
Network Working Group F. Cusack
Request for Comments: 4256 savecore.net
Category: Standards Track M. Forssen
 AppGate Network Security AB
 January 2006

 Generic Message Exchange Authentication for
 the Secure Shell Protocol (SSH)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 The Secure Shell Protocol (SSH) is a protocol for secure remote login
 and other secure network services over an insecure network. This
 document describes a general purpose authentication method for the
 SSH protocol, suitable for interactive authentications where the
 authentication data should be entered via a keyboard (or equivalent
 alphanumeric input device). The major goal of this method is to
 allow the SSH client to support a whole class of authentication
 mechanism(s) without knowing the specifics of the actual
 authentication mechanism(s).

1. Introduction

 The SSH authentication protocol [SSH-USERAUTH] is a general-purpose
 user authentication protocol. It is intended to be run over the SSH
 transport layer protocol [SSH-TRANS]. The authentication protocol
 assumes that the underlying protocols provide integrity and
 confidentiality protection.

 This document describes a general purpose authentication method for
 the SSH authentication protocol. This method is suitable for
 interactive authentication methods that do not need any special
 software support on the client side. Instead, all authentication
 data should be entered via the keyboard. The major goal of this
 method is to allow the SSH client to have little or no knowledge of

Cusack & Forssen Standards Track [Page 1]

RFC 4256 SSH Generic Interactive Authentication January 2006

 the specifics of the underlying authentication mechanism(s) used by
 the SSH server. This will allow the server to arbitrarily select or
 change the underlying authentication mechanism(s) without having to
 update client code.

 The name for this authentication method is "keyboard-interactive".

 This document should be read only after reading the SSH architecture
 document [SSH-ARCH] and the SSH authentication document
 [SSH-USERAUTH]. This document freely uses terminology and notation
 from both documents without reference or further explanation.

 This document also describes some of the client interaction with the
 user in obtaining the authentication information. While this is
 somewhat out of the scope of a protocol specification, it is
 described here anyway because some aspects of the protocol are
 specifically designed based on user interface issues, and omitting
 this information may lead to incompatible or awkward implementations.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC-2119].

2. Rationale

 Currently defined authentication methods for SSH are tightly coupled
 with the underlying authentication mechanism. This makes it
 difficult to add new mechanisms for authentication as all clients
 must be updated to support the new mechanism. With the generic
 method defined here, clients will not require code changes to support
 new authentication mechanisms, and if a separate authentication layer
 is used, such as [PAM], then the server may not need any code changes
 either.

 This presents a significant advantage to other methods, such as the
 "password" method (defined in [SSH-USERAUTH]), as new (presumably
 stronger) methods may be added "at will" and system security can be
 transparently enhanced.

 Challenge-response and One Time Password mechanisms are also easily
 supported with this authentication method.

 However, this authentication method is limited to authentication
 mechanisms that do not require any special code, such as hardware
 drivers or password mangling, on the client.

Cusack & Forssen Standards Track [Page 2]

RFC 4256 SSH Generic Interactive Authentication January 2006

3. Protocol Exchanges

 The client initiates the authentication with an
 SSH_MSG_USERAUTH_REQUEST message. The server then requests
 authentication information from the client with an
 SSH_MSG_USERAUTH_INFO_REQUEST message. The client obtains the
 information from the user and then responds with an
 SSM_MSG_USERAUTH_INFO_RESPONSE message. The server MUST NOT send
 another SSH_MSG_USERAUTH_INFO_REQUEST before it has received the
 answer from the client.

3.1. Initial Exchange

 The authentication starts with the client sending the following
 packet:

 byte SSH_MSG_USERAUTH_REQUEST
 string user name (ISO-10646 UTF-8, as defined in [RFC-3629])
 string service name (US-ASCII)
 string "keyboard-interactive" (US-ASCII)
 string language tag (as defined in [RFC-3066])
 string submethods (ISO-10646 UTF-8)

 The language tag is deprecated and SHOULD be the empty string. It
 may be removed in a future revision of this specification. Instead,
 the server SHOULD select the language to be used based on the tags
 communicated during key exchange [SSH-TRANS].

 If the language tag is not the empty string, the server SHOULD use
 the specified language for any messages sent to the client as part of
 this protocol. The language tag SHOULD NOT be used for language
 selection for messages outside of this protocol. If the server does
 not support the requested language, the language to be used is
 implementation-dependent.

 The submethods field is included so the user can give a hint of which
 actual methods he wants to use. It is a comma-separated list of
 authentication submethods (software or hardware) that the user
 prefers. If the client has knowledge of the submethods preferred by
 the user, presumably through a configuration setting, it MAY use the
 submethods field to pass this information to the server. Otherwise,
 it MUST send the empty string.

 The actual names of the submethods is something the user and the
 server need to agree upon.

 Server interpretation of the submethods field is implementation-
 dependent.

Cusack & Forssen Standards Track [Page 3]

RFC 4256 SSH Generic Interactive Authentication January 2006

 One possible implementation strategy of the submethods field on the
 server is that, unless the user may use multiple different
 submethods, the server ignores this field. If the user may
 authenticate using one of several different submethods, the server
 should treat the submethods field as a hint on which submethod the
 user wants to use this time.

 Note that when this message is sent to the server, the client has not
 yet prompted the user for a password, and so that information is NOT
 included with this initial message (unlike the "password" method).

 The server MUST reply with an SSH_MSG_USERAUTH_SUCCESS,
 SSH_MSG_USERAUTH_FAILURE, or SSH_MSG_USERAUTH_INFO_REQUEST message.

 The server SHOULD NOT reply with the SSH_MSG_USERAUTH_FAILURE message
 if the failure is based on the user name or service name; instead, it
 SHOULD send SSH_MSG_USERAUTH_INFO_REQUEST message(s), which look just
 like the one(s) that would have been sent in cases where
 authentication should proceed, and then send the failure message
 (after a suitable delay, as described below). The goal is to make it
 impossible to find valid usernames by comparing the results when
 authenticating as different users.

 The server MAY reply with an SSH_MSG_USERAUTH_SUCCESS message if no
 authentication is required for the user in question. However, a
 better approach, for reasons discussed above, might be to reply with
 an SSH_MSG_USERAUTH_INFO_REQUEST message and ignore (don’t validate)
 the response.

3.2. Information Requests

 Requests are generated from the server using the
 SSH_MSG_USERAUTH_INFO_REQUEST message.

 The server may send as many requests as are necessary to authenticate
 the client; the client MUST be prepared to handle multiple exchanges.
 However, the server MUST NOT ever have more than one
 SSH_MSG_USERAUTH_INFO_REQUEST message outstanding. That is, it may
 not send another request before the client has answered.

Cusack & Forssen Standards Track [Page 4]

RFC 4256 SSH Generic Interactive Authentication January 2006

 The SSH_MSG_USERAUTH_INFO_REQUEST message is defined as follows:

 byte SSH_MSG_USERAUTH_INFO_REQUEST
 string name (ISO-10646 UTF-8)
 string instruction (ISO-10646 UTF-8)
 string language tag (as defined in [RFC-3066])
 int num-prompts
 string prompt[1] (ISO-10646 UTF-8)
 boolean echo[1]
 ...
 string prompt[num-prompts] (ISO-10646 UTF-8)
 boolean echo[num-prompts]

 The language tag is deprecated and SHOULD be the empty string. It
 may be removed in a future revision of this specification. Instead,
 the server SHOULD select the language used based on the tags
 communicated during key exchange [SSH-TRANS].

 If the language tag is not the empty string, the server SHOULD use
 the specified language for any messages sent to the client as part of
 this protocol. The language tag SHOULD NOT be used for language
 selection for messages outside of this protocol. If the server does
 not support the requested language, the language to be used is
 implementation-dependent.

 The server SHOULD take into consideration that some clients may not
 be able to properly display a long name or prompt field (see next
 section), and limit the lengths of those fields if possible. For
 example, instead of an instruction field of "Enter Password" and a
 prompt field of "Password for user23@host.domain: ", a better choice
 might be an instruction field of "Password authentication for
 user23@host.domain" and a prompt field of "Password: ". It is
 expected that this authentication method would typically be backended
 by [PAM] and so such choices would not be possible.

 The name and instruction fields MAY be empty strings; the client MUST
 be prepared to handle this correctly. The prompt field(s) MUST NOT
 be empty strings.

 The num-prompts field may be ‘0’, in which case there will be no
 prompt/echo fields in the message, but the client SHOULD still
 display the name and instruction fields (as described below).

Cusack & Forssen Standards Track [Page 5]

RFC 4256 SSH Generic Interactive Authentication January 2006

3.3. User Interface

 Upon receiving a request message, the client SHOULD prompt the user
 as follows:

 A command line interface (CLI) client SHOULD print the name and
 instruction (if non-empty), adding newlines. Then, for each prompt
 in turn, the client SHOULD display the prompt and read the user
 input.

 A graphical user interface (GUI) client has many choices on how to
 prompt the user. One possibility is to use the name field (possibly
 prefixed with the application’s name) as the title of a dialog window
 in which the prompt(s) are presented. In that dialog window, the
 instruction field would be a text message, and the prompts would be
 labels for text entry fields. All fields SHOULD be presented to the
 user. For example, an implementation SHOULD NOT discard the name
 field because its windows lack titles; instead, it SHOULD find
 another way to display this information. If prompts are presented in
 a dialog window, then the client SHOULD NOT present each prompt in a
 separate window.

 All clients MUST properly handle an instruction field with embedded
 newlines. They SHOULD also be able to display at least 30 characters
 for the name and prompts. If the server presents names or prompts
 longer than 30 characters, the client MAY truncate these fields to
 the length it can display. If the client does truncate any fields,
 there MUST be an obvious indication that such truncation has
 occurred. The instruction field SHOULD NOT be truncated.

 Clients SHOULD use control character filtering, as discussed in
 [SSH-ARCH], to avoid attacks by including terminal control characters
 in the fields to be displayed.

 For each prompt, the corresponding echo field indicates whether the
 user input should be echoed as characters are typed. Clients SHOULD
 correctly echo/mask user input for each prompt independently of other
 prompts in the request message. If a client does not honor the echo
 field for whatever reason, then the client MUST err on the side of
 masking input. A GUI client might like to have a checkbox toggling
 echo/mask. Clients SHOULD NOT add any additional characters to the
 prompt, such as ": " (colon-space); the server is responsible for
 supplying all text to be displayed to the user. Clients MUST also
 accept empty responses from the user and pass them on as empty
 strings.

Cusack & Forssen Standards Track [Page 6]

RFC 4256 SSH Generic Interactive Authentication January 2006

3.4. Information Responses

 After obtaining the requested information from the user, the client
 MUST respond with an SSH_MSG_USERAUTH_INFO_RESPONSE message.

 The format of the SSH_MSG_USERAUTH_INFO_RESPONSE message is as
 follows:

 byte SSH_MSG_USERAUTH_INFO_RESPONSE
 int num-responses
 string response[1] (ISO-10646 UTF-8)
 ...
 string response[num-responses] (ISO-10646 UTF-8)

 Note that the responses are encoded in ISO-10646 UTF-8. It is up to
 the server how it interprets the responses and validates them.
 However, if the client reads the responses in some other encoding
 (e.g., ISO 8859-1), it MUST convert the responses to ISO-10646 UTF-8
 before transmitting.

 From an internationalization standpoint, it is desired that if a user
 enters responses, the authentication process will work regardless of
 what OS and client software they are using. Doing so requires
 normalization. Systems supporting non-ASCII passwords SHOULD always
 normalize passwords and usernames whenever they are added to the
 database, or compare them (with or without hashing) to existing
 entries in the database. SSH implementations that both store the
 passwords and compare them SHOULD use [SASLPREP] for normalization.

 If the num-responses field does not match the num-prompts field in
 the request message, the server MUST send a failure message.

 In the case that the server sends a ‘0’ num-prompts field in the
 request message, the client MUST send a response message with a ‘0’
 num-responses field to complete the exchange.

 The responses MUST be ordered as the prompts were ordered. That is,
 response[n] MUST be the answer to prompt[n].

 After receiving the response, the server MUST send either an
 SSH_MSG_USERAUTH_SUCCESS, SSH_MSG_USERAUTH_FAILURE, or another
 SSH_MSG_USERAUTH_INFO_REQUEST message.

 If the server fails to authenticate the user (through the underlying
 authentication mechanism(s)), it SHOULD NOT send another request
 message(s) in an attempt to obtain new authentication data; instead,
 it SHOULD send a failure message. The only time the server should
 send multiple request messages is if additional authentication data

Cusack & Forssen Standards Track [Page 7]

RFC 4256 SSH Generic Interactive Authentication January 2006

 is needed (i.e., because there are multiple underlying authentication
 mechanisms that must be used to authenticate the user).

 If the server intends to respond with a failure message, it MAY delay
 for an implementation-dependent time before sending it to the client.
 It is suspected that implementations are likely to make the time
 delay configurable; a suggested default is 2 seconds.

4. Authentication Examples

 Here are two example exchanges between a client and server. The
 first is an example of challenge/response with a handheld token.
 This is an authentication that is not otherwise possible with other
 authentication methods.

 C: byte SSH_MSG_USERAUTH_REQUEST
 C: string "user23"
 C: string "ssh-userauth"
 C: string "keyboard-interactive"
 C: string ""
 C: string ""

 S: byte SSH_MSG_USERAUTH_INFO_REQUEST
 S: string "CRYPTOCard Authentication"
 S: string "The challenge is ’14315716’"
 S: string "en-US"
 S: int 1
 S: string "Response: "
 S: boolean TRUE

 [Client prompts user for password]

 C: byte SSH_MSG_USERAUTH_INFO_RESPONSE
 C: int 1
 C: string "6d757575"

 S: byte SSH_MSG_USERAUTH_SUCCESS

Cusack & Forssen Standards Track [Page 8]

RFC 4256 SSH Generic Interactive Authentication January 2006

 The second example is a standard password authentication; in this
 case, the user’s password is expired.

 C: byte SSH_MSG_USERAUTH_REQUEST
 C: string "user23"
 C: string "ssh-userauth"
 C: string "keyboard-interactive"
 C: string "en-US"
 C: string ""

 S: byte SSH_MSG_USERAUTH_INFO_REQUEST
 S: string "Password Authentication"
 S: string ""
 S: string "en-US"
 S: int 1
 S: string "Password: "
 S: boolean FALSE

 [Client prompts user for password]

 C: byte SSH_MSG_USERAUTH_INFO_RESPONSE
 C: int 1
 C: string "password"

 S: byte SSH_MSG_USERAUTH_INFO_REQUEST
 S: string "Password Expired"
 S: string "Your password has expired."
 S: string "en-US"
 S: int 2
 S: string "Enter new password: "
 S: boolean FALSE
 S: string "Enter it again: "
 S: boolean FALSE

 [Client prompts user for new password]

 C: byte SSH_MSG_USERAUTH_INFO_RESPONSE
 C: int 2
 C: string "newpass"
 C: string "newpass"

 S: byte SSH_MSG_USERAUTH_INFO_REQUEST
 S: string "Password changed"
 S: string "Password successfully changed for user23."
 S: string "en-US"
 S: int 0

Cusack & Forssen Standards Track [Page 9]

RFC 4256 SSH Generic Interactive Authentication January 2006

 [Client displays message to user]

 C: byte SSH_MSG_USERAUTH_INFO_RESPONSE
 C: int 0

 S: byte SSH_MSG_USERAUTH_SUCCESS

5. IANA Considerations

 The userauth type "keyboard-interactive" is used for this
 authentication method.

 The following method-specific constants are used with this
 authentication method:

 SSH_MSG_USERAUTH_INFO_REQUEST 60
 SSH_MSG_USERAUTH_INFO_RESPONSE 61

6. Security Considerations

 The authentication protocol and this authentication method depend on
 the security of the underlying SSH transport layer. Without the
 confidentiality provided therein, any authentication data passed with
 this method is subject to interception.

 The number of client-server exchanges required to complete an
 authentication using this method may be variable. It is possible
 that an observer may gain valuable information simply by counting
 that number. For example, an observer may guess that a user’s
 password has expired, and with further observation may be able to
 determine the password lifetime imposed by a site’s password
 expiration policy.

7. References

7.1. Normative References

 [RFC-2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC-3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC-3066] Alvestrand, H., "Tags for the Identification of
 Languages", BCP 47, RFC 3066, January 2001.

Cusack & Forssen Standards Track [Page 10]

RFC 4256 SSH Generic Interactive Authentication January 2006

 [SSH-ARCH] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell
 (SSH) Protocol Architecture", RFC 4251, January 2006.

 [SSH-USERAUTH] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell
 (SSH) Authentication Protocol", RFC 4252, January
 2006.

 [SSH-TRANS] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell
 (SSH) Transport Layer Protocol", RFC 4253, January
 2006.

 [SASLPREP] Zeilenga, K., "SASLprep: Stringprep Profile for User
 Names and Passwords", RFC 4013, February 2005.

7.2. Informative References

 [PAM] Samar, V., Schemers, R., "Unified Login With
 Pluggable Authentication Modules (PAM)", OSF RFC
 86.0, October 1995.

Authors’ Addresses

 Frank Cusack
 savecore.net

 EMail: frank@savecore.net

 Martin Forssen
 AppGate Network Security AB
 Otterhallegatan 2
 SE-411 18 Gothenburg
 SWEDEN

 EMail: maf@appgate.com

Cusack & Forssen Standards Track [Page 11]

RFC 4256 SSH Generic Interactive Authentication January 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Cusack & Forssen Standards Track [Page 12]

