Authority

 Many URI schemes include a hierarchical element for a naming
 authority so that governance of the name space defined by the
 remainder of the URI is delegated to that authority (which may, in
 turn, delegate it further). The generic syntax provides a common
 means for distinguishing an authority based on a registered name or
 server address, along with optional port and user information.

 The authority component is preceded by a double slash ("//") and is
 terminated by the next slash ("/"), question mark ("?"), or number
 sign ("#") character, or by the end of the URI.

Berners-Lee, et al. Standards Track [Page 17]

RFC 3986 URI Generic Syntax January 2005

 authority = [userinfo "@"] host [":" port]

 URI producers and normalizers should omit the ":" delimiter that
 separates host from port if the port component is empty. Some
 schemes do not allow the userinfo and/or port subcomponents.

 If a URI contains an authority component, then the path component
 must either be empty or begin with a slash ("/") character. Non-
 validating parsers (those that merely separate a URI reference into
 its major components) will often ignore the subcomponent structure of
 authority, treating it as an opaque string from the double-slash to
 the first terminating delimiter, until such time as the URI is
 dereferenced.

3.2.1. User Information

 The userinfo subcomponent may consist of a user name and, optionally,
 scheme-specific information about how to gain authorization to access
 the resource. The user information, if present, is followed by a
 commercial at-sign ("@") that delimits it from the host.

 userinfo = *(unreserved / pct-encoded / sub-delims / ":")

 Use of the format "user:password" in the userinfo field is
 deprecated. Applications should not render as clear text any data
 after the first colon (":") character found within a userinfo
 subcomponent unless the data after the colon is the empty string
 (indicating no password). Applications may choose to ignore or
 reject such data when it is received as part of a reference and
 should reject the storage of such data in unencrypted form. The
 passing of authentication information in clear text has proven to be
 a security risk in almost every case where it has been used.

 Applications that render a URI for the sake of user feedback, such as
 in graphical hypertext browsing, should render userinfo in a way that
 is distinguished from the rest of a URI, when feasible. Such
 rendering will assist the user in cases where the userinfo has been
 misleadingly crafted to look like a trusted domain name
 (Section 7.6).

3.2.2. Host

 The host subcomponent of authority is identified by an IP literal
 encapsulated within square brackets, an IPv4 address in dotted-
 decimal form, or a registered name. The host subcomponent is case-
 insensitive. The presence of a host subcomponent within a URI does
 not imply that the scheme requires access to the given host on the
 Internet. In many cases, the host syntax is used only for the sake

Berners-Lee, et al. Standards Track [Page 18]

RFC 3986 URI Generic Syntax January 2005

 of reusing the existing registration process created and deployed for
 DNS, thus obtaining a globally unique name without the cost of
 deploying another registry. However, such use comes with its own
 costs: domain name ownership may change over time for reasons not
 anticipated by the URI producer. In other cases, the data within the
 host component identifies a registered name that has nothing to do
 with an Internet host. We use the name "host" for the ABNF rule
 because that is its most common purpose, not its only purpose.

 host = IP-literal / IPv4address / reg-name

 The syntax rule for host is ambiguous because it does not completely
 distinguish between an IPv4address and a reg-name. In order to
 disambiguate the syntax, we apply the "first-match-wins" algorithm:
 If host matches the rule for IPv4address, then it should be
 considered an IPv4 address literal and not a reg-name. Although host
 is case-insensitive, producers and normalizers should use lowercase
 for registered names and hexadecimal addresses for the sake of
 uniformity, while only using uppercase letters for percent-encodings.

 A host identified by an Internet Protocol literal address, version 6
 [RFC3513] or later, is distinguished by enclosing the IP literal
 within square brackets ("[" and "]"). This is the only place where
 square bracket characters are allowed in the URI syntax. In
 anticipation of future, as-yet-undefined IP literal address formats,
 an implementation may use an optional version flag to indicate such a
 format explicitly rather than rely on heuristic determination.

 IP-literal = "[" (IPv6address / IPvFuture) "]"

 IPvFuture = "v" 1*HEXDIG "." 1*(unreserved / sub-delims / ":")

 The version flag does not indicate the IP version; rather, it
 indicates future versions of the literal format. As such,
 implementations must not provide the version flag for the existing
 IPv4 and IPv6 literal address forms described below. If a URI
 containing an IP-literal that starts with "v" (case-insensitive),
 indicating that the version flag is present, is dereferenced by an
 application that does not know the meaning of that version flag, then
 the application should return an appropriate error for "address
 mechanism not supported".

 A host identified by an IPv6 literal address is represented inside
 the square brackets without a preceding version flag. The ABNF
 provided here is a translation of the text definition of an IPv6
 literal address provided in [RFC3513]. This syntax does not support
 IPv6 scoped addressing zone identifiers.

Berners-Lee, et al. Standards Track [Page 19]

RFC 3986 URI Generic Syntax January 2005

 A 128-bit IPv6 address is divided into eight 16-bit pieces. Each
 piece is represented numerically in case-insensitive hexadecimal,
 using one to four hexadecimal digits (leading zeroes are permitted).
 The eight encoded pieces are given most-significant first, separated
 by colon characters. Optionally, the least-significant two pieces
 may instead be represented in IPv4 address textual format. A
 sequence of one or more consecutive zero-valued 16-bit pieces within
 the address may be elided, omitting all their digits and leaving
 exactly two consecutive colons in their place to mark the elision.

 IPv6address = 6(h16 ":") ls32
 / "::" 5(h16 ":") ls32
 / [h16] "::" 4(h16 ":") ls32
 / [*1(h16 ":") h16] "::" 3(h16 ":") ls32
 / [*2(h16 ":") h16] "::" 2(h16 ":") ls32
 / [*3(h16 ":") h16] "::" h16 ":" ls32
 / [*4(h16 ":") h16] "::" ls32
 / [*5(h16 ":") h16] "::" h16
 / [*6(h16 ":") h16] "::"

 ls32 = (h16 ":" h16) / IPv4address
 ; least-significant 32 bits of address

 h16 = 1*4HEXDIG
 ; 16 bits of address represented in hexadecimal

 A host identified by an IPv4 literal address is represented in
 dotted-decimal notation (a sequence of four decimal numbers in the
 range 0 to 255, separated by "."), as described in [RFC1123] by
 reference to [RFC0952]. Note that other forms of dotted notation may
 be interpreted on some platforms, as described in Section 7.4, but
 only the dotted-decimal form of four octets is allowed by this
 grammar.

 IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet

 dec-octet = DIGIT ; 0-9
 / %x31-39 DIGIT ; 10-99
 / "1" 2DIGIT ; 100-199
 / "2" %x30-34 DIGIT ; 200-249
 / "25" %x30-35 ; 250-255

 A host identified by a registered name is a sequence of characters
 usually intended for lookup within a locally defined host or service
 name registry, though the URI’s scheme-specific semantics may require
 that a specific registry (or fixed name table) be used instead. The
 most common name registry mechanism is the Domain Name System (DNS).
 A registered name intended for lookup in the DNS uses the syntax

Berners-Lee, et al. Standards Track [Page 20]

RFC 3986 URI Generic Syntax January 2005

 defined in Section 3.5 of [RFC1034] and Section 2.1 of [RFC1123].
 Such a name consists of a sequence of domain labels separated by ".",
 each domain label starting and ending with an alphanumeric character
 and possibly also containing "-" characters. The rightmost domain
 label of a fully qualified domain name in DNS may be followed by a
 single "." and should be if it is necessary to distinguish between
 the complete domain name and some local domain.

 reg-name = *(unreserved / pct-encoded / sub-delims)

 If the URI scheme defines a default for host, then that default
 applies when the host subcomponent is undefined or when the
 registered name is empty (zero length). For example, the "file" URI
 scheme is defined so that no authority, an empty host, and
 "localhost" all mean the end-user’s machine, whereas the "http"
 scheme considers a missing authority or empty host invalid.

 This specification does not mandate a particular registered name
 lookup technology and therefore does not restrict the syntax of reg-
 name beyond what is necessary for interoperability. Instead, it
 delegates the issue of registered name syntax conformance to the
 operating system of each application performing URI resolution, and
 that operating system decides what it will allow for the purpose of
 host identification. A URI resolution implementation might use DNS,
 host tables, yellow pages, NetInfo, WINS, or any other system for
 lookup of registered names. However, a globally scoped naming
 system, such as DNS fully qualified domain names, is necessary for
 URIs intended to have global scope. URI producers should use names
 that conform to the DNS syntax, even when use of DNS is not
 immediately apparent, and should limit these names to no more than
 255 characters in length.

 The reg-name syntax allows percent-encoded octets in order to
 represent non-ASCII registered names in a uniform way that is
 independent of the underlying name resolution technology. Non-ASCII
 characters must first be encoded according to UTF-8 [STD63], and then
 each octet of the corresponding UTF-8 sequence must be percent-
 encoded to be represented as URI characters. URI producing
 applications must not use percent-encoding in host unless it is used
 to represent a UTF-8 character sequence. When a non-ASCII registered
 name represents an internationalized domain name intended for
 resolution via the DNS, the name must be transformed to the IDNA
 encoding [RFC3490] prior to name lookup. URI producers should
 provide these registered names in the IDNA encoding, rather than a
 percent-encoding, if they wish to maximize interoperability with
 legacy URI resolvers.

Berners-Lee, et al. Standards Track [Page 21]

RFC 3986 URI Generic Syntax January 2005

3.2.3. Port

 The port subcomponent of authority is designated by an optional port
 number in decimal following the host and delimited from it by a
 single colon (":") character.

 port = *DIGIT

 A scheme may define a default port. For example, the "http" scheme
 defines a default port of "80", corresponding to its reserved TCP
 port number. The type of port designated by the port number (e.g.,
 TCP, UDP, SCTP) is defined by the URI scheme. URI producers and
 normalizers should omit the port component and its ":" delimiter if
 port is empty or if its value would be the same as that of the
 scheme’s default.

3.3. Path

 The path component contains data, usually organized in hierarchical
 form, that, along with data in the non-hierarchical query component
 (Section 3.4), serves to identify a resource within the scope of the
 URI’s scheme and naming authority (if any). The path is terminated
 by the first question mark ("?") or number sign ("#") character, or
 by the end of the URI.

 If a URI contains an authority component, then the path component
 must either be empty or begin with a slash ("/") character. If a URI
 does not contain an authority component, then the path cannot begin
 with two slash characters ("//"). In addition, a URI reference
 (Section 4.1) may be a relative-path reference, in which case the
 first path segment cannot contain a colon (":") character. The ABNF
 requires five separate rules to disambiguate these cases, only one of
 which will match the path substring within a given URI reference. We
 use the generic term "path component" to describe the URI substring
 matched by the parser to one of these rules.

 path = path-abempty ; begins with "/" or is empty
 / path-absolute ; begins with "/" but not "//"
 / path-noscheme ; begins with a non-colon segment
 / path-rootless ; begins with a segment
 / path-empty ; zero characters

 path-abempty = *("/" segment)
 path-absolute = "/" [segment-nz *("/" segment)]
 path-noscheme = segment-nz-nc *("/" segment)
 path-rootless = segment-nz *("/" segment)
 path-empty = 0<pchar>

Berners-Lee, et al. Standards Track [Page 22]

RFC 3986 URI Generic Syntax January 2005

 segment = *pchar
 segment-nz = 1*pchar
 segment-nz-nc = 1*(unreserved / pct-encoded / sub-delims / "@")
 ; non-zero-length segment without any colon ":"

 pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

 A path consists of a sequence of path segments separated by a slash
 ("/") character. A path is always defined for a URI, though the
 defined path may be empty (zero length). Use of the slash character
 to indicate hierarchy is only required when a URI will be used as the
 context for relative references. For example, the URI
 <mailto:fred@example.com> has a path of "fred@example.com", whereas
 the URI <foo://info.example.com?fred> has an empty path.

 The path segments "." and "..", also known as dot-segments, are
 defined for relative reference within the path name hierarchy. They
 are intended for use at the beginning of a relative-path reference
 (Section 4.2) to indicate relative position within the hierarchical
 tree of names. This is similar to their role within some operating
 systems’ file directory structures to indicate the current directory
 and parent directory, respectively. However, unlike in a file
 system, these dot-segments are only interpreted within the URI path
 hierarchy and are removed as part of the resolution process (Section
 5.2).

 Aside from dot-segments in hierarchical paths, a path segment is
 considered opaque by the generic syntax. URI producing applications
 often use the reserved characters allowed in a segment to delimit
 scheme-specific or dereference-handler-specific subcomponents. For
 example, the semicolon (";") and equals ("=") reserved characters are
 often used to delimit parameters and parameter values applicable to
 that segment. The comma (",") reserved character is often used for
 similar purposes. For example, one URI producer might use a segment
 such as "name;v=1.1" to indicate a reference to version 1.1 of
 "name", whereas another might use a segment such as "name,1.1" to
 indicate the same. Parameter types may be defined by scheme-specific
 semantics, but in most cases the syntax of a parameter is specific to
 the implementation of the URI’s dereferencing algorithm.

3.4. Query

 The query component contains non-hierarchical data that, along with
 data in the path component (Section 3.3), serves to identify a
 resource within the scope of the URI’s scheme and naming authority
 (if any). The query component is indicated by the first question
 mark ("?") character and terminated by a number sign ("#") character
 or by the end of the URI.

Berners-Lee, et al. Standards Track [Page 23]

RFC 3986 URI Generic Syntax January 2005

 query = *(pchar / "/" / "?")

 The characters slash ("/") and question mark ("?") may represent data
 within the query component. Beware that some older, erroneous
 implementations may not handle such data correctly when it is used as
 the base URI for relative references (Section 5.1), apparently
 because they fail to distinguish query data from path data when
 looking for hierarchical separators. However, as query components
 are often used to carry identifying information in the form of
 "key=value" pairs and one frequently used value is a reference to
 another URI, it is sometimes better for usability to avoid percent-
 encoding those characters.

3.5. Fragment

 The fragment identifier component of a URI allows indirect
 identification of a secondary resource by reference to a primary
 resource and additional identifying information. The identified
 secondary resource may be some portion or subset of the primary
 resource, some view on representations of the primary resource, or
 some other resource defined or described by those representations. A
 fragment identifier component is indicated by the presence of a
 number sign ("#") character and terminated by the end of the URI.

 fragment = *(pchar / "/" / "?")

 The semantics of a fragment identifier are defined by the set of
 representations that might result from a retrieval action on the
 primary resource. The fragment’s format and resolution is therefore
 dependent on the media type [RFC2046] of a potentially retrieved
 representation, even though such a retrieval is only performed if the
 URI is dereferenced. If no such representation exists, then the
 semantics of the fragment are considered unknown and are effectively
 unconstrained. Fragment identifier semantics are independent of the
 URI scheme and thus cannot be redefined by scheme specifications.

 Individual media types may define their own restrictions on or
 structures within the fragment identifier syntax for specifying
 different types of subsets, views, or external references that are
 identifiable as secondary resources by that media type. If the
 primary resource has multiple representations, as is often the case
 for resources whose representation is selected based on attributes of
 the retrieval request (a.k.a., content negotiation), then whatever is
 identified by the fragment should be consistent across all of those
 representations. Each representation should either define the
 fragment so that it corresponds to the same secondary resource,
 regardless of how it is represented, or should leave the fragment
 undefined (i.e., not found).

Berners-Lee, et al. Standards Track [Page 24]

RFC 3986 URI Generic Syntax January 2005

 As with any URI, use of a fragment identifier component does not
 imply that a retrieval action will take place. A URI with a fragment
 identifier may be used to refer to the secondary resource without any
 implication that the primary resource is accessible or will ever be
 accessed.

 Fragment identifiers have a special role in information retrieval
 systems as the primary form of client-side indirect referencing,
 allowing an author to specifically identify aspects of an existing
 resource that are only indirectly provided by the resource owner. As
 such, the fragment identifier is not used in the scheme-specific
 processing of a URI; instead, the fragment identifier is separated
 from the rest of the URI prior to a dereference, and thus the
 identifying information within the fragment itself is dereferenced
 solely by the user agent, regardless of the URI scheme. Although
 this separate handling is often perceived to be a loss of
 information, particularly for accurate redirection of references as
 resources move over time, it also serves to prevent information
 providers from denying reference authors the right to refer to
 information within a resource selectively. Indirect referencing also
 provides additional flexibility and extensibility to systems that use
 URIs, as new media types are easier to define and deploy than new
 schemes of identification.

 The characters slash ("/") and question mark ("?") are allowed to
 represent data within the fragment identifier. Beware that some
 older, erroneous implementations may not handle this data correctly
 when it is used as the base URI for relative references (Section
 5.1).

4. Usage

 When applications make reference to a URI, they do not always use the
 full form of reference defined by the "URI" syntax rule. To save
 space and take advantage of hierarchical locality, many Internet
 protocol elements and media type formats allow an abbreviation of a
 URI, whereas others restrict the syntax to a particular form of URI.
 We define the most common forms of reference syntax in this
 specification because they impact and depend upon the design of the
 generic syntax, requiring a uniform parsing algorithm in order to be
 interpreted consistently.

4.1. URI Reference

 URI-reference is used to denote the most common usage of a resource
 identifier.

 URI-reference = URI / relative-ref

Berners-Lee, et al. Standards Track [Page 25]

RFC 3986 URI Generic Syntax January 2005

 A URI-reference is either a URI or a relative reference. If the
 URI-reference’s prefix does not match the syntax of a scheme followed
 by its colon separator, then the URI-reference is a relative
 reference.

 A URI-reference is typically parsed first into the five URI
 components, in order to determine what components are present and
 whether the reference is relative. Then, each component is parsed
 for its subparts and their validation. The ABNF of URI-reference,
 along with the "first-match-wins" disambiguation rule, is sufficient
 to define a validating parser for the generic syntax. Readers
 familiar with regular expressions should see Appendix B for an
 example of a non-validating URI-reference parser that will take any
 given string and extract the URI components.

4.2. Relative Reference

 A relative reference takes advantage of the hierarchical syntax
 (Section 1.2.3) to express a URI reference relative to the name space
 of another hierarchical URI.

 relative-ref = relative-part ["?" query] ["#" fragment]

 relative-part = "//" authority path-abempty
 / path-absolute
 / path-noscheme
 / path-empty

 The URI referred to by a relative reference, also known as the target
 URI, is obtained by applying the reference resolution algorithm of
 Section 5.

 A relative reference that begins with two slash characters is termed
 a network-path reference; such references are rarely used. A
 relative reference that begins with a single slash character is
 termed an absolute-path reference. A relative reference that does
 not begin with a slash character is termed a relative-path reference.

 A path segment that contains a colon character (e.g., "this:that")
 cannot be used as the first segment of a relative-path reference, as
 it would be mistaken for a scheme name. Such a segment must be
 preceded by a dot-segment (e.g., "./this:that") to make a relative-
 path reference.

Berners-Lee, et al. Standards Track [Page 26]

RFC 3986 URI Generic Syntax January 2005

4.3. Absolute URI

 Some protocol elements allow only the absolute form of a URI without
 a fragment identifier. For example, defining a base URI for later
 use by relative references calls for an absolute-URI syntax rule that
 does not allow a fragment.

 absolute-URI = scheme ":" hier-part ["?" query]

 URI scheme specifications must define their own syntax so that all
 strings matching their scheme-specific syntax will also match the
 <absolute-URI> grammar. Scheme specifications will not define
 fragment identifier syntax or usage, regardless of its applicability
 to resources identifiable via that scheme, as fragment identification
 is orthogonal to scheme definition. However, scheme specifications
 are encouraged to include a wide range of examples, including
 examples that show use of the scheme’s URIs with fragment identifiers
 when such usage is appropriate.

4.4. Same-Document Reference

 When a URI reference refers to a URI that is, aside from its fragment
 component (if any), identical to the base URI (Section 5.1), that
 reference is called a "same-document" reference. The most frequent
 examples of same-document references are relative references that are
 empty or include only the number sign ("#") separator followed by a
 fragment identifier.

 When a same-document reference is dereferenced for a retrieval
 action, the target of that reference is defined to be within the same
 entity (representation, document, or message) as the reference;
 therefore, a dereference should not result in a new retrieval action.

 Normalization of the base and target URIs prior to their comparison,
 as described in Sections 6.2.2 and 6.2.3, is allowed but rarely
 performed in practice. Normalization may increase the set of same-
 document references, which may be of benefit to some caching
 applications. As such, reference authors should not assume that a
 slightly different, though equivalent, reference URI will (or will
 not) be interpreted as a same-document reference by any given
 application.

4.5. Suffix Reference

 The URI syntax is designed for unambiguous reference to resources and
 extensibility via the URI scheme. However, as URI identification and
 usage have become commonplace, traditional media (television, radio,
 newspapers, billboards, etc.) have increasingly used a suffix of the

Berners-Lee, et al. Standards Track [Page 27]

RFC 3986 URI Generic Syntax January 2005

 URI as a reference, consisting of only the authority and path
 portions of the URI, such as

 www.w3.org/Addressing/

 or simply a DNS registered name on its own. Such references are
 primarily intended for human interpretation rather than for machines,
 with the assumption that context-based heuristics are sufficient to
 complete the URI (e.g., most registered names beginning with "www"
 are likely to have a URI prefix of "http://"). Although there is no
 standard set of heuristics for disambiguating a URI suffix, many
 client implementations allow them to be entered by the user and
 heuristically resolved.

 Although this practice of using suffix references is common, it
 should be avoided whenever possible and should never be used in
 situations where long-term references are expected. The heuristics
 noted above will change over time, particularly when a new URI scheme
 becomes popular, and are often incorrect when used out of context.
 Furthermore, they can lead to security issues along the lines of
 those described in [RFC1535].

 As a URI suffix has the same syntax as a relative-path reference, a
 suffix reference cannot be used in contexts where a relative
 reference is expected. As a result, suffix references are limited to
 places where there is no defined base URI, such as dialog boxes and
 off-line advertisements.

5. Reference Resolution

 This section defines the process of resolving a URI reference within
 a context that allows relative references so that the result is a
 string matching the <URI> syntax rule of Section 3.

5.1. Establishing a Base URI

 The term "relative" implies that a "base URI" exists against which
 the relative reference is applied. Aside from fragment-only
 references (Section 4.4), relative references are only usable when a
 base URI is known. A base URI must be established by the parser
 prior to parsing URI references that might be relative. A base URI
 must conform to the <absolute-URI> syntax rule (Section 4.3). If the
 base URI is obtained from a URI reference, then that reference must
 be converted to absolute form and stripped of any fragment component
 prior to its use as a base URI.

Berners-Lee, et al. Standards Track [Page 28]

RFC 3986 URI Generic Syntax January 2005

 The base URI of a reference can be established in one of four ways,
 discussed below in order of precedence. The order of precedence can
 be thought of in terms of layers, where the innermost defined base
 URI has the highest precedence. This can be visualized graphically
 as follows:

 .--.
 | .--. |
 | | .--. | | | | | | | |
 | | | .--. | | |
 | | | | .----------------------------------. | | | |
 | | | | | <relative-reference> | | | | |
 | | | | ‘----------------------------------’ | | | |
 | | | | (5.1.1) Base URI embedded in content | | | |
 | | | ‘--’ | | |
 | | | (5.1.2) Base URI of the encapsulating entity | | |
 | | | (message, representation, or none) | | |
 | | ‘--’ | |
 | | (5.1.3) URI used to retrieve the entity | |
 | ‘--’ |
 | (5.1.4) Default Base URI (application-dependent) |
 ‘--’

5.1.1. Base URI Embedded in Content

 Within certain media types, a base URI for relative references can be
 embedded within the content itself so that it can be readily obtained
 by a parser. This can be useful for descriptive documents, such as
 tables of contents, which may be transmitted to others through
 protocols other than their usual retrieval context (e.g., email or
 USENET news).

 It is beyond the scope of this specification to specify how, for each
 media type, a base URI can be embedded. The appropriate syntax, when
 available, is described by the data format specification associated
 with each media type.

5.1.2. Base URI from the Encapsulating Entity

 If no base URI is embedded, the base URI is defined by the
 representation’s retrieval context. For a document that is enclosed
 within another entity, such as a message or archive, the retrieval
 context is that entity. Thus, the default base URI of a
 representation is the base URI of the entity in which the
 representation is encapsulated.

Berners-Lee, et al. Standards Track [Page 29]

RFC 3986 URI Generic Syntax January 2005

 A mechanism for embedding a base URI within MIME container types
 (e.g., the message and multipart types) is defined by MHTML
 [RFC2557]. Protocols that do not use the MIME message header syntax,
 but that do allow some form of tagged metadata to be included within
 messages, may define their own syntax for defining a base URI as part
 of a message.

5.1.3. Base URI from the Retrieval URI

 If no base URI is embedded and the representation is not encapsulated
 within some other entity, then, if a URI was used to retrieve the
 representation, that URI shall be considered the base URI. Note that
 if the retrieval was the result of a redirected request, the last URI
 used (i.e., the URI that resulted in the actual retrieval of the
 representation) is the base URI.

5.1.4. Default Base URI

 If none of the conditions described above apply, then the base URI is
 defined by the context of the application. As this definition is
 necessarily application-dependent, failing to define a base URI by
 using one of the other methods may result in the same content being
 interpreted differently by different types of applications.

 A sender of a representation containing relative references is
 responsible for ensuring that a base URI for those references can be
 established. Aside from fragment-only references, relative
 references can only be used reliably in situations where the base URI
 is well defined.

5.2. Relative Resolution

 This section describes an algorithm for converting a URI reference
 that might be relative to a given base URI into the parsed components
 of the reference’s target. The components can then be recomposed, as
 described in Section 5.3, to form the target URI. This algorithm
 provides definitive results that can be used to test the output of
 other implementations. Applications may implement relative reference
 resolution by using some other algorithm, provided that the results
 match what would be given by this one.

Berners-Lee, et al. Standards Track [Page 30]

RFC 3986 URI Generic Syntax January 2005

5.2.1. Pre-parse the Base URI

 The base URI (Base) is established according to the procedure of
 Section 5.1 and parsed into the five main components described in
 Section 3. Note that only the scheme component is required to be
 present in a base URI; the other components may be empty or
 undefined. A component is undefined if its associated delimiter does
 not appear in the URI reference; the path component is never
 undefined, though it may be empty.

 Normalization of the base URI, as described in Sections 6.2.2 and
 6.2.3, is optional. A URI reference must be transformed to its
 target URI before it can be normalized.

5.2.2. Transform References

 For each URI reference (R), the following pseudocode describes an
 algorithm for transforming R into its target URI (T):

 -- The URI reference is parsed into the five URI components
 --
 (R.scheme, R.authority, R.path, R.query, R.fragment) = parse(R);

 -- A non-strict parser may ignore a scheme in the reference
 -- if it is identical to the base URI’s scheme.
 --
 if ((not strict) and (R.scheme == Base.scheme)) then
 undefine(R.scheme);
 endif;

Berners-Lee, et al. Standards Track [Page 31]

RFC 3986 URI Generic Syntax January 2005

 if defined(R.scheme) then
 T.scheme = R.scheme;
 T.authority = R.authority;
 T.path = remove_dot_segments(R.path);
 T.query = R.query;
 else
 if defined(R.authority) then
 T.authority = R.authority;
 T.path = remove_dot_segments(R.path);
 T.query = R.query;
 else
 if (R.path == "") then
 T.path = Base.path;
 if defined(R.query) then
 T.query = R.query;
 else
 T.query = Base.query;
 endif;
 else
 if (R.path starts-with "/") then
 T.path = remove_dot_segments(R.path);
 else
 T.path = merge(Base.path, R.path);
 T.path = remove_dot_segments(T.path);
 endif;
 T.query = R.query;
 endif;
 T.authority = Base.authority;
 endif;
 T.scheme = Base.scheme;
 endif;

 T.fragment = R.fragment;

5.2.3. Merge Paths

 The pseudocode above refers to a "merge" routine for merging a
 relative-path reference with the path of the base URI. This is
 accomplished as follows:

 o If the base URI has a defined authority component and an empty
 path, then return a string consisting of "/" concatenated with the
 reference’s path; otherwise,

Berners-Lee, et al. Standards Track [Page 32]

RFC 3986 URI Generic Syntax January 2005

 o return a string consisting of the reference’s path component
 appended to all but the last segment of the base URI’s path (i.e.,
 excluding any characters after the right-most "/" in the base URI
 path, or excluding the entire base URI path if it does not contain
 any "/" characters).

5.2.4. Remove Dot Segments

 The pseudocode also refers to a "remove_dot_segments" routine for
 interpreting and removing the special "." and ".." complete path
 segments from a referenced path. This is done after the path is
 extracted from a reference, whether or not the path was relative, in
 order to remove any invalid or extraneous dot-segments prior to
 forming the target URI. Although there are many ways to accomplish
 this removal process, we describe a simple method using two string
 buffers.

 1. The input buffer is initialized with the now-appended path
 components and the output buffer is initialized to the empty
 string.

 2. While the input buffer is not empty, loop as follows:

 A. If the input buffer begins with a prefix of "../" or "./",
 then remove that prefix from the input buffer; otherwise,

 B. if the input buffer begins with a prefix of "/./" or "/.",
 where "." is a complete path segment, then replace that
 prefix with "/" in the input buffer; otherwise,

 C. if the input buffer begins with a prefix of "/../" or "/..",
 where ".." is a complete path segment, then replace that
 prefix with "/" in the input buffer and remove the last
 segment and its preceding "/" (if any) from the output
 buffer; otherwise,

 D. if the input buffer consists only of "." or "..", then remove
 that from the input buffer; otherwise,

 E. move the first path segment in the input buffer to the end of
 the output buffer, including the initial "/" character (if
 any) and any subsequent characters up to, but not including,
 the next "/" character or the end of the input buffer.

 3. Finally, the output buffer is returned as the result of
 remove_dot_segments.

Berners-Lee, et al. Standards Track [Page 33]

RFC 3986 URI Generic Syntax January 2005

 Note that dot-segments are intended for use in URI references to
 express an identifier relative to the hierarchy of names in the base
 URI. The remove_dot_segments algorithm respects that hierarchy by
 removing extra dot-segments rather than treat them as an error or
 leaving them to be misinterpreted by dereference implementations.

 The following illustrates how the above steps are applied for two
 examples of merged paths, showing the state of the two buffers after
 each step.

 STEP OUTPUT BUFFER INPUT BUFFER

 1 : /a/b/c/./../../g
 2E: /a /b/c/./../../g
 2E: /a/b /c/./../../g
 2E: /a/b/c /./../../g
 2B: /a/b/c /../../g
 2C: /a/b /../g
 2C: /a /g
 2E: /a/g

 STEP OUTPUT BUFFER INPUT BUFFER

 1 : mid/content=5/../6
 2E: mid /content=5/../6
 2E: mid/content=5 /../6
 2C: mid /6
 2E: mid/6

 Some applications may find it more efficient to implement the
 remove_dot_segments algorithm by using two segment stacks rather than
 strings.

 Note: Beware that some older, erroneous implementations will fail
 to separate a reference’s query component from its path component
 prior to merging the base and reference paths, resulting in an
 interoperability failure if the query component contains the
 strings "/../" or "/./".

Berners-Lee, et al. Standards Track [Page 34]

RFC 3986 URI Generic Syntax January 2005

5.3. Component Recomposition

 Parsed URI components can be recomposed to obtain the corresponding
 URI reference string. Using pseudocode, this would be:

 result = ""

 if defined(scheme) then
 append scheme to result;
 append ":" to result;
 endif;

 if defined(authority) then
 append "//" to result;
 append authority to result;
 endif;

 append path to result;

 if defined(query) then
 append "?" to result;
 append query to result;
 endif;

 if defined(fragment) then
 append "#" to result;
 append fragment to result;
 endif;

 return result;

 Note that we are careful to preserve the distinction between a
 component that is undefined, meaning that its separator was not
 present in the reference, and a component that is empty, meaning that
 the separator was present and was immediately followed by the next
 component separator or the end of the reference.

5.4. Reference Resolution Examples

 Within a representation with a well defined base URI of

 http://a/b/c/d;p?q

 a relative reference is transformed to its target URI as follows.

Berners-Lee, et al. Standards Track [Page 35]

RFC 3986 URI Generic Syntax January 2005

5.4.1. Normal Examples

 "g:h" = "g:h"
 "g" = "http://a/b/c/g"
 "./g" = "http://a/b/c/g"
 "g/" = "http://a/b/c/g/"
 "/g" = "http://a/g"
 "//g" = "http://g"
 "?y" = "http://a/b/c/d;p?y"
 "g?y" = "http://a/b/c/g?y"
 "#s" = "http://a/b/c/d;p?q#s"
 "g#s" = "http://a/b/c/g#s"
 "g?y#s" = "http://a/b/c/g?y#s"
 ";x" = "http://a/b/c/;x"
 "g;x" = "http://a/b/c/g;x"
 "g;x?y#s" = "http://a/b/c/g;x?y#s"
 "" = "http://a/b/c/d;p?q"
 "." = "http://a/b/c/"
 "./" = "http://a/b/c/"
 ".." = "http://a/b/"
 "../" = "http://a/b/"
 "../g" = "http://a/b/g"
 "../.." = "http://a/"
 "../../" = "http://a/"
 "../../g" = "http://a/g"

5.4.2. Abnormal Examples

 Although the following abnormal examples are unlikely to occur in
 normal practice, all URI parsers should be capable of resolving them
 consistently. Each example uses the same base as that above.

 Parsers must be careful in handling cases where there are more ".."
 segments in a relative-path reference than there are hierarchical
 levels in the base URI’s path. Note that the ".." syntax cannot be
 used to change the authority component of a URI.

 "../../../g" = "http://a/g"
 "../../../../g" = "http://a/g"

Berners-Lee, et al. Standards Track [Page 36]

RFC 3986 URI Generic Syntax January 2005

 Similarly, parsers must remove the dot-segments "." and ".." when
 they are complete components of a path, but not when they are only
 part of a segment.

 "/./g" = "http://a/g"
 "/../g" = "http://a/g"
 "g." = "http://a/b/c/g."
 ".g" = "http://a/b/c/.g"
 "g.." = "http://a/b/c/g.."
 "..g" = "http://a/b/c/..g"

 Less likely are cases where the relative reference uses unnecessary
 or nonsensical forms of the "." and ".." complete path segments.

 "./../g" = "http://a/b/g"
 "./g/." = "http://a/b/c/g/"
 "g/./h" = "http://a/b/c/g/h"
 "g/../h" = "http://a/b/c/h"
 "g;x=1/./y" = "http://a/b/c/g;x=1/y"
 "g;x=1/../y" = "http://a/b/c/y"

 Some applications fail to separate the reference’s query and/or
 fragment components from the path component before merging it with
 the base path and removing dot-segments. This error is rarely
 noticed, as typical usage of a fragment never includes the hierarchy
 ("/") character and the query component is not normally used within
 relative references.

 "g?y/./x" = "http://a/b/c/g?y/./x"
 "g?y/../x" = "http://a/b/c/g?y/../x"
 "g#s/./x" = "http://a/b/c/g#s/./x"
 "g#s/../x" = "http://a/b/c/g#s/../x"

 Some parsers allow the scheme name to be present in a relative
 reference if it is the same as the base URI scheme. This is
 considered to be a loophole in prior specifications of partial URI
 [RFC1630]. Its use should be avoided but is allowed for backward
 compatibility.

 "http:g" = "http:g" ; for strict parsers
 / "http://a/b/c/g" ; for backward compatibility

Berners-Lee, et al. Standards Track [Page 37]

RFC 3986 URI Generic Syntax January 2005

6. Normalization and Comparison

 One of the most common operations on URIs is simple comparison:
 determining whether two URIs are equivalent without using the URIs to
 access their respective resource(s). A comparison is performed every
 time a response cache is accessed, a browser checks its history to
 color a link, or an XML parser processes tags within a namespace.
 Extensive normalization prior to comparison of URIs is often used by
 spiders and indexing engines to prune a search space or to reduce
 duplication of request actions and response storage.

 URI comparison is performed for some particular purpose. Protocols
 or implementations that compare URIs for different purposes will
 often be subject to differing design trade-offs in regards to how
 much effort should be spent in reducing aliased identifiers. This
 section describes various methods that may be used to compare URIs,
 the trade-offs between them, and the types of applications that might
 use them.

6.1. Equivalence

 Because URIs exist to identify resources, presumably they should be
 considered equivalent when they identify the same resource. However,
 this definition of equivalence is not of much practical use, as there
 is no way for an implementation to compare two resources unless it
 has full knowledge or control of them. For this reason,
 determination of equivalence or difference of URIs is based on string
 comparison, perhaps augmented by reference to additional rules
 provided by URI scheme definitions. We use the terms "different" and
 "equivalent" to describe the possible outcomes of such comparisons,
 but there are many application-dependent versions of equivalence.

 Even though it is possible to determine that two URIs are equivalent,
 URI comparison is not sufficient to determine whether two URIs
 identify different resources. For example, an owner of two different
 domain names could decide to serve the same resource from both,
 resulting in two different URIs. Therefore, comparison methods are
 designed to minimize false negatives while strictly avoiding false
 positives.

 In testing for equivalence, applications should not directly compare
 relative references; the references should be converted to their
 respective target URIs before comparison. When URIs are compared to
 select (or avoid) a network action, such as retrieval of a
 representation, fragment components (if any) should be excluded from
 the comparison.

Berners-Lee, et al. Standards Track [Page 38]

RFC 3986 URI Generic Syntax January 2005

6.2. Comparison Ladder

 A variety of methods are used in practice to test URI equivalence.
 These methods fall into a range, distinguished by the amount of
 processing required and the degree to which the probability of false
 negatives is reduced. As noted above, false negatives cannot be
 eliminated. In practice, their probability can be reduced, but this
 reduction requires more processing and is not cost-effective for all
 applications.

 If this range of comparison practices is considered as a ladder, the
 following discussion will climb the ladder, starting with practices
 that are cheap but have a relatively higher chance of producing false
 negatives, and proceeding to those that have higher computational
 cost and lower risk of false negatives.

6.2.1. Simple String Comparison

 If two URIs, when considered as character strings, are identical,
 then it is safe to conclude that they are equivalent. This type of
 equivalence test has very low computational cost and is in wide use
 in a variety of applications, particularly in the domain of parsing.

 Testing strings for equivalence requires some basic precautions.
 This procedure is often referred to as "bit-for-bit" or
 "byte-for-byte" comparison, which is potentially misleading. Testing
 strings for equality is normally based on pair comparison of the
 characters that make up the strings, starting from the first and
 proceeding until both strings are exhausted and all characters are
 found to be equal, until a pair of characters compares unequal, or
 until one of the strings is exhausted before the other.

 This character comparison requires that each pair of characters be
 put in comparable form. For example, should one URI be stored in a
 byte array in EBCDIC encoding and the second in a Java String object
 (UTF-16), bit-for-bit comparisons applied naively will produce
 errors. It is better to speak of equality on a character-for-
 character basis rather than on a byte-for-byte or bit-for-bit basis.
 In practical terms, character-by-character comparisons should be done
 codepoint-by-codepoint after conversion to a common character
 encoding.

 False negatives are caused by the production and use of URI aliases.
 Unnecessary aliases can be reduced, regardless of the comparison
 method, by consistently providing URI references in an already-
 normalized form (i.e., a form identical to what would be produced
 after normalization is applied, as described below).

Berners-Lee, et al. Standards Track [Page 39]

RFC 3986 URI Generic Syntax January 2005

 Protocols and data formats often limit some URI comparisons to simple
 string comparison, based on the theory that people and
 implementations will, in their own best interest, be consistent in
 providing URI references, or at least consistent enough to negate any
 efficiency that might be obtained from further normalization.

6.2.2. Syntax-Based Normalization

 Implementations may use logic based on the definitions provided by
 this specification to reduce the probability of false negatives.
 This processing is moderately higher in cost than character-for-
 character string comparison. For example, an application using this
 approach could reasonably consider the following two URIs equivalent:

 example://a/b/c/%7Bfoo%7D
 eXAMPLE://a/./b/../b/%63/%7bfoo%7d

 Web user agents, such as browsers, typically apply this type of URI
 normalization when determining whether a cached response is
 available. Syntax-based normalization includes such techniques as
 case normalization, percent-encoding normalization, and removal of
 dot-segments.

6.2.2.1. Case Normalization

 For all URIs, the hexadecimal digits within a percent-encoding
 triplet (e.g., "%3a" versus "%3A") are case-insensitive and therefore
 should be normalized to use uppercase letters for the digits A-F.

 When a URI uses components of the generic syntax, the component
 syntax equivalence rules always apply; namely, that the scheme and
 host are case-insensitive and therefore should be normalized to
 lowercase. For example, the URI <HTTP://www.EXAMPLE.com/> is
 equivalent to <http://www.example.com/>. The other generic syntax
 components are assumed to be case-sensitive unless specifically
 defined otherwise by the scheme (see Section 6.2.3).

6.2.2.2. Percent-Encoding Normalization

 The percent-encoding mechanism (Section 2.1) is a frequent source of
 variance among otherwise identical URIs. In addition to the case
 normalization issue noted above, some URI producers percent-encode
 octets that do not require percent-encoding, resulting in URIs that
 are equivalent to their non-encoded counterparts. These URIs should
 be normalized by decoding any percent-encoded octet that corresponds
 to an unreserved character, as described in Section 2.3.

Berners-Lee, et al. Standards Track [Page 40]

RFC 3986 URI Generic Syntax January 2005

6.2.2.3. Path Segment Normalization

 The complete path segments "." and ".." are intended only for use
 within relative references (Section 4.1) and are removed as part of
 the reference resolution process (Section 5.2). However, some
 deployed implementations incorrectly assume that reference resolution
 is not necessary when the reference is already a URI and thus fail to
 remove dot-segments when they occur in non-relative paths. URI
 normalizers should remove dot-segments by applying the
 remove_dot_segments algorithm to the path, as described in
 Section 5.2.4.

6.2.3. Scheme-Based Normalization

 The syntax and semantics of URIs vary from scheme to scheme, as
 described by the defining specification for each scheme.
 Implementations may use scheme-specific rules, at further processing
 cost, to reduce the probability of false negatives. For example,
 because the "http" scheme makes use of an authority component, has a
 default port of "80", and defines an empty path to be equivalent to
 "/", the following four URIs are equivalent:

 http://example.com
 http://example.com/
 http://example.com:/
 http://example.com:80/

 In general, a URI that uses the generic syntax for authority with an
 empty path should be normalized to a path of "/". Likewise, an
 explicit ":port", for which the port is empty or the default for the
 scheme, is equivalent to one where the port and its ":" delimiter are
 elided and thus should be removed by scheme-based normalization. For
 example, the second URI above is the normal form for the "http"
 scheme.

 Another case where normalization varies by scheme is in the handling
 of an empty authority component or empty host subcomponent. For many
 scheme specifications, an empty authority or host is considered an
 error; for others, it is considered equivalent to "localhost" or the
 end-user’s host. When a scheme defines a default for authority and a
 URI reference to that default is desired, the reference should be
 normalized to an empty authority for the sake of uniformity, brevity,
 and internationalization. If, however, either the userinfo or port
 subcomponents are non-empty, then the host should be given explicitly
 even if it matches the default.

 Normalization should not remove delimiters when their associated
 component is empty unless licensed to do so by the scheme

Berners-Lee, et al. Standards Track [Page 41]

RFC 3986 URI Generic Syntax January 2005

 specification. For example, the URI "http://example.com/?" cannot be
 assumed to be equivalent to any of the examples above. Likewise, the
 presence or absence of delimiters within a userinfo subcomponent is
 usually significant to its interpretation. The fragment component is
 not subject to any scheme-based normalization; thus, two URIs that
 differ only by the suffix "#" are considered different regardless of
 the scheme.

 Some schemes define additional subcomponents that consist of case-
 insensitive data, giving an implicit license to normalizers to
 convert this data to a common case (e.g., all lowercase). For
 example, URI schemes that define a subcomponent of path to contain an
 Internet hostname, such as the "mailto" URI scheme, cause that
 subcomponent to be case-insensitive and thus subject to case
 normalization (e.g., "mailto:Joe@Example.COM" is equivalent to
 "mailto:Joe@example.com", even though the generic syntax considers
 the path component to be case-sensitive).

 Other scheme-specific normalizations are possible.

6.2.4. Protocol-Based Normalization

 Substantial effort to reduce the incidence of false negatives is
 often cost-effective for web spiders. Therefore, they implement even
 more aggressive techniques in URI comparison. For example, if they
 observe that a URI such as

 http://example.com/data

 redirects to a URI differing only in the trailing slash

 http://example.com/data/

 they will likely regard the two as equivalent in the future. This
 kind of technique is only appropriate when equivalence is clearly
 indicated by both the result of accessing the resources and the
 common conventions of their scheme’s dereference algorithm (in this
 case, use of redirection by HTTP origin servers to avoid problems
 with relative references).

Berners-Lee, et al. Standards Track [Page 42]

RFC 3986 URI Generic Syntax January 2005

7. Security Considerations

 A URI does not in itself pose a security threat. However, as URIs
 are often used to provide a compact set of instructions for access to
 network resources, care must be taken to properly interpret the data
 within a URI, to prevent that data from causing unintended access,
 and to avoid including data that should not be revealed in plain
 text.

7.1. Reliability and Consistency

 There is no guarantee that once a URI has been used to retrieve
 information, the same information will be retrievable by that URI in
 the future. Nor is there any guarantee that the information
 retrievable via that URI in the future will be observably similar to
 that retrieved in the past. The URI syntax does not constrain how a
 given scheme or authority apportions its namespace or maintains it
 over time. Such guarantees can only be obtained from the person(s)
 controlling that namespace and the resource in question. A specific
 URI scheme may define additional semantics, such as name persistence,
 if those semantics are required of all naming authorities for that
 scheme.

7.2. Malicious Construction

 It is sometimes possible to construct a URI so that an attempt to
 perform a seemingly harmless, idempotent operation, such as the
 retrieval of a representation, will in fact cause a possibly damaging
 remote operation. The unsafe URI is typically constructed by
 specifying a port number other than that reserved for the network
 protocol in question. The client unwittingly contacts a site running
 a different protocol service, and data within the URI contains
 instructions that, when interpreted according to this other protocol,
 cause an unexpected operation. A frequent example of such abuse has
 been the use of a protocol-based scheme with a port component of
 "25", thereby fooling user agent software into sending an unintended
 or impersonating message via an SMTP server.

 Applications should prevent dereference of a URI that specifies a TCP
 port number within the "well-known port" range (0 - 1023) unless the
 protocol being used to dereference that URI is compatible with the
 protocol expected on that well-known port. Although IANA maintains a
 registry of well-known ports, applications should make such
 restrictions user-configurable to avoid preventing the deployment of
 new services.

Berners-Lee, et al. Standards Track [Page 43]

RFC 3986 URI Generic Syntax January 2005

 When a URI contains percent-encoded octets that match the delimiters
 for a given resolution or dereference protocol (for example, CR and
 LF characters for the TELNET protocol), these percent-encodings must
 not be decoded before transmission across that protocol. Transfer of
 the percent-encoding, which might violate the protocol, is less
 harmful than allowing decoded octets to be interpreted as additional
 operations or parameters, perhaps triggering an unexpected and
 possibly harmful remote operation.

7.3. Back-End Transcoding

 When a URI is dereferenced, the data within it is often parsed by
 both the user agent and one or more servers. In HTTP, for example, a
 typical user agent will parse a URI into its five major components,
 access the authority’s server, and send it the data within the
 authority, path, and query components. A typical server will take
 that information, parse the path into segments and the query into
 key/value pairs, and then invoke implementation-specific handlers to
 respond to the request. As a result, a common security concern for
 server implementations that handle a URI, either as a whole or split
 into separate components, is proper interpretation of the octet data
 represented by the characters and percent-encodings within that URI.

 Percent-encoded octets must be decoded at some point during the
 dereference process. Applications must split the URI into its
 components and subcomponents prior to decoding the octets, as
 otherwise the decoded octets might be mistaken for delimiters.
 Security checks of the data within a URI should be applied after
 decoding the octets. Note, however, that the "%00" percent-encoding
 (NUL) may require special handling and should be rejected if the
 application is not expecting to receive raw data within a component.

 Special care should be taken when the URI path interpretation process
 involves the use of a back-end file system or related system
 functions. File systems typically assign an operational meaning to
 special characters, such as the "/", "\", ":", "[", and "]"
 characters, and to special device names like ".", "..", "...", "aux",
 "lpt", etc. In some cases, merely testing for the existence of such
 a name will cause the operating system to pause or invoke unrelated
 system calls, leading to significant security concerns regarding
 denial of service and unintended data transfer. It would be
 impossible for this specification to list all such significant
 characters and device names. Implementers should research the
 reserved names and characters for the types of storage device that
 may be attached to their applications and restrict the use of data
 obtained from URI components accordingly.

Berners-Lee, et al. Standards Track [Page 44]

RFC 3986 URI Generic Syntax January 2005

7.4. Rare IP Address Formats

 Although the URI syntax for IPv4address only allows the common
 dotted-decimal form of IPv4 address literal, many implementations
 that process URIs make use of platform-dependent system routines,
 such as gethostbyname() and inet_aton(), to translate the string
 literal to an actual IP address. Unfortunately, such system routines
 often allow and process a much larger set of formats than those
 described in Section 3.2.2.

 For example, many implementations allow dotted forms of three
 numbers, wherein the last part is interpreted as a 16-bit quantity
 and placed in the right-most two bytes of the network address (e.g.,
 a Class B network). Likewise, a dotted form of two numbers means
 that the last part is interpreted as a 24-bit quantity and placed in
 the right-most three bytes of the network address (Class A), and a
 single number (without dots) is interpreted as a 32-bit quantity and
 stored directly in the network address. Adding further to the
 confusion, some implementations allow each dotted part to be
 interpreted as decimal, octal, or hexadecimal, as specified in the C
 language (i.e., a leading 0x or 0X implies hexadecimal; a leading 0
 implies octal; otherwise, the number is interpreted as decimal).

 These additional IP address formats are not allowed in the URI syntax
 due to differences between platform implementations. However, they
 can become a security concern if an application attempts to filter
 access to resources based on the IP address in string literal format.
 If this filtering is performed, literals should be converted to
 numeric form and filtered based on the numeric value, and not on a
 prefix or suffix of the string form.

7.5. Sensitive Information

 URI producers should not provide a URI that contains a username or
 password that is intended to be secret. URIs are frequently
 displayed by browsers, stored in clear text bookmarks, and logged by
 user agent history and intermediary applications (proxies). A
 password appearing within the userinfo component is deprecated and
 should be considered an error (or simply ignored) except in those
 rare cases where the ’password’ parameter is intended to be public.

7.6. Semantic Attacks

 Because the userinfo subcomponent is rarely used and appears before
 the host in the authority component, it can be used to construct a
 URI intended to mislead a human user by appearing to identify one
 (trusted) naming authority while actually identifying a different
 authority hidden behind the noise. For example

Berners-Lee, et al. Standards Track [Page 45]

RFC 3986 URI Generic Syntax January 2005

 ftp://cnn.example.com&story=breaking_news@10.0.0.1/top_story.htm

 might lead a human user to assume that the host is ’cnn.example.com’,
 whereas it is actually ’10.0.0.1’. Note that a misleading userinfo
 subcomponent could be much longer than the example above.

 A misleading URI, such as that above, is an attack on the user’s
 preconceived notions about the meaning of a URI rather than an attack
 on the software itself. User agents may be able to reduce the impact
 of such attacks by distinguishing the various components of the URI
 when they are rendered, such as by using a different color or tone to
 render userinfo if any is present, though there is no panacea. More
 information on URI-based semantic attacks can be found in [Siedzik].

8. IANA Considerations

 URI scheme names, as defined by <scheme> in Section 3.1, form a
 registered namespace that is managed by IANA according to the
 procedures defined in [BCP35]. No IANA actions are required by this
 document.

9. Acknowledgements

 This specification is derived from RFC 2396 [RFC2396], RFC 1808
 [RFC1808], and RFC 1738 [RFC1738]; the acknowledgements in those
 documents still apply. It also incorporates the update (with
 corrections) for IPv6 literals in the host syntax, as defined by
 Robert M. Hinden, Brian E. Carpenter, and Larry Masinter in
 [RFC2732]. In addition, contributions by Gisle Aas, Reese Anschultz,
 Daniel Barclay, Tim Bray, Mike Brown, Rob Cameron, Jeremy Carroll,
 Dan Connolly, Adam M. Costello, John Cowan, Jason Diamond, Martin
 Duerst, Stefan Eissing, Clive D.W. Feather, Al Gilman, Tony Hammond,
 Elliotte Harold, Pat Hayes, Henry Holtzman, Ian B. Jacobs, Michael
 Kay, John C. Klensin, Graham Klyne, Dan Kohn, Bruce Lilly, Andrew
 Main, Dave McAlpin, Ira McDonald, Michael Mealling, Ray Merkert,
 Stephen Pollei, Julian Reschke, Tomas Rokicki, Miles Sabin, Kai
 Schaetzl, Mark Thomson, Ronald Tschalaer, Norm Walsh, Marc Warne,
 Stuart Williams, and Henry Zongaro are gratefully acknowledged.

10. References

10.1. Normative References

 [ASCII] American National Standards Institute, "Coded Character
 Set -- 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

Berners-Lee, et al. Standards Track [Page 46]

RFC 3986 URI Generic Syntax January 2005

 [RFC2234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [STD63] Yergeau, F., "UTF-8, a transformation format of
 ISO 10646", STD 63, RFC 3629, November 2003.

 [UCS] International Organization for Standardization,
 "Information Technology - Universal Multiple-Octet Coded
 Character Set (UCS)", ISO/IEC 10646:2003, December 2003.

10.2. Informative References

 [BCP19] Freed, N. and J. Postel, "IANA Charset Registration
 Procedures", BCP 19, RFC 2978, October 2000.

 [BCP35] Petke, R. and I. King, "Registration Procedures for URL
 Scheme Names", BCP 35, RFC 2717, November 1999.

 [RFC0952] Harrenstien, K., Stahl, M., and E. Feinler, "DoD Internet
 host table specification", RFC 952, October 1985.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, November 1987.

 [RFC1123] Braden, R., "Requirements for Internet Hosts - Application
 and Support", STD 3, RFC 1123, October 1989.

 [RFC1535] Gavron, E., "A Security Problem and Proposed Correction
 With Widely Deployed DNS Software", RFC 1535,
 October 1993.

 [RFC1630] Berners-Lee, T., "Universal Resource Identifiers in WWW: A
 Unifying Syntax for the Expression of Names and Addresses
 of Objects on the Network as used in the World-Wide Web",
 RFC 1630, June 1994.

 [RFC1736] Kunze, J., "Functional Recommendations for Internet
 Resource Locators", RFC 1736, February 1995.

 [RFC1737] Sollins, K. and L. Masinter, "Functional Requirements for
 Uniform Resource Names", RFC 1737, December 1994.

 [RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform
 Resource Locators (URL)", RFC 1738, December 1994.

 [RFC1808] Fielding, R., "Relative Uniform Resource Locators",
 RFC 1808, June 1995.

Berners-Lee, et al. Standards Track [Page 47]

RFC 3986 URI Generic Syntax January 2005

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC2141] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [RFC2396] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

 [RFC2518] Goland, Y., Whitehead, E., Faizi, A., Carter, S., and D.
 Jensen, "HTTP Extensions for Distributed Authoring --
 WEBDAV", RFC 2518, February 1999.

 [RFC2557] Palme, J., Hopmann, A., and N. Shelness, "MIME
 Encapsulation of Aggregate Documents, such as HTML
 (MHTML)", RFC 2557, March 1999.

 [RFC2718] Masinter, L., Alvestrand, H., Zigmond, D., and R. Petke,
 "Guidelines for new URL Schemes", RFC 2718, November 1999.

 [RFC2732] Hinden, R., Carpenter, B., and L. Masinter, "Format for
 Literal IPv6 Addresses in URL’s", RFC 2732, December 1999.

 [RFC3305] Mealling, M. and R. Denenberg, "Report from the Joint
 W3C/IETF URI Planning Interest Group: Uniform Resource
 Identifiers (URIs), URLs, and Uniform Resource Names
 (URNs): Clarifications and Recommendations", RFC 3305,
 August 2002.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",
 RFC 3490, March 2003.

 [RFC3513] Hinden, R. and S. Deering, "Internet Protocol Version 6
 (IPv6) Addressing Architecture", RFC 3513, April 2003.

 [Siedzik] Siedzik, R., "Semantic Attacks: What’s in a URL?",
 April 2001, <http://www.giac.org/practical/gsec/
 Richard_Siedzik_GSEC.pdf>.

Berners-Lee, et al. Standards Track [Page 48]

RFC 3986 URI Generic Syntax January 2005

Appendix A. Collected ABNF for URI

 URI = scheme ":" hier-part ["?" query] ["#" fragment]

 hier-part = "//" authority path-abempty
 / path-absolute
 / path-rootless
 / path-empty

 URI-reference = URI / relative-ref

 absolute-URI = scheme ":" hier-part ["?" query]

 relative-ref = relative-part ["?" query] ["#" fragment]

 relative-part = "//" authority path-abempty
 / path-absolute
 / path-noscheme
 / path-empty

 scheme = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")

 authority = [userinfo "@"] host [":" port]
 userinfo = *(unreserved / pct-encoded / sub-delims / ":")
 host = IP-literal / IPv4address / reg-name
 port = *DIGIT

 IP-literal = "[" (IPv6address / IPvFuture) "]"

 IPvFuture = "v" 1*HEXDIG "." 1*(unreserved / sub-delims / ":")

 IPv6address = 6(h16 ":") ls32
 / "::" 5(h16 ":") ls32
 / [h16] "::" 4(h16 ":") ls32
 / [*1(h16 ":") h16] "::" 3(h16 ":") ls32
 / [*2(h16 ":") h16] "::" 2(h16 ":") ls32
 / [*3(h16 ":") h16] "::" h16 ":" ls32
 / [*4(h16 ":") h16] "::" ls32
 / [*5(h16 ":") h16] "::" h16
 / [*6(h16 ":") h16] "::"

 h16 = 1*4HEXDIG
 ls32 = (h16 ":" h16) / IPv4address
 IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet

Berners-Lee, et al. Standards Track [Page 49]

RFC 3986 URI Generic Syntax January 2005

 dec-octet = DIGIT ; 0-9
 / %x31-39 DIGIT ; 10-99
 / "1" 2DIGIT ; 100-199
 / "2" %x30-34 DIGIT ; 200-249
 / "25" %x30-35 ; 250-255

 reg-name = *(unreserved / pct-encoded / sub-delims)

 path = path-abempty ; begins with "/" or is empty
 / path-absolute ; begins with "/" but not "//"
 / path-noscheme ; begins with a non-colon segment
 / path-rootless ; begins with a segment
 / path-empty ; zero characters

 path-abempty = *("/" segment)
 path-absolute = "/" [segment-nz *("/" segment)]
 path-noscheme = segment-nz-nc *("/" segment)
 path-rootless = segment-nz *("/" segment)
 path-empty = 0<pchar>

 segment = *pchar
 segment-nz = 1*pchar
 segment-nz-nc = 1*(unreserved / pct-encoded / sub-delims / "@")
 ; non-zero-length segment without any colon ":"

 pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

 query = *(pchar / "/" / "?")

 fragment = *(pchar / "/" / "?")

 pct-encoded = "%" HEXDIG HEXDIG

 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"
 reserved = gen-delims / sub-delims
 gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"
 sub-delims = "!" / "$" / "&" / "’" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

Appendix B. Parsing a URI Reference with a Regular Expression

 As the "first-match-wins" algorithm is identical to the "greedy"
 disambiguation method used by POSIX regular expressions, it is
 natural and commonplace to use a regular expression for parsing the
 potential five components of a URI reference.

 The following line is the regular expression for breaking-down a
 well-formed URI reference into its components.

Berners-Lee, et al. Standards Track [Page 50]

RFC 3986 URI Generic Syntax January 2005

 ^(([^:/?#]+):)?(//([^/?#]*))?([^?#]*)(\?([^#]*))?(#(.*))?
 12 3 4 5 6 7 8 9

 The numbers in the second line above are only to assist readability;
 they indicate the reference points for each subexpression (i.e., each
 paired parenthesis). We refer to the value matched for subexpression
 <n> as $<n>. For example, matching the above expression to

 http://www.ics.uci.edu/pub/ietf/uri/#Related

 results in the following subexpression matches:

 $1 = http:
 $2 = http
 $3 = //www.ics.uci.edu
 $4 = www.ics.uci.edu
 $5 = /pub/ietf/uri/
 $6 = <undefined>
 $7 = <undefined>
 $8 = #Related
 $9 = Related

 where <undefined> indicates that the component is not present, as is
 the case for the query component in the above example. Therefore, we
 can determine the value of the five components as

 scheme = $2
 authority = $4
 path = $5
 query = $7
 fragment = $9

 Going in the opposite direction, we can recreate a URI reference from
 its components by using the algorithm of Section 5.3.

Appendix C. Delimiting a URI in Context

 URIs are often transmitted through formats that do not provide a
 clear context for their interpretation. For example, there are many
 occasions when a URI is included in plain text; examples include text
 sent in email, USENET news, and on printed paper. In such cases, it
 is important to be able to delimit the URI from the rest of the text,
 and in particular from punctuation marks that might be mistaken for
 part of the URI.

 In practice, URIs are delimited in a variety of ways, but usually
 within double-quotes "http://example.com/", angle brackets
 <http://example.com/>, or just by using whitespace:

Berners-Lee, et al. Standards Track [Page 51]

RFC 3986 URI Generic Syntax January 2005

 http://example.com/

 These wrappers do not form part of the URI.

 In some cases, extra whitespace (spaces, line-breaks, tabs, etc.) may
 have to be added to break a long URI across lines. The whitespace
 should be ignored when the URI is extracted.

 No whitespace should be introduced after a hyphen ("-") character.
 Because some typesetters and printers may (erroneously) introduce a
 hyphen at the end of line when breaking it, the interpreter of a URI
 containing a line break immediately after a hyphen should ignore all
 whitespace around the line break and should be aware that the hyphen
 may or may not actually be part of the URI.

 Using <> angle brackets around each URI is especially recommended as
 a delimiting style for a reference that contains embedded whitespace.

 The prefix "URL:" (with or without a trailing space) was formerly
 recommended as a way to help distinguish a URI from other bracketed
 designators, though it is not commonly used in practice and is no
 longer recommended.

 For robustness, software that accepts user-typed URI should attempt
 to recognize and strip both delimiters and embedded whitespace.

 For example, the text

 Yes, Jim, I found it under "http://www.w3.org/Addressing/",
 but you can probably pick it up from <ftp://foo.example.
 com/rfc/>. Note the warning in <http://www.ics.uci.edu/pub/
 ietf/uri/historical.html#WARNING>.

 contains the URI references

 http://www.w3.org/Addressing/
 ftp://foo.example.com/rfc/
 http://www.ics.uci.edu/pub/ietf/uri/historical.html#WARNING

Berners-Lee, et al. Standards Track [Page 52]

RFC 3986 URI Generic Syntax January 2005

Appendix D. Changes from RFC 2396

D.1. Additions

 An ABNF rule for URI has been introduced to correspond to one common
 usage of the term: an absolute URI with optional fragment.

 IPv6 (and later) literals have been added to the list of possible
 identifiers for the host portion of an authority component, as
 described by [RFC2732], with the addition of "[" and "]" to the
 reserved set and a version flag to anticipate future versions of IP
 literals. Square brackets are now specified as reserved within the
 authority component and are not allowed outside their use as
 delimiters for an IP literal within host. In order to make this
 change without changing the technical definition of the path, query,
 and fragment components, those rules were redefined to directly
 specify the characters allowed.

 As [RFC2732] defers to [RFC3513] for definition of an IPv6 literal
 address, which, unfortunately, lacks an ABNF description of
 IPv6address, we created a new ABNF rule for IPv6address that matches
 the text representations defined by Section 2.2 of [RFC3513].
 Likewise, the definition of IPv4address has been improved in order to
 limit each decimal octet to the range 0-255.

 Section 6, on URI normalization and comparison, has been completely
 rewritten and extended by using input from Tim Bray and discussion
 within the W3C Technical Architecture Group.

D.2. Modifications

 The ad-hoc BNF syntax of RFC 2396 has been replaced with the ABNF of
 [RFC2234]. This change required all rule names that formerly
 included underscore characters to be renamed with a dash instead. In
 addition, a number of syntax rules have been eliminated or simplified
 to make the overall grammar more comprehensible. Specifications that
 refer to the obsolete grammar rules may be understood by replacing
 those rules according to the following table:

Berners-Lee, et al. Standards Track [Page 53]

RFC 3986 URI Generic Syntax January 2005

 +----------------+--+
 | obsolete rule | translation |
 +----------------+--+
absoluteURI	absolute-URI
relativeURI	relative-part ["?" query]
hier_part	("//" authority path-abempty /
	path-absolute) ["?" query]
opaque_part	path-rootless ["?" query]
net_path	"//" authority path-abempty
abs_path	path-absolute
rel_path	path-rootless
rel_segment	segment-nz-nc
reg_name	reg-name
server	authority
hostport	host [":" port]
hostname	reg-name
path_segments	path-abempty
param	*<pchar excluding ";">
uric	unreserved / pct-encoded / ";" / "?" / ":"
	/ "@" / "&" / "=" / "+" / "$" / "," / "/"
uric_no_slash	unreserved / pct-encoded / ";" / "?" / ":"
	/ "@" / "&" / "=" / "+" / "$" / ","
mark	"-" / "_" / "." / "!" / "˜" / "*" / "’"
	/ "(" / ")"
escaped	pct-encoded
hex	HEXDIG
alphanum	ALPHA / DIGIT
 +----------------+--+

 Use of the above obsolete rules for the definition of scheme-specific
 syntax is deprecated.

 Section 2, on characters, has been rewritten to explain what
 characters are reserved, when they are reserved, and why they are
 reserved, even when they are not used as delimiters by the generic
 syntax. The mark characters that are typically unsafe to decode,
 including the exclamation mark ("!"), asterisk ("*"), single-quote
 ("’"), and open and close parentheses ("(" and ")"), have been moved
 to the reserved set in order to clarify the distinction between
 reserved and unreserved and, hopefully, to answer the most common
 question of scheme designers. Likewise, the section on
 percent-encoded characters has been rewritten, and URI normalizers
 are now given license to decode any percent-encoded octets

Berners-Lee, et al. Standards Track [Page 54]

RFC 3986 URI Generic Syntax January 2005

 corresponding to unreserved characters. In general, the terms
 "escaped" and "unescaped" have been replaced with "percent-encoded"
 and "decoded", respectively, to reduce confusion with other forms of
 escape mechanisms.

 The ABNF for URI and URI-reference has been redesigned to make them
 more friendly to LALR parsers and to reduce complexity. As a result,
 the layout form of syntax description has been removed, along with
 the uric, uric_no_slash, opaque_part, net_path, abs_path, rel_path,
 path_segments, rel_segment, and mark rules. All references to
 "opaque" URIs have been replaced with a better description of how the
 path component may be opaque to hierarchy. The relativeURI rule has
 been replaced with relative-ref to avoid unnecessary confusion over
 whether they are a subset of URI. The ambiguity regarding the
 parsing of URI-reference as a URI or a relative-ref with a colon in
 the first segment has been eliminated through the use of five
 separate path matching rules.

 The fragment identifier has been moved back into the section on
 generic syntax components and within the URI and relative-ref rules,
 though it remains excluded from absolute-URI. The number sign ("#")
 character has been moved back to the reserved set as a result of
 reintegrating the fragment syntax.

 The ABNF has been corrected to allow the path component to be empty.
 This also allows an absolute-URI to consist of nothing after the
 "scheme:", as is present in practice with the "dav:" namespace
 [RFC2518] and with the "about:" scheme used internally by many WWW
 browser implementations. The ambiguity regarding the boundary
 between authority and path has been eliminated through the use of
 five separate path matching rules.

 Registry-based naming authorities that use the generic syntax are now
 defined within the host rule. This change allows current
 implementations, where whatever name provided is simply fed to the
 local name resolution mechanism, to be consistent with the
 specification. It also removes the need to re-specify DNS name
 formats here. Furthermore, it allows the host component to contain
 percent-encoded octets, which is necessary to enable
 internationalized domain names to be provided in URIs, processed in
 their native character encodings at the application layers above URI
 processing, and passed to an IDNA library as a registered name in the
 UTF-8 character encoding. The server, hostport, hostname,
 domainlabel, toplabel, and alphanum rules have been removed.

 The resolving relative references algorithm of [RFC2396] has been
 rewritten with pseudocode for this revision to improve clarity and
 fix the following issues:

Berners-Lee, et al. Standards Track [Page 55]

RFC 3986 URI Generic Syntax January 2005

 o [RFC2396] section 5.2, step 6a, failed to account for a base URI
 with no path.

 o Restored the behavior of [RFC1808] where, if the reference
 contains an empty path and a defined query component, the target
 URI inherits the base URI’s path component.

 o The determination of whether a URI reference is a same-document
 reference has been decoupled from the URI parser, simplifying the
 URI processing interface within applications in a way consistent
 with the internal architecture of deployed URI processing
 implementations. The determination is now based on comparison to
 the base URI after transforming a reference to absolute form,
 rather than on the format of the reference itself. This change
 may result in more references being considered "same-document"
 under this specification than there would be under the rules given
 in RFC 2396, especially when normalization is used to reduce
 aliases. However, it does not change the status of existing
 same-document references.

 o Separated the path merge routine into two routines: merge, for
 describing combination of the base URI path with a relative-path
 reference, and remove_dot_segments, for describing how to remove
 the special "." and ".." segments from a composed path. The
 remove_dot_segments algorithm is now applied to all URI reference
 paths in order to match common implementations and to improve the
 normalization of URIs in practice. This change only impacts the
 parsing of abnormal references and same-scheme references wherein
 the base URI has a non-hierarchical path.

Index

 A
 ABNF 11
 absolute 27
 absolute-path 26
 absolute-URI 27
 access 9
 authority 17, 18

 B
 base URI 28

 C
 character encoding 4
 character 4
 characters 8, 11
 coded character set 4

Berners-Lee, et al. Standards Track [Page 56]

RFC 3986 URI Generic Syntax January 2005

 D
 dec-octet 20
 dereference 9
 dot-segments 23

 F
 fragment 16, 24

 G
 gen-delims 13
 generic syntax 6

 H
 h16 20
 hier-part 16
 hierarchical 10
 host 18

 I
 identifier 5
 IP-literal 19
 IPv4 20
 IPv4address 19, 20
 IPv6 19
 IPv6address 19, 20
 IPvFuture 19

 L
 locator 7
 ls32 20

 M
 merge 32

 N
 name 7
 network-path 26

 P
 path 16, 22, 26
 path-abempty 22
 path-absolute 22
 path-empty 22
 path-noscheme 22
 path-rootless 22
 path-abempty 16, 22, 26
 path-absolute 16, 22, 26
 path-empty 16, 22, 26

Berners-Lee, et al. Standards Track [Page 57]

RFC 3986 URI Generic Syntax January 2005

 path-rootless 16, 22
 pchar 23
 pct-encoded 12
 percent-encoding 12
 port 22

 Q
 query 16, 23

 R
 reg-name 21
 registered name 20
 relative 10, 28
 relative-path 26
 relative-ref 26
 remove_dot_segments 33
 representation 9
 reserved 12
 resolution 9, 28
 resource 5
 retrieval 9

 S
 same-document 27
 sameness 9
 scheme 16, 17
 segment 22, 23
 segment-nz 23
 segment-nz-nc 23
 sub-delims 13
 suffix 27

 T
 transcription 8

 U
 uniform 4
 unreserved 13
 URI grammar
 absolute-URI 27
 ALPHA 11
 authority 18
 CR 11
 dec-octet 20
 DIGIT 11
 DQUOTE 11
 fragment 24
 gen-delims 13

Berners-Lee, et al. Standards Track [Page 58]

RFC 3986 URI Generic Syntax January 2005

 h16 20
 HEXDIG 11
 hier-part 16
 host 19
 IP-literal 19
 IPv4address 20
 IPv6address 20
 IPvFuture 19
 LF 11
 ls32 20
 OCTET 11
 path 22
 path-abempty 22
 path-absolute 22
 path-empty 22
 path-noscheme 22
 path-rootless 22
 pchar 23
 pct-encoded 12
 port 22
 query 24
 reg-name 21
 relative-ref 26
 reserved 13
 scheme 17
 segment 23
 segment-nz 23
 segment-nz-nc 23
 SP 11
 sub-delims 13
 unreserved 13
 URI 16
 URI-reference 25
 userinfo 18
 URI 16
 URI-reference 25
 URL 7
 URN 7
 userinfo 18

Berners-Lee, et al. Standards Track [Page 59]

RFC 3986 URI Generic Syntax January 2005

Authors’ Addresses

 Tim Berners-Lee
 World Wide Web Consortium
 Massachusetts Institute of Technology
 77 Massachusetts Avenue
 Cambridge, MA 02139
 USA

 Phone: +1-617-253-5702
 Fax: +1-617-258-5999
 EMail: timbl@w3.org
 URI: http://www.w3.org/People/Berners-Lee/

 Roy T. Fielding
 Day Software
 5251 California Ave., Suite 110
 Irvine, CA 92617
 USA

 Phone: +1-949-679-2960
 Fax: +1-949-679-2972
 EMail: fielding@gbiv.com
 URI: http://roy.gbiv.com/

 Larry Masinter
 Adobe Systems Incorporated
 345 Park Ave
 San Jose, CA 95110
 USA

 Phone: +1-408-536-3024
 EMail: LMM@acm.org
 URI: http://larry.masinter.net/

Berners-Lee, et al. Standards Track [Page 60]

RFC 3986 URI Generic Syntax January 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the IETF’s procedures with respect to rights in IETF Documents can
 be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Berners-Lee, et al. Standards Track [Page 61]

