
Network Working Group L. Zhu
Request for Comments: 4121 K. Jaganathan
Updates: 1964 Microsoft
Category: Standards Track S. Hartman
 MIT
 July 2005

 The Kerberos Version 5
 Generic Security Service Application Program Interface (GSS-API)
 Mechanism: Version 2

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document defines protocols, procedures, and conventions to be
 employed by peers implementing the Generic Security Service
 Application Program Interface (GSS-API) when using the Kerberos
 Version 5 mechanism.

 RFC 1964 is updated and incremental changes are proposed in response
 to recent developments such as the introduction of Kerberos
 cryptosystem framework. These changes support the inclusion of new
 cryptosystems, by defining new per-message tokens along with their
 encryption and checksum algorithms based on the cryptosystem
 profiles.

Zhu, et al. Standards Track [Page 1]

RFC 4121 Kerberos Version 5 GSS-API July 2005

Table of Contents

 1. Introduction ..2
 2. Key Derivation for Per-Message Tokens4
 3. Quality of Protection ...4
 4. Definitions and Token Formats5
 4.1. Context Establishment Tokens5
 4.1.1. Authenticator Checksum6
 4.2. Per-Message Tokens ...9
 4.2.1. Sequence Number9
 4.2.2. Flags Field ...9
 4.2.3. EC Field ...10
 4.2.4. Encryption and Checksum Operations10
 4.2.5. RRC Field ..11
 4.2.6. Message Layouts12
 4.3. Context Deletion Tokens13
 4.4. Token Identifier Assignment Considerations13
 5. Parameter Definitions ..14
 5.1. Minor Status Codes ..14
 5.1.1. Non-Kerberos-specific Codes14
 5.1.2. Kerberos-specific Codes15
 5.2. Buffer Sizes ..15
 6. Backwards Compatibility Considerations15
 7. Security Considerations ..16
 8. Acknowledgements..17
 9. References ...18
 9.1. Normative References18
 9.2. Informative References18

1. Introduction

 [RFC3961] defines a generic framework for describing encryption and
 checksum types to be used with the Kerberos protocol and associated
 protocols.

 [RFC1964] describes the GSS-API mechanism for Kerberos Version 5. It
 defines the format of context establishment, per-message and context
 deletion tokens, and uses algorithm identifiers for each cryptosystem
 in per-message and context deletion tokens.

 The approach taken in this document obviates the need for algorithm
 identifiers. This is accomplished by using the same encryption
 algorithm, specified by the crypto profile [RFC3961] for the session
 key or subkey that is created during context negotiation, and its
 required checksum algorithm. Message layouts of the per-message
 tokens are therefore revised to remove algorithm indicators and to
 add extra information to support the generic crypto framework
 [RFC3961].

Zhu, et al. Standards Track [Page 2]

RFC 4121 Kerberos Version 5 GSS-API July 2005

 Tokens transferred between GSS-API peers for security context
 establishment are also described in this document. The data elements
 exchanged between a GSS-API endpoint implementation and the Kerberos
 Key Distribution Center (KDC) [RFC4120] are not specific to GSS-API
 usage and are therefore defined within [RFC4120] rather than this
 specification.

 The new token formats specified in this document MUST be used with
 all "newer" encryption types [RFC4120] and MAY be used with
 encryption types that are not "newer", provided that the initiator
 and acceptor know from the context establishment that they can both
 process these new token formats.

 "Newer" encryption types are those which have been specified along
 with or since the new Kerberos cryptosystem specification [RFC3961],
 as defined in section 3.1.3 of [RFC4120]. The list of not-newer
 encryption types is as follows [RFC3961]:

 Encryption Type Assigned Number
 --
 des-cbc-crc 1
 des-cbc-md4 2
 des-cbc-md5 3
 des3-cbc-md5 5
 des3-cbc-sha1 7
 dsaWithSHA1-CmsOID 9
 md5WithRSAEncryption-CmsOID 10
 sha1WithRSAEncryption-CmsOID 11
 rc2CBC-EnvOID 12
 rsaEncryption-EnvOID 13
 rsaES-OAEP-ENV-OID 14
 des-ede3-cbc-Env-OID 15
 des3-cbc-sha1-kd 16
 rc4-hmac 23

 Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The term "little-endian order" is used for brevity to refer to the
 least-significant-octet-first encoding, while the term "big-endian
 order" is for the most-significant-octet-first encoding.

Zhu, et al. Standards Track [Page 3]

RFC 4121 Kerberos Version 5 GSS-API July 2005

2. Key Derivation for Per-Message Tokens

 To limit the exposure of a given key, [RFC3961] adopted "one-way"
 "entropy-preserving" derived keys, from a base key or protocol key,
 for different purposes or key usages.

 This document defines four key usage values below that are used to
 derive a specific key for signing and sealing messages from the
 session key or subkey [RFC4120] created during the context
 establishment.

 Name Value

 KG-USAGE-ACCEPTOR-SEAL 22
 KG-USAGE-ACCEPTOR-SIGN 23
 KG-USAGE-INITIATOR-SEAL 24
 KG-USAGE-INITIATOR-SIGN 25

 When the sender is the context acceptor, KG-USAGE-ACCEPTOR-SIGN is
 used as the usage number in the key derivation function for deriving
 keys to be used in MIC tokens (as defined in section 4.2.6.1).
 KG-USAGE-ACCEPTOR-SEAL is used for Wrap tokens (as defined in section
 4.2.6.2). Similarly, when the sender is the context initiator,
 KG-USAGE-INITIATOR-SIGN is used as the usage number in the key
 derivation function for MIC tokens, while KG-USAGE-INITIATOR-SEAL is
 used for Wrap tokens. Even if the Wrap token does not provide for
 confidentiality, the same usage values specified above are used.

 During the context initiation and acceptance sequence, the acceptor
 MAY assert a subkey in the AP-REP message. If the acceptor asserts a
 subkey, the base key is the acceptor-asserted subkey and subsequent
 per-message tokens MUST be flagged with "AcceptorSubkey", as
 described in section 4.2.2. Otherwise, if the initiator asserts a
 subkey in the AP-REQ message, the base key is this subkey; if the
 initiator does not assert a subkey, the base key is the session key
 in the service ticket.

3. Quality of Protection

 The GSS-API specification [RFC2743] provides Quality of Protection
 (QOP) values that can be used by applications to request a certain
 type of encryption or signing. A zero QOP value is used to indicate
 the "default" protection; applications that do not use the default
 QOP are not guaranteed to be portable across implementations, or even
 to inter-operate with different deployment configurations of the same
 implementation. Using a different algorithm than the one for which
 the key is defined may not be appropriate. Therefore, when the new
 method in this document is used, the QOP value is ignored.

Zhu, et al. Standards Track [Page 4]

RFC 4121 Kerberos Version 5 GSS-API July 2005

 The encryption and checksum algorithms in per-message tokens are now
 implicitly defined by the algorithms associated with the session key
 or subkey. Therefore, algorithm identifiers as described in
 [RFC1964] are no longer needed and are removed from the new token
 headers.

4. Definitions and Token Formats

 This section provides terms and definitions, as well as descriptions
 for tokens specific to the Kerberos Version 5 GSS-API mechanism.

4.1. Context Establishment Tokens

 All context establishment tokens emitted by the Kerberos Version 5
 GSS-API mechanism SHALL have the framing described in section 3.1 of
 [RFC2743], as illustrated by the following pseudo-ASN.1 structures:

 GSS-API DEFINITIONS ::=

 BEGIN

 MechType ::= OBJECT IDENTIFIER
 -- representing Kerberos V5 mechanism

 GSSAPI-Token ::=
 -- option indication (delegation, etc.) indicated within
 -- mechanism-specific token
 [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType,
 innerToken ANY DEFINED BY thisMech
 -- contents mechanism-specific
 -- ASN.1 structure not required
 }

 END

 The innerToken field starts with a two-octet token-identifier
 (TOK_ID) expressed in big-endian order, followed by a Kerberos
 message.

 Following are the TOK_ID values used in the context establishment
 tokens:

 Token TOK_ID Value in Hex

 KRB_AP_REQ 01 00
 KRB_AP_REP 02 00
 KRB_ERROR 03 00

Zhu, et al. Standards Track [Page 5]

RFC 4121 Kerberos Version 5 GSS-API July 2005

 Where Kerberos message KRB_AP_REQUEST, KRB_AP_REPLY, and KRB_ERROR
 are defined in [RFC4120].

 If an unknown token identifier (TOK_ID) is received in the initial
 context establishment token, the receiver MUST return
 GSS_S_CONTINUE_NEEDED major status, and the returned output token
 MUST contain a KRB_ERROR message with the error code
 KRB_AP_ERR_MSG_TYPE [RFC4120].

4.1.1. Authenticator Checksum

 The authenticator in the KRB_AP_REQ message MUST include the optional
 sequence number and the checksum field. The checksum field is used
 to convey service flags, channel bindings, and optional delegation
 information.

 The checksum type MUST be 0x8003. When delegation is used, a
 ticket-granting ticket will be transferred in a KRB_CRED message.
 This ticket SHOULD have its forwardable flag set. The EncryptedData
 field of the KRB_CRED message [RFC4120] MUST be encrypted in the
 session key of the ticket used to authenticate the context.

 The authenticator checksum field SHALL have the following format:

 Octet Name Description

 0..3 Lgth Number of octets in Bnd field; Represented
 in little-endian order; Currently contains
 hex value 10 00 00 00 (16).
 4..19 Bnd Channel binding information, as described in
 section 4.1.1.2.
 20..23 Flags Four-octet context-establishment flags in
 little-endian order as described in section
 4.1.1.1.
 24..25 DlgOpt The delegation option identifier (=1) in
 little-endian order [optional]. This field
 and the next two fields are present if and
 only if GSS_C_DELEG_FLAG is set as described
 in section 4.1.1.1.
 26..27 Dlgth The length of the Deleg field in
 little-endian order [optional].
 28..(n-1) Deleg A KRB_CRED message (n = Dlgth + 28)
 [optional].
 n..last Exts Extensions [optional].

 The length of the checksum field MUST be at least 24 octets when
 GSS_C_DELEG_FLAG is not set (as described in section 4.1.1.1), and at
 least 28 octets plus Dlgth octets when GSS_C_DELEG_FLAG is set. When

Zhu, et al. Standards Track [Page 6]

RFC 4121 Kerberos Version 5 GSS-API July 2005

 GSS_C_DELEG_FLAG is set, the DlgOpt, Dlgth, and Deleg fields of the
 checksum data MUST immediately follow the Flags field. The optional
 trailing octets (namely the "Exts" field) facilitate future
 extensions to this mechanism. When delegation is not used, but the
 Exts field is present, the Exts field starts at octet 24 (DlgOpt,
 Dlgth and Deleg are absent).

 Initiators that do not support the extensions MUST NOT include more
 than 24 octets in the checksum field (when GSS_C_DELEG_FLAG is not
 set) or more than 28 octets plus the KRB_CRED in the Deleg field
 (when GSS_C_DELEG_FLAG is set). Acceptors that do not understand the

 Extensions MUST ignore any octets past the Deleg field of the
 checksum data (when GSS_C_DELEG_FLAG is set) or past the Flags field
 of the checksum data (when GSS_C_DELEG_FLAG is not set).

4.1.1.1. Checksum Flags Field

 The checksum "Flags" field is used to convey service options or
 extension negotiation information.

 The following context establishment flags are defined in [RFC2744].

 Flag Name Value

 GSS_C_DELEG_FLAG 1
 GSS_C_MUTUAL_FLAG 2
 GSS_C_REPLAY_FLAG 4
 GSS_C_SEQUENCE_FLAG 8
 GSS_C_CONF_FLAG 16
 GSS_C_INTEG_FLAG 32

 Context establishment flags are exposed to the calling application.
 If the calling application desires a particular service option, then
 it requests that option via GSS_Init_sec_context() [RFC2743]. If the
 corresponding return state values [RFC2743] indicate that any of the
 above optional context level services will be active on the context,
 the corresponding flag values in the table above MUST be set in the
 checksum Flags field.

 Flag values 4096..524288 (2^12, 2^13, ..., 2^19) are reserved for use
 with legacy vendor-specific extensions to this mechanism.

Zhu, et al. Standards Track [Page 7]

RFC 4121 Kerberos Version 5 GSS-API July 2005

 All other flag values not specified herein are reserved for future
 use. Future revisions of this mechanism may use these reserved flags
 and may rely on implementations of this version to not use such flags
 in order to properly negotiate mechanism versions. Undefined flag
 values MUST be cleared by the sender, and unknown flags MUST be
 ignored by the receiver.

4.1.1.2. Channel Binding Information

 These tags are intended to be used to identify the particular
 communications channel for which the GSS-API security context
 establishment tokens are intended, thus limiting the scope within
 which an intercepted context establishment token can be reused by an
 attacker (see [RFC2743], section 1.1.6).

 When using C language bindings, channel bindings are communicated to
 the GSS-API using the following structure [RFC2744]:

 typedef struct gss_channel_bindings_struct {
 OM_uint32 initiator_addrtype;
 gss_buffer_desc initiator_address;
 OM_uint32 acceptor_addrtype;
 gss_buffer_desc acceptor_address;
 gss_buffer_desc application_data;
 } *gss_channel_bindings_t;

 The member fields and constants used for different address types are
 defined in [RFC2744].

 The "Bnd" field contains the MD5 hash of channel bindings, taken over
 all non-null components of bindings, in order of declaration.
 Integer fields within channel bindings are represented in little-
 endian order for the purposes of the MD5 calculation.

 In computing the contents of the Bnd field, the following detailed
 points apply:

 (1) For purposes of MD5 hash computation, each integer field and
 input length field SHALL be formatted into four octets, using
 little-endian octet ordering.

 (2) All input length fields within gss_buffer_desc elements of a
 gss_channel_bindings_struct even those which are zero-valued,
 SHALL be included in the hash calculation. The value elements of
 gss_buffer_desc elements SHALL be dereferenced, and the resulting
 data SHALL be included within the hash computation, only for the
 case of gss_buffer_desc elements having non-zero length
 specifiers.

Zhu, et al. Standards Track [Page 8]

RFC 4121 Kerberos Version 5 GSS-API July 2005

 (3) If the caller passes the value GSS_C_NO_BINDINGS instead of a
 valid channel binding structure, the Bnd field SHALL be set to 16
 zero-valued octets.

 If the caller to GSS_Accept_sec_context [RFC2743] passes in
 GSS_C_NO_CHANNEL_BINDINGS [RFC2744] as the channel bindings, then the
 acceptor MAY ignore any channel bindings supplied by the initiator,
 returning success even if the initiator did pass in channel bindings.

 If the application supplies, in the channel bindings, a buffer with a
 length field larger than 4294967295 (2^32 - 1), the implementation of
 this mechanism MAY choose to reject the channel bindings altogether,
 using major status GSS_S_BAD_BINDINGS [RFC2743]. In any case, the
 size of channel-binding data buffers that can be used (interoperable,
 without extensions) with this specification is limited to 4294967295
 octets.

4.2. Per-Message Tokens

 Two classes of tokens are defined in this section: (1) "MIC" tokens,
 emitted by calls to GSS_GetMIC() and consumed by calls to
 GSS_VerifyMIC(), and (2) "Wrap" tokens, emitted by calls to
 GSS_Wrap() and consumed by calls to GSS_Unwrap().

 These new per-message tokens do not include the generic GSS-API token
 framing used by the context establishment tokens. These new tokens
 are designed to be used with newer crypto systems that can have
 variable-size checksums.

4.2.1. Sequence Number

 To distinguish intentionally-repeated messages from maliciously-
 replayed ones, per-message tokens contain a sequence number field,
 which is a 64 bit integer expressed in big-endian order. After
 sending a GSS_GetMIC() or GSS_Wrap() token, the sender’s sequence
 numbers SHALL be incremented by one.

4.2.2. Flags Field

 The "Flags" field is a one-octet integer used to indicate a set of
 attributes for the protected message. For example, one flag is
 allocated as the direction-indicator, thus preventing the acceptance
 of the same message sent back in the reverse direction by an
 adversary.

Zhu, et al. Standards Track [Page 9]

RFC 4121 Kerberos Version 5 GSS-API July 2005

 The meanings of bits in this field (the least significant bit is bit
 0) are as follows:

 Bit Name Description
 --
 0 SentByAcceptor When set, this flag indicates the sender
 is the context acceptor. When not set,
 it indicates the sender is the context
 initiator.
 1 Sealed When set in Wrap tokens, this flag
 indicates confidentiality is provided
 for. It SHALL NOT be set in MIC tokens.
 2 AcceptorSubkey A subkey asserted by the context acceptor
 is used to protect the message.

 The rest of available bits are reserved for future use and MUST be
 cleared. The receiver MUST ignore unknown flags.

4.2.3. EC Field

 The "EC" (Extra Count) field is a two-octet integer field expressed
 in big-endian order.

 In Wrap tokens with confidentiality, the EC field SHALL be used to
 encode the number of octets in the filler, as described in section
 4.2.4.

 In Wrap tokens without confidentiality, the EC field SHALL be used to
 encode the number of octets in the trailing checksum, as described in
 section 4.2.4.

4.2.4. Encryption and Checksum Operations

 The encryption algorithms defined by the crypto profiles provide for
 integrity protection [RFC3961]. Therefore, no separate checksum is
 needed.

 The result of decryption can be longer than the original plaintext
 [RFC3961] and the extra trailing octets are called "crypto-system
 residue" in this document. However, given the size of any plaintext
 data, one can always find a (possibly larger) size, such that when
 padding the to-be-encrypted text to that size, there will be no
 crypto-system residue added [RFC3961].

 In Wrap tokens that provide for confidentiality, the first 16 octets
 of the Wrap token (the "header", as defined in section 4.2.6), SHALL
 be appended to the plaintext data before encryption. Filler octets
 MAY be inserted between the plaintext data and the "header." The

Zhu, et al. Standards Track [Page 10]

RFC 4121 Kerberos Version 5 GSS-API July 2005

 values and size of the filler octets are chosen by implementations,
 such that there SHALL be no crypto-system residue present after the
 decryption. The resulting Wrap token is {"header" |
 encrypt(plaintext-data | filler | "header")}, where encrypt() is the
 encryption operation (which provides for integrity protection)
 defined in the crypto profile [RFC3961], and the RRC field (as
 defined in section 4.2.5) in the to-be-encrypted header contains the
 hex value 00 00.

 In Wrap tokens that do not provide for confidentiality, the checksum
 SHALL be calculated first over the to-be-signed plaintext data, and
 then over the first 16 octets of the Wrap token (the "header", as
 defined in section 4.2.6). Both the EC field and the RRC field in
 the token header SHALL be filled with zeroes for the purpose of
 calculating the checksum. The resulting Wrap token is {"header" |
 plaintext-data | get_mic(plaintext-data | "header")}, where get_mic()
 is the checksum operation for the required checksum mechanism of the
 chosen encryption mechanism defined in the crypto profile [RFC3961].

 The parameters for the key and the cipher-state in the encrypt() and
 get_mic() operations have been omitted for brevity.

 For MIC tokens, the checksum SHALL be calculated as follows: the
 checksum operation is calculated first over the to-be-signed
 plaintext data, and then over the first 16 octets of the MIC token,
 where the checksum mechanism is the required checksum mechanism of
 the chosen encryption mechanism defined in the crypto profile
 [RFC3961].

 The resulting Wrap and MIC tokens bind the data to the token header,
 including the sequence number and the direction indicator.

4.2.5. RRC Field

 The "RRC" (Right Rotation Count) field in Wrap tokens is added to
 allow the data to be encrypted in-place by existing SSPI (Security
 Service Provider Interface) [SSPI] applications that do not provide
 an additional buffer for the trailer (the cipher text after the in-
 place-encrypted data) in addition to the buffer for the header (the
 cipher text before the in-place-encrypted data). Excluding the first
 16 octets of the token header, the resulting Wrap token in the
 previous section is rotated to the right by "RRC" octets. The net
 result is that "RRC" octets of trailing octets are moved toward the
 header.

 Consider the following as an example of this rotation operation:
 Assume that the RRC value is 3 and the token before the rotation is
 {"header" | aa | bb | cc | dd | ee | ff | gg | hh}. The token after

Zhu, et al. Standards Track [Page 11]

RFC 4121 Kerberos Version 5 GSS-API July 2005

 rotation would be {"header" | ff | gg | hh | aa | bb | cc | dd | ee
 }, where {aa | bb | cc |...| hh} would be used to indicate the octet
 sequence.

 The RRC field is expressed as a two-octet integer in big-endian
 order.

 The rotation count value is chosen by the sender based on
 implementation details. The receiver MUST be able to interpret all
 possible rotation count values, including rotation counts greater
 than the length of the token.

4.2.6. Message Layouts

 Per-message tokens start with a two-octet token identifier (TOK_ID)
 field, expressed in big-endian order. These tokens are defined
 separately in the following sub-sections.

4.2.6.1. MIC Tokens

 Use of the GSS_GetMIC() call yields a token (referred as the MIC
 token in this document), separate from the user data being protected,
 which can be used to verify the integrity of that data as received.
 The token has the following format:

 Octet no Name Description
 --
 0..1 TOK_ID Identification field. Tokens emitted by
 GSS_GetMIC() contain the hex value 04 04
 expressed in big-endian order in this
 field.
 2 Flags Attributes field, as described in section
 4.2.2.
 3..7 Filler Contains five octets of hex value FF.
 8..15 SND_SEQ Sequence number field in clear text,
 expressed in big-endian order.
 16..last SGN_CKSUM Checksum of the "to-be-signed" data and
 octet 0..15, as described in section 4.2.4.

 The Filler field is included in the checksum calculation for
 simplicity.

Zhu, et al. Standards Track [Page 12]

RFC 4121 Kerberos Version 5 GSS-API July 2005

4.2.6.2. Wrap Tokens

 Use of the GSS_Wrap() call yields a token (referred as the Wrap token
 in this document), which consists of a descriptive header, followed
 by a body portion that contains either the input user data in
 plaintext concatenated with the checksum, or the input user data
 encrypted. The GSS_Wrap() token SHALL have the following format:

 Octet no Name Description
 --
 0..1 TOK_ID Identification field. Tokens emitted by
 GSS_Wrap() contain the hex value 05 04
 expressed in big-endian order in this
 field.
 2 Flags Attributes field, as described in section
 4.2.2.
 3 Filler Contains the hex value FF.
 4..5 EC Contains the "extra count" field, in big-
 endian order as described in section 4.2.3.
 6..7 RRC Contains the "right rotation count" in big-
 endian order, as described in section
 4.2.5.
 8..15 SND_SEQ Sequence number field in clear text,
 expressed in big-endian order.
 16..last Data Encrypted data for Wrap tokens with
 confidentiality, or plaintext data followed
 by the checksum for Wrap tokens without
 confidentiality, as described in section
 4.2.4.

4.3. Context Deletion Tokens

 Context deletion tokens are empty in this mechanism. Both peers to a
 security context invoke GSS_Delete_sec_context() [RFC2743]
 independently, passing a null output_context_token buffer to indicate
 that no context_token is required. Implementations of
 GSS_Delete_sec_context() should delete relevant locally-stored
 context information.

4.4. Token Identifier Assignment Considerations

 Token identifiers (TOK_ID) from 0x60 0x00 through 0x60 0xFF inclusive
 are reserved and SHALL NOT be assigned. Thus, by examining the first
 two octets of a token, one can tell unambiguously if it is wrapped
 with the generic GSS-API token framing.

Zhu, et al. Standards Track [Page 13]

RFC 4121 Kerberos Version 5 GSS-API July 2005

5. Parameter Definitions

 This section defines parameter values used by the Kerberos V5 GSS-API
 mechanism. It defines interface elements that support portability,
 and assumes use of C language bindings per [RFC2744].

5.1. Minor Status Codes

 This section recommends common symbolic names for minor_status values
 to be returned by the Kerberos V5 GSS-API mechanism. Use of these
 definitions will enable independent implementers to enhance
 application portability across different implementations of the
 mechanism defined in this specification. (In all cases,
 implementations of GSS_Display_status() will enable callers to
 convert minor_status indicators to text representations.) Each
 implementation should make available, through include files or other
 means, a facility to translate these symbolic names into the concrete
 values that a particular GSS-API implementation uses to represent the
 minor_status values specified in this section.

 This list may grow over time and the need for additional minor_status
 codes, specific to particular implementations, may arise. However,
 it is recommended that implementations should return a minor_status
 value as defined on a mechanism-wide basis within this section when
 that code accurately represents reportable status rather than using a
 separate, implementation-defined code.

5.1.1. Non-Kerberos-specific Codes

 GSS_KRB5_S_G_BAD_SERVICE_NAME
 /* "No @ in SERVICE-NAME name string" */
 GSS_KRB5_S_G_BAD_STRING_UID
 /* "STRING-UID-NAME contains nondigits" */
 GSS_KRB5_S_G_NOUSER
 /* "UID does not resolve to username" */
 GSS_KRB5_S_G_VALIDATE_FAILED
 /* "Validation error" */
 GSS_KRB5_S_G_BUFFER_ALLOC
 /* "Couldn’t allocate gss_buffer_t data" */
 GSS_KRB5_S_G_BAD_MSG_CTX
 /* "Message context invalid" */
 GSS_KRB5_S_G_WRONG_SIZE
 /* "Buffer is the wrong size" */
 GSS_KRB5_S_G_BAD_USAGE
 /* "Credential usage type is unknown" */
 GSS_KRB5_S_G_UNKNOWN_QOP
 /* "Unknown quality of protection specified" */

Zhu, et al. Standards Track [Page 14]

RFC 4121 Kerberos Version 5 GSS-API July 2005

5.1.2. Kerberos-specific Codes

 GSS_KRB5_S_KG_CCACHE_NOMATCH
 /* "Client principal in credentials does not match
 specified name" */
 GSS_KRB5_S_KG_KEYTAB_NOMATCH
 /* "No key available for specified service
 principal" */
 GSS_KRB5_S_KG_TGT_MISSING
 /* "No Kerberos ticket-granting ticket available" */
 GSS_KRB5_S_KG_NO_SUBKEY
 /* "Authenticator has no subkey" */
 GSS_KRB5_S_KG_CONTEXT_ESTABLISHED
 /* "Context is already fully established" */
 GSS_KRB5_S_KG_BAD_SIGN_TYPE
 /* "Unknown signature type in token" */
 GSS_KRB5_S_KG_BAD_LENGTH
 /* "Invalid field length in token" */
 GSS_KRB5_S_KG_CTX_INCOMPLETE
 /* "Attempt to use incomplete security context" */

5.2. Buffer Sizes

 All implementations of this specification MUST be capable of
 accepting buffers of at least 16K octets as input to GSS_GetMIC(),
 GSS_VerifyMIC(), and GSS_Wrap(). They MUST also be capable of
 accepting the output_token generated by GSS_Wrap() for a 16K octet
 input buffer as input to GSS_Unwrap(). Implementations SHOULD
 support 64K octet input buffers, and MAY support even larger input
 buffer sizes.

6. Backwards Compatibility Considerations

 The new token formats defined in this document will only be
 recognized by new implementations. To address this, implementations
 can always use the explicit sign or seal algorithm in [RFC1964] when
 the key type corresponds to not "newer" enctypes. As an alternative,
 one might retry sending the message with the sign or seal algorithm
 explicitly defined as in [RFC1964]. However, this would require
 either the use of a mechanism such as [RFC2478] to securely negotiate
 the method, or the use of an out-of-band mechanism to choose the
 appropriate mechanism. For this reason, it is RECOMMENDED that the
 new token formats defined in this document SHOULD be used only if
 both peers are known to support the new mechanism during context
 negotiation because of, for example, the use of "new" enctypes.

Zhu, et al. Standards Track [Page 15]

RFC 4121 Kerberos Version 5 GSS-API July 2005

 GSS_Unwrap() or GSS_VerifyMIC() can process a message token as
 follows: it can look at the first octet of the token header, and if
 it is 0x60, then the token must carry the generic GSS-API pseudo
 ASN.1 framing. Otherwise, the first two octets of the token contain
 the TOK_ID that uniquely identify the token message format.

7. Security Considerations

 Channel bindings are validated by the acceptor. The acceptor can
 ignore the channel bindings restriction supplied by the initiator and
 carried in the authenticator checksum, if (1) channel bindings are
 not used by GSS_Accept_sec_context [RFC2743], and (2) the acceptor
 does not prove to the initiator that it has the same channel bindings
 as the initiator (even if the client requested mutual
 authentication). This limitation should be considered by designers
 of applications that would use channel bindings, whether to limit the
 use of GSS-API contexts to nodes with specific network addresses, to
 authenticate other established, secure channels using Kerberos
 Version 5, or for any other purpose.

 Session key types are selected by the KDC. Under the current
 mechanism, no negotiation of algorithm types occurs, so server-side
 (acceptor) implementations cannot request that clients not use
 algorithm types not understood by the server. However,
 administrators can control what enctypes can be used for session keys
 for this mechanism by controlling the set of the ticket session key
 enctypes which the KDC is willing to use in tickets for a given
 acceptor principal. Therefore, the KDC could be given the task of
 limiting session keys for a given service to types actually supported
 by the Kerberos and GSSAPI software on the server. This has a
 drawback for cases in which a service principal name is used for both
 GSSAPI-based and non-GSSAPI-based communication (most notably the
 "host" service key), if the GSSAPI implementation does not understand
 (for example) AES [RFC3962], but the Kerberos implementation does.
 This means that AES session keys cannot be issued for that service
 principal, which keeps the protection of non-GSSAPI services weaker
 than necessary. KDC administrators desiring to limit the session key
 types to support interoperability with such GSSAPI implementations
 should carefully weigh the reduction in protection offered by such
 mechanisms against the benefits of interoperability.

Zhu, et al. Standards Track [Page 16]

RFC 4121 Kerberos Version 5 GSS-API July 2005

8. Acknowledgements

 Ken Raeburn and Nicolas Williams corrected many of our errors in the
 use of generic profiles and were instrumental in the creation of this
 document.

 The text for security considerations was contributed by Nicolas
 Williams and Ken Raeburn.

 Sam Hartman and Ken Raeburn suggested the "floating trailer" idea,
 namely the encoding of the RRC field.

 Sam Hartman and Nicolas Williams recommended the replacing our
 earlier key derivation function for directional keys with different
 key usage numbers for each direction as well as retaining the
 directional bit for maximum compatibility.

 Paul Leach provided numerous suggestions and comments.

 Scott Field, Richard Ward, Dan Simon, Kevin Damour, and Simon
 Josefsson also provided valuable inputs on this document.

 Jeffrey Hutzelman provided comments and clarifications for the text
 related to the channel bindings.

 Jeffrey Hutzelman and Russ Housley suggested many editorial changes.

 Luke Howard provided implementations of this document for the Heimdal
 code base, and helped inter-operability testing with the Microsoft
 code base, together with Love Hornquist Astrand. These experiments
 formed the basis of this document.

 Martin Rex provided suggestions of TOK_ID assignment recommendations,
 thus the token tagging in this document is unambiguous if the token
 is wrapped with the pseudo ASN.1 header.

 John Linn wrote the original Kerberos Version 5 mechanism
 specification [RFC1964], of which some text has been retained.

Zhu, et al. Standards Track [Page 17]

RFC 4121 Kerberos Version 5 GSS-API July 2005

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC2744] Wray, J., "Generic Security Service API Version 2:
 C-bindings", RFC 2744, January 2000.

 [RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC
 1964, June 1996.

 [RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
 Kerberos 5", RFC 3961, February 2005.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 July 2005.

9.2. Informative References

 [SSPI] Leach, P., "Security Service Provider Interface",
 Microsoft Developer Network (MSDN), April 2003.

 [RFC3962] Raeburn, K., "Advanced Encryption Standard (AES)
 Encryption for Kerberos 5", RFC 3962, February 2005.

 [RFC2478] Baize, E. and D. Pinkas, "The Simple and Protected GSS-API
 Negotiation Mechanism", RFC 2478, December 1998.

Zhu, et al. Standards Track [Page 18]

RFC 4121 Kerberos Version 5 GSS-API July 2005

Authors’ Addresses

 Larry Zhu
 One Microsoft Way
 Redmond, WA 98052 - USA

 EMail: LZhu@microsoft.com

 Karthik Jaganathan
 One Microsoft Way
 Redmond, WA 98052 - USA

 EMail: karthikj@microsoft.com

 Sam Hartman
 Massachusetts Institute of Technology
 77 Massachusetts Avenue
 Cambridge, MA 02139 - USA

 EMail: hartmans-ietf@mit.edu

Zhu, et al. Standards Track [Page 19]

RFC 4121 Kerberos Version 5 GSS-API July 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Zhu, et al. Standards Track [Page 20]

