
Network Working Group J. Schaad
Request for Comments: 4055 Soaring Hawk Consulting
Updates: 3279 B. Kaliski
Category: Standards Track RSA Laboratories
 R. Housley
 Vigil Security
 June 2005

 Additional Algorithms and Identifiers for RSA Cryptography
 for use in the Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL) Profile

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document supplements RFC 3279. It describes the conventions for
 using the RSA Probabilistic Signature Scheme (RSASSA-PSS) signature
 algorithm, the RSA Encryption Scheme - Optimal Asymmetric Encryption
 Padding (RSAES-OAEP) key transport algorithm and additional one-way
 hash functions with the Public-Key Cryptography Standards (PKCS) #1
 version 1.5 signature algorithm in the Internet X.509 Public Key
 Infrastructure (PKI). Encoding formats, algorithm identifiers, and
 parameter formats are specified.

Schaad, et al. Standards Track [Page 1]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

Table of Contents

 1. Introduction ..2
 1.1. Terminology ..3
 1.2. RSA Public Keys ..3
 2. Common Functions ..5
 2.1. One-way Hash Functions5
 2.2. Mask Generation Functions6
 3. RSASSA-PSS Signature Algorithm7
 3.1. RSASSA-PSS Public Keys8
 3.2. RSASSA-PSS Signature Values10
 3.3. RSASSA-PSS Signature Parameter Validation10
 4. RSAES-OAEP Key Transport Algorithm10
 4.1. RSAES-OAEP Public Keys11
 5. PKCS #1 Version 1.5 Signature Algorithm13
 6. ASN.1 Module ...14
 7. References ...20
 7.1. Normative References20
 7.2. Informative References21
 8. Security Considerations ..21
 9. IANA Considerations ..24

1. Introduction

 This document supplements RFC 3279 [PKALGS]. This document describes
 the conventions for using the RSASSA-PSS signature algorithm and the
 RSAES-OAEP key transport algorithm in the Internet X.509 Public Key
 Infrastructure (PKI) [PROFILE]. Both of these RSA-based algorithms
 are specified in [P1v2.1]. The algorithm identifiers and associated
 parameters for subject public keys that employ either of these
 algorithms, and the encoding format for RSASSA-PSS signatures are
 specified. Also, the algorithm identifiers for using the SHA-224,
 SHA-256, SHA-384, and SHA-512 one-way hash functions with the PKCS #1
 version 1.5 signature algorithm [P1v1.5] are specified.

 This specification supplements RFC 3280 [PROFILE] which profiles the
 X.509 Certificates and Certificate Revocation Lists (CRLs) for use in
 the Internet. This specification extends the list of algorithms
 discussed in RFC 3279 [PKALGS]. The X.509 Certificate and CRL
 definitions use ASN.1 [X.208-88], the Basic Encoding Rules (BER)
 [X.209-88], and the Distinguished Encoding Rules (DER) [X.509-88].

 This specification defines the contents of the signatureAlgorithm,
 signatureValue, signature, and subjectPublicKeyInfo fields within
 Internet X.509 Certificates and CRLs. For each algorithm, the
 appropriate alternatives for the keyUsage certificate extension are
 provided.

Schaad, et al. Standards Track [Page 2]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [STDWORDS].

1.2. RSA Public Keys

 RFC 3280 [PROFILE] specifies the profile for using X.509 Certificates
 in Internet applications. When an RSA public key is used for
 RSASSA-PSS digital signatures or RSAES-OAEP key transport, the
 conventions specified in this section augment RFC 3280.

 Traditionally, the rsaEncryption object identifier is used to
 identify RSA public keys. However, to implement all of the
 recommendations described in Security Considerations (Section 8), the
 certificate user needs to be able to determine the form of digital
 signature or key transport that the RSA private key owner associates
 with the public key.

 The rsaEncryption object identifier continues to identify the subject
 public key when the RSA private key owner does not wish to limit the
 use of the public key exclusively to either RSASSA-PSS or RSAES-OAEP.
 In this case, the rsaEncryption object identifier MUST be used in the
 algorithm field within the subject public key information, and the
 parameters field MUST contain NULL.

 rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

 Further discussion of the conventions associated with use of the
 rsaEncryption object identifier can be found in RFC 3279 (see
 [PKALGS], Section 2.3.1).

 When the RSA private key owner wishes to limit the use of the public
 key exclusively to RSASSA-PSS, then the id-RSASSA-PSS object
 identifier MUST be used in the algorithm field within the subject
 public key information, and, if present, the parameters field MUST
 contain RSASSA-PSS-params. The id-RSASSA-PSS object identifier value
 and the RSASSA-PSS-params syntax are fully described in Section 3.

 When the RSA private key owner wishes to limit the use of the public
 key exclusively to RSAES-OAEP, then the id-RSAES-OAEP object
 identifier MUST be used in the algorithm field within the subject
 public key information, and, if present, the parameters field MUST
 contain RSAES-OAEP-params. The id-RSAES-OAEP object identifier value
 and the RSAES-OAEP-params syntax are fully described in Section 4.

Schaad, et al. Standards Track [Page 3]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 Note: It is not possible to restrict the use of a key to a set of
 algorithms (i.e., RSASSA-PSS and RSAES-OAEP).

 Regardless of the object identifier used, the RSA public key is
 encoded in the same manner in the subject public key information.
 The RSA public key MUST be encoded using the type RSAPublicKey type:

 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER } -- e

 Here, the modulus is the modulus n, and publicExponent is the public
 exponent e. The DER encoded RSAPublicKey is carried in the
 subjectPublicKey BIT STRING within the subject public key
 information.

 The intended application for the key MAY be indicated in the keyUsage
 certificate extension (see [PROFILE], Section 4.2.1.3).

 If the keyUsage extension is present in an end-entity certificate
 that conveys an RSA public key with the id-RSASSA-PSS object
 identifier, then the keyUsage extension MUST contain one or both of
 the following values:

 nonRepudiation; and
 digitalSignature.

 If the keyUsage extension is present in a certification authority
 certificate that conveys an RSA public key with the id-RSASSA-PSS
 object identifier, then the keyUsage extension MUST contain one or
 more of the following values:

 nonRepudiation;
 digitalSignature;
 keyCertSign; and
 cRLSign.

 When a certificate conveys an RSA public key with the id-RSASSA-PSS
 object identifier, the certificate user MUST only use the certified
 RSA public key for RSASSA-PSS operations, and, if RSASSA-PSS-params
 is present, the certificate user MUST perform those operations using
 the one-way hash function, mask generation function, and trailer
 field identified in the subject public key algorithm identifier
 parameters within the certificate.

Schaad, et al. Standards Track [Page 4]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 If the keyUsage extension is present in a certificate conveys an RSA
 public key with the id-RSAES-OAEP object identifier, then the
 keyUsage extension MUST contain only the following values:

 keyEncipherment; and
 dataEncipherment.

 However, both keyEncipherment and dataEncipherment SHOULD NOT be
 present.

 When a certificate that conveys an RSA public key with the
 id-RSAES-OAEP object identifier, the certificate user MUST only use
 the certified RSA public key for RSAES-OAEP operations, and, if
 RSAES-OAEP-params is present, the certificate user MUST perform those
 operations using the one-way hash function and mask generation
 function identified in the subject public key algorithm identifier
 parameters within the certificate.

2. Common Functions

 The RSASSA-PSS signature and the RSAES-OAEP key transport algorithms
 make use of one-way hash functions and mask generation functions.

2.1. One-way Hash Functions

 PKCS #1 version 2.1 [P1v2.1] supports four one-way hash functions for
 use with the RSASSA-PSS signature algorithm and the RSAES-OAEP key
 transport algorithm: SHA-1, SHA-256, SHA-384, and SHA-512 [SHA2].
 This document adds support for SHA-224 [SHA-224] with both the
 RSASSA-PSS and the RSAES-OAEP algorithms. While support for
 additional one-way hash functions could be added in the future, no
 other one-way hash functions are supported by this specification.

 These one-way hash functions are identified by the following object
 identifiers:

 id-sha1 OBJECT IDENTIFIER ::= { iso(1)
 identified-organization(3) oiw(14)
 secsig(3) algorithms(2) 26 }
 id-sha224 OBJECT IDENTIFIER ::= {{ joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 4 }
 id-sha256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 1 }
 id-sha384 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 2 }

Schaad, et al. Standards Track [Page 5]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 id-sha512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 3 }

 There are two possible encodings for the AlgorithmIdentifier
 parameters field associated with these object identifiers. The two
 alternatives arise from the loss of the OPTIONAL associated with the
 algorithm identifier parameters when the 1988 syntax for
 AlgorithmIdentifier was translated into the 1997 syntax. Later the
 OPTIONAL was recovered via a defect report, but by then many people
 thought that algorithm parameters were mandatory. Because of this
 history some implementations encode parameters as a NULL element
 while others omit them entirely. The correct encoding is to omit the
 parameters field; however, when RSASSA-PSS and RSAES-OAEP were
 defined, it was done using the NULL parameters rather than absent
 parameters.

 All implementations MUST accept both NULL and absent parameters as
 legal and equivalent encodings.

 To be clear, the following algorithm identifiers are used when a NULL
 parameter MUST be present:

 sha1Identifier AlgorithmIdentifier ::= { id-sha1, NULL }
 sha224Identifier AlgorithmIdentifier ::= { id-sha224, NULL }
 sha256Identifier AlgorithmIdentifier ::= { id-sha256, NULL }
 sha384Identifier AlgorithmIdentifier ::= { id-sha384, NULL }
 sha512Identifier AlgorithmIdentifier ::= { id-sha512, NULL }

2.2. Mask Generation Functions

 One mask generation function is used with the RSASSA-PSS signature
 algorithm and the RSAES-OAEP key transport algorithm: MGF1 [P1v2.1].
 No other mask generation functions are supported by this
 specification.

 MGF1 is identified by the following object identifier:

 id-mgf1 OBJECT IDENTIFIER ::= { pkcs-1 8 }

 The parameters field associated with id-mgf1 MUST have a
 hashAlgorithm value which identifies the hash function being used
 with MGF1. This value MUST be sha1Identifier, sha224Identifier,
 sha256Identifier, sha384Identifier, or sha512Identifier, as specified
 in Section 2.1. Implementations MUST support the default value,
 sha1Identifier, and MAY support the other four values.

Schaad, et al. Standards Track [Page 6]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 The following algorithm identifiers have been assigned for each of
 these alternatives:

 mgf1SHA1Identifier AlgorithmIdentifier ::=
 { id-mgf1, sha1Identifier }
 mgf1SHA224Identifier AlgorithmIdentifier ::=
 { id-mgf1, sha224Identifier }
 mgf1SHA256Identifier AlgorithmIdentifier ::=
 { id-mgf1, sha256Identifier }
 mgf1SHA384Identifier AlgorithmIdentifier ::=
 { id-mgf1, sha384Identifier }
 mgf1SHA512Identifier AlgorithmIdentifier ::=
 { id-mgf1, sha512Identifier }

3. RSASSA-PSS Signature Algorithm

 This section describes the conventions for using the RSASSA-PSS
 signature algorithm with the Internet X.509 Certificate and CRL
 profile [PROFILE]. The RSASSA-PSS signature algorithm is specified
 in PKCS #1 version 2.1 [P1v2.1]. The five one-way hash functions
 discussed in Section 2.1 and the one mask generation function
 discussed in Section 2.2 can be used with RSASSA-PSS.

 CAs that issue certificates with the id-RSASSA-PSS algorithm
 identifier SHOULD require the presence of parameters in the
 publicKeyAlgorithms field if the cA boolean flag is set in the basic
 constraints certificate extension. CAs MAY require that the
 parameters be present in the publicKeyAlgorithms field for end-entity
 certificates.

 CAs that use the RSASSA-PSS algorithm for signing certificates SHOULD
 include RSASSA-PSS-params in the subjectPublicKeyInfo algorithm
 parameters in their own certificates. CAs that use the RSASSA-PSS
 algorithm for signing certificates or CRLs MUST include RSASSA-PSS-
 params in the signatureAlgorithm parameters in the TBSCertificate or
 TBSCertList structures.

 Entities that validate RSASSA-PSS signatures MUST support SHA-1.
 They MAY also support any other one-way hash functions in Section
 2.1.

 The data to be signed (e.g., the one-way hash function output value)
 is formatted for the signature algorithm to be used. Then, a private
 key operation (e.g., RSA decryption) is performed to generate the
 signature value. This signature value is then ASN.1 encoded as a BIT
 STRING and included in the Certificate or CertificateList in the
 signatureValue field. Section 3.2 specifies the format of RSASSA-PSS
 signature values.

Schaad, et al. Standards Track [Page 7]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

3.1. RSASSA-PSS Public Keys

 When RSASSA-PSS is used in an AlgorithmIdentifier, the parameters
 MUST employ the RSASSA-PSS-params syntax. The parameters may be
 either absent or present when used as subject public key information.
 The parameters MUST be present when used in the algorithm identifier
 associated with a signature value.

 When signing, it is RECOMMENDED that the parameters, except for
 possibly saltLength, remain fixed for all usages of a given RSA key
 pair.

 id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }

 RSASSA-PSS-params ::= SEQUENCE {
 hashAlgorithm [0] HashAlgorithm DEFAULT
 sha1Identifier,
 maskGenAlgorithm [1] MaskGenAlgorithm DEFAULT
 mgf1SHA1Identifier,
 saltLength [2] INTEGER DEFAULT 20,
 trailerField [3] INTEGER DEFAULT 1 }

 The fields of type RSASSA-PSS-params have the following meanings:

 hashAlgorithm

 The hashAlgorithm field identifies the hash function. It MUST
 be one of the algorithm identifiers listed in Section 2.1, and
 the default hash function is SHA-1. Implementations MUST
 support SHA-1 and MAY support any of the other one-way hash
 functions listed in Section 2.1. Implementations that perform
 signature generation MUST omit the hashAlgorithm field when
 SHA-1 is used, indicating that the default algorithm was used.
 Implementations that perform signature validation MUST
 recognize both the sha1Identifier algorithm identifier and an
 absent hashAlgorithm field as an indication that SHA-1 was
 used.

 maskGenAlgorithm

 The maskGenAlgorithm field identifies the mask generation
 function. The default mask generation function is MGF1 with
 SHA-1. For MGF1, it is strongly RECOMMENDED that the
 underlying hash function be the same as the one identified by
 hashAlgorithm. Implementations MUST support MGF1. MGF1
 requires a one-way hash function that is identified in the
 parameters field of the MGF1 algorithm identifier.
 Implementations MUST support SHA-1 and MAY support any of the

Schaad, et al. Standards Track [Page 8]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 other one-way hash functions listed in section Section 2.1.
 The MGF1 algorithm identifier is comprised of the id-mgf1
 object identifier and a parameter that contains the algorithm
 identifier of the one-way hash function employed with MGF1.
 The SHA-1 algorithm identifier is comprised of the id-sha1
 object identifier and an (optional) parameter of NULL.
 Implementations that perform signature generation MUST omit the
 maskGenAlgorithm field when MGF1 with SHA-1 is used, indicating
 that the default algorithm was used.

 Although mfg1SHA1Identifier is defined as the default value for
 this field, implementations MUST accept both the default value
 encoding (i.e., an absent field) and mfg1SHA1Identifier to be
 explicitly present in the encoding.

 saltLength

 The saltLength field is the octet length of the salt. For a
 given hashAlgorithm, the recommended value of saltLength is the
 number of octets in the hash value. Unlike the other fields of
 type RSASSA-PSS-params, saltLength does not need to be fixed
 for a given RSA key pair; a different value could be used for
 each RSASSA-PSS signature generated.

 trailerField

 The trailerField field is an integer. It provides
 compatibility with IEEE Std 1363a-2004 [P1363A]. The value
 MUST be 1, which represents the trailer field with hexadecimal
 value 0xBC. Other trailer fields, including the trailer field
 composed of HashID concatenated with 0xCC that is specified in
 IEEE Std 1363a, are not supported. Implementations that
 perform signature generation MUST omit the trailerField field,
 indicating that the default trailer field value was used.
 Implementations that perform signature validation MUST
 recognize both a present trailerField field with value 1 and an
 absent trailerField field.

 If the default values of the hashAlgorithm, maskGenAlgorithm, and
 trailerField fields of RSASSA-PSS-params are used, then the algorithm
 identifier will have the following value:

 rSASSA-PSS-Default-Identifier AlgorithmIdentifier ::= {
 id-RSASSA-PSS, rSASSA-PSS-Default-Params }

 rSASSA-PSS-Default-Params RSASSA-PSS-Params ::= {
 sha1Identifier, mgf1SHA1Identifier, 20, 1}

Schaad, et al. Standards Track [Page 9]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

3.2. RSASSA-PSS Signature Values

 The output of the RSASSA-PSS signature algorithm is an octet string,
 which has the same length in octets as the RSA modulus n.

 Signature values in CMS [CMS] are represented as octet strings, and
 the output is used directly. However, signature values in
 certificates and CRLs [PROFILE] are represented as bit strings, and
 conversion is needed.

 To convert a signature value to a bit string, the most significant
 bit of the first octet of the signature value SHALL become the first
 bit of the bit string, and so on through the least significant bit of
 the last octet of the signature value, which SHALL become the last
 bit of the bit string.

3.3. RSASSA-PSS Signature Parameter Validation

 Three possible parameter validation scenarios exist for RSASSA-PSS
 signature values.

 1. The key is identified by the rsaEncryption algorithm identifier.
 In this case no parameter validation is needed.

 2. The key is identified by the id-RSASSA-PSS signature algorithm
 identifier, but the parameters field is absent. In this case no
 parameter validation is needed.

 3. The key is identified by the id-RSASSA-PSS signature algorithm
 identifier and the parameters are present. In this case all
 parameters in the signature structure algorithm identifier MUST
 match the parameters in the key structure algorithm identifier
 except the saltLength field. The saltLength field in the
 signature parameters MUST be greater or equal to that in the key
 parameters field.

4. RSAES-OAEP Key Transport Algorithm

 This section describes the conventions for using the RSAES-OAEP key
 transport algorithm with the Internet X.509 Certificate and CRL
 profile [PROFILE]. RSAES-OAEP is specified in PKCS #1 version 2.1
 [P1v2.1]. The five one-way hash functions discussed in Section 2.1
 and the one mask generation function discussed in Section 2.2 can be
 used with RSAES-OAEP. Conforming CAs and applications MUST support
 RSAES-OAEP key transport algorithm using SHA-1. The other four one-
 way hash functions MAY also be supported.

Schaad, et al. Standards Track [Page 10]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 CAs that issue certificates with the id-RSAES-OAEP algorithm
 identifier SHOULD require the presence of parameters in the
 publicKeyAlgorithms field for all certificates. Entities that use a
 certificate with a publicKeyAlgorithm value of id-RSA-OAEP where the
 parameters are absent SHOULD use the default set of parameters for
 RSAES-OAEP-params. Entities that use a certificate with a
 publicKeyAlgorithm value of rsaEncryption SHOULD use the default set
 of parameters for RSAES-OAEP-params.

4.1. RSAES-OAEP Public Keys

 When id-RSAES-OAEP is used in an AlgorithmIdentifier, the parameters
 MUST employ the RSAES-OAEP-params syntax. The parameters may be
 either absent or present when used as subject public key information.
 The parameters MUST be present when used in the algorithm identifier
 associated with an encrypted value.

 id-RSAES-OAEP OBJECT IDENTIFIER ::= { pkcs-1 7 }

 RSAES-OAEP-params ::= SEQUENCE {
 hashFunc [0] AlgorithmIdentifier DEFAULT
 sha1Identifier,
 maskGenFunc [1] AlgorithmIdentifier DEFAULT
 mgf1SHA1Identifier,
 pSourceFunc [2] AlgorithmIdentifier DEFAULT
 pSpecifiedEmptyIdentifier }

 pSpecifiedEmptyIdentifier AlgorithmIdentifier ::=
 { id-pSpecified, nullOctetString }

 nullOctetString OCTET STRING (SIZE (0)) ::= { ’’H }

 The fields of type RSAES-OAEP-params have the following meanings:

 hashFunc

 The hashFunc field identifies the one-way hash function. It
 MUST be one of the algorithm identifiers listed in Section 2.1,
 and the default hash function is SHA-1. Implementations MUST
 support SHA-1 and MAY support other one-way hash functions
 listed in Section 2.1. Implementations that perform encryption
 MUST omit the hashFunc field when SHA-1 is used, indicating
 that the default algorithm was used. Implementations that
 perform decryption MUST recognize both the sha1Identifier
 algorithm identifier and an absent hashFunc field as an
 indication that SHA-1 was used.

Schaad, et al. Standards Track [Page 11]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 maskGenFunc

 The maskGenFunc field identifies the mask generation function.
 The default mask generation function is MGF1 with SHA-1. For
 MGF1, it is strongly RECOMMENDED that the underlying hash
 function be the same as the one identified by hashFunc.
 Implementations MUST support MGF1. MGF1 requires a one-way
 hash function that is identified in the parameter field of the
 MGF1 algorithm identifier. Implementations MUST support SHA-1
 and MAY support any of the other one-way hash functions listed
 in Section 2.1. The MGF1 algorithm identifier is comprised of
 the id-mgf1 object identifier and a parameter that contains the
 algorithm identifier of the one-way hash function employed with
 MGF1. The SHA-1 algorithm identifier is comprised of the id-
 sha1 object identifier and an (optional) parameter of NULL.
 Implementations that perform encryption MUST omit the
 maskGenFunc field when MGF1 with SHA-1 is used, indicating that
 the default algorithm was used.

 Although mfg1SHA1Identifier is defined as the default value for
 this field, implementations MUST accept both the default value
 encoding (i.e., an absent field) and the mfg1SHA1Identifier to
 be explicitly present in the encoding.

 pSourceFunc

 The pSourceFunc field identifies the source (and possibly the
 value) of the encoding parameters, commonly called P.
 Implementations MUST represent P by an algorithm identifier,
 id-pSpecified, indicating that P is explicitly provided as an
 OCTET STRING in the parameters. The default value for P is an
 empty string. In this case, pHash in EME-OAEP contains the
 hash of a zero length string. Implementations MUST support a
 zero length P value. Implementations that perform encryption
 MUST omit the pSourceFunc field when a zero length P value is
 used, indicating that the default value was used.
 Implementations that perform decryption MUST recognize both the
 id-pSpecified object identifier and an absent pSourceFunc field
 as an indication that a zero length P value was used.
 Implementations that perform decryption MUST support a zero
 length P value and MAY support other values. Compliant
 implementations MUST NOT use any value other than id-pSpecified
 for pSourceFunc.

Schaad, et al. Standards Track [Page 12]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 If the default values of the hashFunc, maskGenFunc, and pSourceFunc
 fields of RSAES-OAEP-params are used, then the algorithm identifier
 will have the following value:

 rSAES-OAEP-Default-Identifier AlgorithmIdentifier ::=
 { id-RSAES-OAEP,
 rSAES-OAEP-Default-Params }

 rSAES-OAEP-Default-Params RSASSA-OAEP-params ::=
 { sha1Identifier,
 mgf1SHA1Identifier,
 pSpecifiedEmptyIdentifier }

5. PKCS #1 Version 1.5 Signature Algorithm

 RFC 2313 [P1v1.5] specifies the PKCS #1 Version 1.5 signature
 algorithm. This specification is also included in PKCS #1 Version
 2.1 [P1v2.1]. RFC 3279 [PKALGS] specifies the use of the PKCS #1
 Version 1.5 signature algorithm with the MD2, MD5, and the SHA-1
 one-way hash functions. This section specifies the algorithm
 identifiers for using the SHA-224, SHA-256, SHA-384, and SHA-512
 one-way hash functions with the PKCS #1 version 1.5 signature
 algorithm.

 The RSASSA-PSS signature algorithm is preferred over the PKCS #1
 Version 1.5 signature algorithm. Although no attacks are known
 against PKCS #1 Version 1.5 signature algorithm, in the interest of
 increased robustness, RSASSA-PSS signature algorithm is recommended
 for eventual adoption, especially by new applications. This section
 is included for compatibility with existing applications, and while
 still appropriate for new applications, a gradual transition to the
 RSASSA-PSS signature algorithm is encouraged.

 The PKCS #1 Version 1.5 signature algorithm with these one-way hash
 functions and the RSA cryptosystem is implemented using the padding
 and encoding conventions described in RFC 2313 [P1v1.5].

 The message digest is computed using the SHA-224, SHA-256, SHA-384,
 or SHA-512 one-way hash function.

 The PKCS #1 version 1.5 signature algorithm, as specified in RFC
 2313, includes a data encoding step. In this step, the message
 digest and the object identifier for the one-way hash function used
 to compute the message digest are combined. When performing the data
 encoding step, the id-sha224, id-sha256, id-sha384, and id-sha512
 object identifiers (see Section 2.1) MUST be used to specify the
 SHA-224, SHA-256, SHA-384, and SHA-512 one-way hash functions,
 respectively.

Schaad, et al. Standards Track [Page 13]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 The object identifier used to identify the PKCS #1 version 1.5
 signature algorithm with SHA-224 is:

 sha224WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 14 }

 The object identifier used to identify the PKCS #1 version 1.5
 signature algorithm with SHA-256 is:

 sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 }

 The object identifier used to identify the PKCS #1 version 1.5
 signature algorithm with SHA-384 is:

 sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 }

 The object identifier used to identify the PKCS #1 version 1.5
 signature algorithm with SHA-512 is:

 sha512WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 13 }

 When any of these four object identifiers appears within an
 AlgorithmIdentifier, the parameters MUST be NULL. Implementations
 MUST accept the parameters being absent as well as present.

 The RSA signature generation process and the encoding of the result
 are described in detail in RFC 2313 [P1v1.5].

6. ASN.1 Module

 PKIX1-PSS-OAEP-Algorithms
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-rsa-pkalgs(33) }

 DEFINITIONS EXPLICIT TAGS ::= BEGIN

 -- EXPORTS All;

 IMPORTS

 AlgorithmIdentifier
 FROM PKIX1Explicit88 -- Found in [PROFILE]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-explicit(18) } ;

Schaad, et al. Standards Track [Page 14]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 -- ============================
 -- Basic object identifiers
 -- ============================

 pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) 1 }

 -- When rsaEncryption is used in an AlgorithmIdentifier the
 -- parameters MUST be present and MUST be NULL.

 rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

 -- When id-RSAES-OAEP is used in an AlgorithmIdentifier,
 -- and the parameters field is present, it MUST be
 -- RSAES-OAEP-params

 id-RSAES-OAEP OBJECT IDENTIFIER ::= { pkcs-1 7 }

 -- When id-pSpecified is used in an AlgorithmIdentifier the
 -- parameters MUST be an OCTET STRING.

 id-pSpecified OBJECT IDENTIFIER ::= { pkcs-1 9 }

 -- When id-RSASSA-PSS is used in an AlgorithmIdentifier, and the
 -- parameters field is present, it MUST be RSASSA-PSS-params.

 id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }

 -- When id-mgf1 is used in an AlgorithmIdentifier the parameters
 -- MUST be present and MUST be a HashAlgorithm.

 id-mgf1 OBJECT IDENTIFIER ::= { pkcs-1 8 }

 -- When the following OIDs are used in an AlgorithmIdentifier, the
 -- parameters MUST be present and MUST be NULL.

 sha224WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 14 }

 sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 }

 sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 }

 sha512WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 13 }

Schaad, et al. Standards Track [Page 15]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 -- When the following OIDs are used in an AlgorithmIdentifier the
 -- parameters SHOULD be absent, but if the parameters are present,
 -- they MUST be NULL.

 id-sha1 OBJECT IDENTIFIER ::= { iso(1)
 identified-organization(3) oiw(14)
 secsig(3) algorithms(2) 26 }

 id-sha224 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 4 }

 id-sha256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 1 }

 id-sha384 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 2 }

 id-sha512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) 3 }

 -- =============
 -- Constants
 -- =============

 nullOctetString OCTET STRING (SIZE (0)) ::= ’’H

 nullParameters NULL ::= NULL

 -- =========================
 -- Algorithm Identifiers
 -- =========================

 sha1Identifier AlgorithmIdentifier ::= {
 algorithm id-sha1,
 parameters nullParameters }

 sha224Identifier AlgorithmIdentifier ::= {
 algorithm id-sha224,
 parameters nullParameters }

 sha256Identifier AlgorithmIdentifier ::= {
 algorithm id-sha256,
 parameters nullParameters }

Schaad, et al. Standards Track [Page 16]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 sha384Identifier AlgorithmIdentifier ::= {
 algorithm id-sha384,
 parameters nullParameters }

 sha512Identifier AlgorithmIdentifier ::= {
 algorithm id-sha512,
 parameters nullParameters }

 mgf1SHA1Identifier AlgorithmIdentifier ::= {
 algorithm id-mgf1,
 parameters sha1Identifier }

 mgf1SHA224Identifier AlgorithmIdentifier ::= {
 algorithm id-mgf1,
 parameters sha224Identifier }

 mgf1SHA256Identifier AlgorithmIdentifier ::= {
 algorithm id-mgf1,
 parameters sha256Identifier }

 mgf1SHA384Identifier AlgorithmIdentifier ::= {
 algorithm id-mgf1,
 parameters sha384Identifier }

 mgf1SHA512Identifier AlgorithmIdentifier ::= {
 algorithm id-mgf1,
 parameters sha512Identifier }

 pSpecifiedEmptyIdentifier AlgorithmIdentifier ::= {
 algorithm id-pSpecified,
 parameters nullOctetString }

 rSASSA-PSS-Default-Params RSASSA-PSS-params ::= {
 hashAlgorithm sha1Identifier,
 maskGenAlgorithm mgf1SHA1Identifier,
 saltLength 20,
 trailerField 1 }

 rSASSA-PSS-Default-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSASSA-PSS,
 parameters rSASSA-PSS-Default-Params }

 rSASSA-PSS-SHA224-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSASSA-PSS,
 parameters rSASSA-PSS-SHA224-Params }

Schaad, et al. Standards Track [Page 17]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 rSASSA-PSS-SHA224-Params RSASSA-PSS-params ::= {
 hashAlgorithm sha224Identifier,
 maskGenAlgorithm mgf1SHA224Identifier,
 saltLength 20,
 trailerField 1 }

 rSASSA-PSS-SHA256-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSASSA-PSS,
 parameters rSASSA-PSS-SHA256-Params }

 rSASSA-PSS-SHA256-Params RSASSA-PSS-params ::= {
 hashAlgorithm sha256Identifier,
 maskGenAlgorithm mgf1SHA256Identifier,
 saltLength 20,
 trailerField 1 }

 rSASSA-PSS-SHA384-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSASSA-PSS,
 parameters rSASSA-PSS-SHA384-Params }

 rSASSA-PSS-SHA384-Params RSASSA-PSS-params ::= {
 hashAlgorithm sha384Identifier,
 maskGenAlgorithm mgf1SHA384Identifier,
 saltLength 20,
 trailerField 1 }

 rSASSA-PSS-SHA512-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSASSA-PSS,
 parameters rSSASSA-PSS-SHA512-params }

 rSSASSA-PSS-SHA512-params RSASSA-PSS-params ::= {
 hashAlgorithm sha512Identifier,
 maskGenAlgorithm mgf1SHA512Identifier,
 saltLength 20,
 trailerField 1 }

 rSAES-OAEP-Default-Params RSAES-OAEP-params ::= {
 hashFunc sha1Identifier,
 maskGenFunc mgf1SHA1Identifier,
 pSourceFunc pSpecifiedEmptyIdentifier }

 rSAES-OAEP-Default-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSAES-OAEP,
 parameters rSAES-OAEP-Default-Params }

 rSAES-OAEP-SHA224-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSAES-OAEP,
 parameters rSAES-OAEP-SHA224-Params }

Schaad, et al. Standards Track [Page 18]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 rSAES-OAEP-SHA224-Params RSAES-OAEP-params ::= {
 hashFunc sha224Identifier,
 maskGenFunc mgf1SHA224Identifier,
 pSourceFunc pSpecifiedEmptyIdentifier }

 rSAES-OAEP-SHA256-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSAES-OAEP,
 parameters rSAES-OAEP-SHA256-Params }

 rSAES-OAEP-SHA256-Params RSAES-OAEP-params ::= {
 hashFunc sha256Identifier,
 maskGenFunc mgf1SHA256Identifier,
 pSourceFunc pSpecifiedEmptyIdentifier }

 rSAES-OAEP-SHA384-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSAES-OAEP,
 parameters rSAES-OAEP-SHA384-Params }

 rSAES-OAEP-SHA384-Params RSAES-OAEP-params ::= {
 hashFunc sha384Identifier,
 maskGenFunc mgf1SHA384Identifier,
 pSourceFunc pSpecifiedEmptyIdentifier }

 rSAES-OAEP-SHA512-Identifier AlgorithmIdentifier ::= {
 algorithm id-RSAES-OAEP,
 parameters rSAES-OAEP-SHA512-Params }

 rSAES-OAEP-SHA512-Params RSAES-OAEP-params ::= {
 hashFunc sha512Identifier,
 maskGenFunc mgf1SHA512Identifier,
 pSourceFunc pSpecifiedEmptyIdentifier }

 -- ===================
 -- Main structures
 -- ===================

 -- Used in SubjectPublicKeyInfo of X.509 Certificate.

 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER } -- e

Schaad, et al. Standards Track [Page 19]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 -- AlgorithmIdentifier parameters for id-RSASSA-PSS.
 -- Note that the tags in this Sequence are explicit.

 RSASSA-PSS-params ::= SEQUENCE {
 hashAlgorithm [0] HashAlgorithm DEFAULT
 sha1Identifier,
 maskGenAlgorithm [1] MaskGenAlgorithm DEFAULT
 mgf1SHA1Identifier,
 saltLength [2] INTEGER DEFAULT 20,
 trailerField [3] INTEGER DEFAULT 1 }

 HashAlgorithm ::= AlgorithmIdentifier

 MaskGenAlgorithm ::= AlgorithmIdentifier

 -- AlgorithmIdentifier parameters for id-RSAES-OAEP.
 -- Note that the tags in this Sequence are explicit.

 RSAES-OAEP-params ::= SEQUENCE {
 hashFunc [0] AlgorithmIdentifier DEFAULT
 sha1Identifier,
 maskGenFunc [1] AlgorithmIdentifier DEFAULT
 mgf1SHA1Identifier,
 pSourceFunc [2] AlgorithmIdentifier DEFAULT
 pSpecifiedEmptyIdentifier }

 END

7. References

7.1. Normative References

 [P1v1.5] Kaliski, B., "PKCS #1: RSA Encryption Version 1.5",
 RFC 2313, March 1998.

 [P1v2.1] Jonsson, J. and B. Kaliski, "PKCS #1: RSA Cryptography
 Specifications Version 2.1", RFC 3447, February 2003.

 [PROFILE] Housley, R., Polk, W., Ford, W., and D. Solo,
 "Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile", RFC
 3280, April 2002.

 [SHA2] National Institute of Standards and Technology (NIST),
 FIPS 180-2: Secure Hash Standard, 1 August 2002.

 [SHA224] Housley, R., "A 224-bit One-way Hash Function: SHA-
 224", RFC 3874, September 2004.

Schaad, et al. Standards Track [Page 20]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 [STDWORDS] Bradner, S., "Key Words for Use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [X.208-88] CCITT Recommendation X.208: Specification of Abstract
 Syntax Notation One (ASN.1), 1988.

 [X.209-88] CCITT Recommendation X.209: Specification of Basic
 Encoding Rules for Abstract Syntax Notation One
 (ASN.1), 1988.

 [X.509-88] CCITT Recommendation X.509: The Directory -
 Authentication Framework, 1988.

7.2. Informative References

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)", RFC
 3852, July 2004.

 [GUIDE] National Institute of Standards and Technology, Second
 Draft: "Key Management Guideline, Part 1: General
 Guidance." June 2002.
 [http://csrc.nist.gov/encryption/kms/guideline-1.pdf]

 [P1363A] IEEE Std 1363a-2004, Standard Specifications for
 Public Key Cryptography - Amendment 1: Additional
 Techniques, 2004.

 [PKALGS] Bassham, L., Polk, W., and R. Housley, "Algorithms and
 Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation
 List (CRL) Profile", RFC 3279, April 2002.

 [RANDOM] Eastlake 3rd, D., Crocker, S., and J. Schiller,
 "Randomness Recommendations for Security", RFC 1750,
 December 1994.

 [SHA-1-ATTACK] Wang, X., Yin, Y.L., and H. Yu, "Finding Collisions in
 the Full SHA1", to appear, CRYPTO 2005. Preprint
 available at
 http://theory.csail.mit.edu/˜yiqun/shanote.pdf.

8. Security Considerations

 This specification supplements RFC 3280 [PROFILE]. The Security
 Considerations section of that document applies to this specification
 as well.

Schaad, et al. Standards Track [Page 21]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 Implementations must protect the RSA private key. Compromising the
 RSA private key may result in the disclosure of all messages
 protected with that key.

 The generation of RSA public/private key pairs relies on a random
 numbers. Using inadequate pseudo-random number generators (PRNGs) to
 generate cryptographic keys can result in little or no security. An
 attacker may find it much easier to reproduce the PRNG environment
 that produced the keys and search the resulting small set of
 possibilities, than to brute force search the whole key space. The
 generation of quality random numbers is difficult and RFC 1750
 [RANDOM] offers important guidance in this area.

 Generally, good cryptographic practice employs a given RSA key pair
 in only one scheme. This practice avoids the risk that vulnerability
 in one scheme may compromise the security of the other, and may be
 essential to maintain provable security. While PKCS #1 Version 1.5
 [P1v1.5] has been employed for both key transport and digital
 signature without any known bad interactions, such a combined use of
 an RSA key pair is not recommended in the future. Therefore, an RSA
 key pair used for RSASSA-PSS signature generation should not be used
 for other purposes. For similar reasons, one RSA key pair should
 always be used with the same RSASSA-PSS parameters (except possibly
 for the salt length). Likewise, an RSA key pair used for RSAES-OAEP
 key transport should not be used for other purposes. For similar
 reasons, one RSA key pair should always be used with the same RSAES-
 OAEP parameters.

 This specification requires implementations to support the SHA-1
 one-way hash function for interoperability, but support for other
 one-way hash functions is permitted. Wang et al. [SHA-1-ATTACK] have
 recently discovered a collision attack against SHA-1 with complexity
 2^69. This attack, which can produce two new messages with the same
 hash value, is the first attack on SHA-1 faster than the generic
 attack with complexity 2^80, where 80 is one-half the bit length of
 the hash value.

 In general, when a one-way hash function is used with a digital
 signature scheme, a collision attack is easily translated into a
 signature forgery. Therefore, using SHA-1 in a digital signature
 scheme provides a security level of no more than 69 bits if the
 attacker can persuade the signer to sign a message resulting from a
 collision attack. If the attacker can’t persuade the signer to sign
 such a message, however, then SHA-1 still provides a security level
 of at least 80 bits since the best (known) inversion attack (which
 produces a new message with a previous hash value) is the generic
 attack with complexity 2^160. If a greater level of security is
 desired, then a secure one-way hash function with a longer hash value

Schaad, et al. Standards Track [Page 22]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 is needed. SHA-256, SHA-384, and SHA-512 are reasonable choices
 [SHA2], although their security needs to be reconfirmed in light of
 the SHA-1 results.

 The metrics for choosing a one-way hash function for use in digital
 signatures do not directly apply to the RSAES-OAEP key transport
 algorithm, since a collision attack on the one-way hash function does
 not directly translate into an attack on the key transport algorithm,
 unless the encoding parameters P vary (in which case a collision of
 the hash value for different encoding parameters might be exploited).

 Nevertheless, for consistency with the practice for digital signature
 schemes, and in case the encoding parameters P is not the empty
 string, it is recommended that the same rule of thumb be applied to
 selecting a one-way hash function for use with RSAES-OAEP. That is,
 the one-way hash function should be selected so that the bit length
 of the hash value is at least twice as long as the desired security
 level in bits.

 The key size selected impacts the strength achieved when implementing
 cryptographic services. Thus, selecting appropriate key sizes is
 critical to implementing appropriate security. A 1024-bit RSA public
 key is considered to provide a security level of about 80 bits. In
 [GUIDE], the National Institute of Standards and Technology (NIST)
 suggests that a security level of 80 bits is adequate for the
 protection of sensitive information until 2015. This recommendation
 is likely to be revised based on recent advances, and is expected to
 be more conservative, suggesting that a security level of 80 bits is
 adequate protection of sensitive information until 2010. If a
 security level greater than 80 bits is needed, then a longer RSA
 public key and a secure one-way hash function with a longer hash
 value are needed. SHA-224, SHA-256, SHA-384, and SHA-512 are
 reasonable choices for such a one-way hash function, modulo the
 reconfirmation noted above. For this reason, the algorithm
 identifiers for these one-way hash functions are included in the
 ASN.1 module in Section 6.

 Current implementations MUST support 1024-bit RSA public key sizes.
 Before the end of 2007, implementations SHOULD support RSA public key
 sizes of at least 2048 bits and SHOULD support SHA-256. This
 requirement is intended to allow adequate time for users to deploy
 the stronger digital signature capability by 2010.

 When using RSASSA-PSS, the same one-way hash function should be
 employed for the hashAlgorithm and the maskGenAlgorithm, but it is
 not required. When using RSAES-OAEP, the same one-way hash function

Schaad, et al. Standards Track [Page 23]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

 should be employed for the hashFunc and the maskGenFunc, but it is
 not required. In each case, using the same one-way hash function
 helps with security analysis and reduces implementation complexity.

9. IANA Considerations

 Within the certificates and CRLs, algorithms are identified by object
 identifiers. All object identifiers used in this document were
 assigned in Public-Key Cryptography Standards (PKCS) documents or by
 the National Institute of Standards and Technology (NIST). No
 further action by the IANA is necessary for this document or any
 anticipated updates.

Authors’ Addresses

 Russell Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA

 EMail: housley@vigilsec.com

 Burt Kaliski
 RSA Laboratories
 174 Middlesex Turnpike
 Bedford, MA 01730
 USA

 EMail: bkaliski@rsasecurity.com

 Jim Schaad
 Soaring Hawk Consulting
 PO Box 675
 Gold Bar, WA 98251
 USA

 EMail: jimsch@exmsft.com

Schaad, et al. Standards Track [Page 24]

RFC 4055 Additional RSA Algorithms and Identifiers June 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Schaad, et al. Standards Track [Page 25]

